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Section 6. Neural and Growing Networks

6.1. Neural Network Applications

PARALLEL MARKOVIAN APPROACH TO THE PROBLEM
OF CLOUD MASK EXTRACTION

Natalia Kussul, Andriy Shelestov, Nguyen Thanh Phuong,
Michael Korbakov, Alexey Kravchenko

Abstract: An application of Markovian approach to cloud mask extraction is presented. Also parallel algorithm of
Markovian segmentation is considered.

Keywords: Meteosat, cloud mask, Markov Random Fields, parallel programming, MPI.

Introduction

One of the most useful satellite data products is cloud mask. It can be used in a standalone way in applications
such as air flights and satellite photography planning. Also it can be used as an input data for various satellite
data processing algorithms like Normalized Difference Vegetation Index (NDVI), Sea Surface Temperature (SST)
and operational wind vectors maps extraction, or even more complex applications such as numerical weather
models.

A common approach for cloud mask extracting is using of multi- and hyperspectral satellites providing data in
many spectral bands. Basing on information about radiance intensities a conclusion about cloudiness can be
made on per pixel basis. For instance, this approach is widely used for processing of multispectral AVHRR and
MODIS data. But temporal resolution of satellites with such equipment on-board is usually quite low thus making
impossible on-line monitoring of particular region of Earth disk. The obvious solution of this problem is the use of
geostationary satellites.

For European region, the only geostationary satellite that can be used for solving cloud mask extraction problem
is Meteosat. Meteosat is operated by EUMETSAT international organization and provides data for solving
practical meteorological problems. This satellite’s onboard equipment makes one image of earth disk in 30
minutes in three spectral bands — visible, infrared, water vapour.

The temporal characteristics of Meteosat data make their use in solving of problem of cloud mask extracting quite
actual. But three spectral bands of Meteosat do not provide enough information for multispectral cloud recognition
algorithms operating on per pixel basis. This causes the need for algorithms, which involves temporal and spatial
dependencies in data processing. One of such algorithms is a Markov Random Field segmentation, which allows
determining pixel’s class with regard to its neighborhoods. Markovian approach allows taking into account
different possible distributions of intensities per class and do not introduce global parameters such as thresholds,
which is often used in multispectral data processing.

One of the main disadvantages of Markovian approach is high computational complexity. Therefore processing of
large images requires great amount of time. So, for effective solving of Markovian segmentation problem a
parallel computing approach is needed.



568 6.1. Neural Network Applications

Data Preprocessing

Meteosat images come with a lot of noise of two sorts. The first one is the so-called “salt and pepper” noise
consisting of noisy pixels uniformly distributed over image. The second one is the impulse burst noise, which
distorts images with horizontal streaks of few pixel heights filled with white noise.

In the Space Research Institute NASU-NSAU algorithm for detecting and removing such noise was developed
[Phuong, 2004]. On the first step of this algorithm noise streaks is detected and removed by cubic spline
interpolation method. During the second step the “salt and pepper” noise is detected by modified median filter and
removed by using bit planes approach. The algorithm based on this approach separates an image in 256 planes
with binary values. After that, each of these planes is processed separately in order to remove noise.

Cloud Mask Extraction

Following Markovian approach the image is represented as a n x m matrix of sites S. The neighborhood of site

s; Is any subset 6ij c S, such that s, & 8,.].. With each site s; two varieties are associated — an intensity

X, (as usual it takes integer value in interval [0; 255]) and a hidden label Y, . The specific values the varieties

ij
take are denoted x;; and y, respectively. So two sets of varieties defined for image S: X = {X . ¢ nm}
and ¥ =1{Y,,,....Y,}.

112> T nm
Markov Random Fields (MRFs) are widely used for image segmentation [Li, 1995]. With the Hammersley-Clifford
theorem the equivalence of MRF and statistical physics Gibbs models was proved [Li, 1995]. This theorem gives
us the equation for probability of specific segmentation P(Y )

pry= Lemn 1 JE)

z z

In this equation, z is normalizing constant necessary for holding the condition ZP(Y )= 1. S denotes the
Y

image correlation parameter. V is the so-called potential function. lts structure is highly coupled with optimal
segmentation of MRF. Defining a particular potential function it is possible to model physics features of
segmentation. The right part of equation shows that potential function V can be represented as a sum of

potentials defined at each site: V' = ZVU. :
i

For the cloud mask extraction problem the following Markovian model was used: the observed intensity X i

depends only on local label ¥, and a conditional distribution of variety X is Gaussian. The Bayes’ theorem

)

about a priory and a posteriori probabilities’ relation yields a complete model of intensities and labels coupling
[Shiryaev, 1989]:

P(Y| X))o P(X | Y)P(Y)= iexp{z By v, )} x H@exp{— 2;(;%, ~ 4 )Z}

Here o, and 4, are a standard deviation and a mean of random variable X, n, is the number of pixels in

ij
neighborhood 64.]. with the label equal to ¥, .

The goal of segmentation is to maximize P(Y | X)) under particular intensities X . This corresponds to
obtaining maximum for a posteriori label’s estimate: ¥ : ¥~ = arg max y {P(Y | X )}
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Parallel Execution Results

High computational complexity of Markovian
segmentation algorithm together with large
sizes of satellite images determines the need
for parallel realization of cloud mask
extraction process.

Meteosat image filtering and Markovian
segmentation algorithms were implemented
using MPI parallel programming interface
[MPI, 1997]. Due to locality of dependencies
in Markovian image model, it is possible to
divide image into almost independent
rectangular parts. Then each of these parts is
processed by different computational node.
Synchronization of several global per-class
parameters and image part's borders is
performed by means of MPI's group
communication functions.

The program was run on the cluster of
Institute of Cybernetics NASU consisting of 32
Intel Xeon processors. It has demonstrated
good level of parallel acceleration giving
almost proportional speed boost with increase
of number of computational nodes used.
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Conclusions and Further Works

Markovian approach has showed its effectiveness in task of cloud mask extraction from Meteosat satellite data.
Also parallel Markovian segmentation algorithm performed very well exploiting locality of Markovian image model.

Further works includes implementation of this algorithm in GRID environment, which will connect computational
cluster with satellite data archives and method to process them. This GRID design will allow separating
algorithms from environment and using them in standalone applications locally. Also, we are planning to port this
algorithm implementation to 1A-64 processor architecture to utilize upcoming computational cluster with 64

[tanium-2 processors.
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WAEHTUOUKALINA HEVIPOCETEBOIZ MOAENW NOBEAEHUA
NONb30OBATEJIEN KOMINbIOTEPHLIX CUCTEM®

H. Kyccynb, C. CkakyH

AHHOmauyus: B pabome nposodusiock Mmamemamudeckoe ModenuposaHue nogedeHusi nonb3osamenel
KOMNbIOMEPHbIX cucmeM. W3yyanace OuHamuka pabombl nonmb3oeamens 60 6peMs ceaHca. Takxe
OCyWwecmesnisifocs cmamucmuyeckoe mModenuposaHue GaHHbIX, Xapakmepuayrouwux e2o pabomy 3a ceaHC 8
Uesnom.

Kntoveenle cnoea: Modernb nosedeHus nonibaogamenel, HelPOHHbIE CEMU, KOMNbIOMEPHbIE CLUCMEMB.

1. BBepeHue

MaciwtabHoe MCnonb30BaHWE KOMMbIOTEPHBIX TEXHOMOMMA MPaKTUYECKM BO BCEX Cdiepax YEeroBEeYECKom
JEATEeNbHOCTM NPUKOBLIBAET BCe Borbluee BHAMaHWE K CaMOMy NOMb30BaTEN0. 3HaHUe TOro, kakue AEenCTBus
OH BbINOMHSIET (MMM OOMKEH BbIMOMHATL), MOXET NPUMEHATLCS B pasHbiXx 0BnacTtsax, Hanmpumep, B CUCTEMaX
GesonacHocTu [1], 4715 CO34aHMs NEPCOHANM3MPOBAHHOIO OKPYXEHWUS ANS NONb3oBaTenen [2] u Tak ganee.

B paborte [3] Obina npeanoxeHa KOMMMEKCHas MOZeNb MONb30BATENs, COCTOALAs W3 WHTEPAKTUBHOM U
CEaHCOBOW 4YacTel, KOTOPbIE Y4MTbIBAOT, COOTBETCTBEHHO, AWHAMWYECKME W CTATUCTWYECKME CBOWCTBA
noBegeHus nomnb3osatens. B obenx mopensx Ans BbISIBNEHWS OTKNOHEHWA OT OBbIYHOrO MM OXMAAEMOrO
MOBEAEHUSI NONb30BaTENEN WCMONMb3YIOTCS HEMPOHHbIE CETU. Tak, WHTepaKTMBHAs MOAENb OCHOBaHa Ha
MPOrHO3MPOBaHWUK KOMaHA MOnb30BaTeNs Ha OCHOBE Npedblaylwmx (B AaHHoi paboTte nog NporHo3vMpoBaHWEM
komaHg 6yfeM NOHMMaTb NPOrHO3MPOBaHWE NPOLECCOB, MOPOXAEHHbIX 3amyckom channos OC Windows.).
lMockonbky BbIOOP apXUTEKTYPbl HEMPOHHON CETW MpeacTaBnsieT cobon HETPUBMANBHYID 3agdady, BaXHO 3HaTb,
Ha CKOMbKO €ro Tekyllee MOBeAeHWe 3aBUCUT OT MpedplCTopun. B criyyae ceaHCOBOW MOLEN BO3HWKaeT
npobnema c paamepom BbIOOPKM, KOTOpast UCMOMNb3yeTcs ANnst 0By4YeHNst HEMPOHHOW CeTU. [leno B TOM, YTO npu
HebonbLLOM pa3mepe 00yyaloLLero MHOXECTBA HENPOHHAS CETb UMEET TEHAEHLMIO K TOKabHOMY 3anOMUHaHIO
00pa3oB, YTO HexenaTtenbHO. B ceaHcOBOW MOAENM Ha BXOA HEMPOHHON CETU NOJAlOTCA AaHHble, CODpaHHbIE 3a
ceaHc B Uenom. CoOTBETCTBEHHO, pa3mep 0Oy4vatoLLero MHOXKECTBA HanpsMyld OMpEAEensieTcs KOMMYeCTBOM
CEaHCoB, BO BPEMS KOTOPbIX MPOBOAMNOCH HabntoaeHne 3a AesTenbHOCTbIO nomnb3osatens. OgHako faxe 3a
NMPOAOIKNTENbHBIA OTPE30K BPEMEHM 3TUX AaHHbIX OyOoeT He#oCTaTOMHO ANst KAaveCTBEHHOro 0Oy4eHus
HENPOHHOM ceTh. MMo3TOMY B CEaHCOBOM MOLENM ANS KAYECTBEHHOTO 0OYYEeHUs HEMPOHHON CETU OYEHb BaXHO
obecneunTb Bonee NpeacTaBUTENBHYIO BbIOOPKY AaHHBIX.

Bonpocam, cBs3aHHLIMU C ONTUMU3ALMEN apXUTEKTYPbI HEMPOHHON CETH, B YACTHOCTU Pa3MEPHOCTLIO BXOAHOMO
Cnos, 1 MoZenupoBaHNEM JaHHbIX, U NOCBSLLEHA JaHHas CTaThs.

2. KomnnekcHas HelmpoceTeBas MOAeNb NONb30BaTeNs KOMMNbLITEPHbIX CUCTEM

KomnnekcHas Mogenb nonb3oBaTens, NpeanoxeHHas B paboTte [3], yuuTbiBaeT Kak AMHAMWUYEckue
(MHTepaKTMBHAs YacTb), Tak U CTAaTUCTUYECKME (CeaHCoBas YacTb) CBOMCTBA NOBefEHWS Mnonb3osaTenen. B
OCHOBY pa3paboTaHHOW MOAENW MOMOXEHa HEeMPOHHAs CEeTb MPAMOro PacrpoCTPaHeHMUs, KOoTopast COCTONT W3
BXOAHOrO, BbIXOAHOTO W OAHOMO MW HECKONMbKWX CKPbITBIX CIOEB HelpoHOB [4]. Bbixoa HelipoHa B cnoe n
onpeaenseTcs CneaytoWwmM OTHOLLEHUEM:

yjn = f(s‘,-”) (1)
roe n — Homep cnost ( m=1,p); p — KONNYECTBO CMOEB B HEMPOHHOW CETW; j — WHAEKC HeipoHa B
cnoe (j=1,N,); N, — 41cno HelpoHOB B CMoe; f — aKTUBALMOHHAA (YHKUMA Crost (B Halem crnyyae

' PaGora BbinonHeHa npu coaencTeum rpaHTa MpesnaeHTa YkpauHbl Ans NOAAEPXKKN HayUYHbIX MCCNEA0BAHUIA MOMOABIX YYEHbIX

Ne ©8/323, "MpoTOTHN MHTENNEKTYaNbHON MYNbTUAreHTHOM CUCTEMbI KOMMBIOTEPHOI Be3onacHocTy".
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1
AN CKPbITbIX CNOEB NCNONb3yeTCA CUrMOnaHaA akTnBauMOHHasA (byHKU'VIFI f(x) = 1—_(“_, a And BbIXogHOro
+e

cnosi — nuHeHas f(x) = ox); y j” — BbIXOZ Jj -rO HeMpoHa cnos; s j” — MOCTCUHAMNTUYECKMI NOTEHLMan
J -TO HeipoHa Cnos, KOTOpbIiA BbIYUCIIIETCA COTMNacHo CrieaytoLLen dopmyne:
Nn—l
n n n—1 n n n  ~n-l
s/ =W v e S =W 2
k=1

o o . o -1
roe ij" — BECOBOW KOI(PULMEHT CBS3M k -ro HeitpoHa cros n—1 ¢ j-M HeitpoHom crost n; y," —

BbIXof Kk -ro HelpoHa cnost n —1; )7”" — pacCLUMPEHHbIA BEKTOP C y4eTOM bias-HenpoHa; bi" — nopor (bias-
HEMpPOH) j -ro HeMpoHa cros 7 .

WHTepakTMBHAs Mofenb WCMonb3yeTcs A1 BbISBNIEHWS aHOMAambHOM [esTenbHOCTM BO Bpemsi paboTbl
nonb3oBatens. [ns kaxgoro nonb3oBaTens KOMMbIOTEPHON CUCTEMbI CTPOUTCS M 0By4aeTcs HEeMpOHHas CeTb
Takum 00pa3om, 4ToObl MPOrHO3MPOBATb CMEAYIWYI0 KOMaHAy Ha OCHoBe npedblaywwx. Myctb s (roe
te{1,2,...} HomMep ceaHca) — HEKOTOpbIA CEaHC NONb30OBaTeNs, [N KOTOPOro WMeeTcs creaytolas
nocnefoBaTenbHOCTb BbIMOMHEHHBIX MM KOMaHL;:

c* :(Clsl, C;’, ey C;’[ ),
St
e N, — KONMYEecTBO KOMaHf, BBEAEHHbIX 33 CeaHc Si. [pexpae Yem MoAaTb MOCTeAOBATENbHOCTb U3 m
ot

KOMaHZ, Ha BXO[ HEMPOHHOI CETU NPUMEHSNOCL BHAPHOE KoaupoBaHue. Mpn 3TOM Ans Koo komaHAabl Bb1no
“cnonb3oBaHo q 6ut. Torga pesynbTaT paboTbl HEMPOHHOM CETU MPK BbINONHEHWW -1 KOMaHZbI onpeaenseTcs
3aBUCKHMOCTbIO:

~s S TS ~S
¢, =F(X;), X, =(Ci-1,Ci-2,...,Ci-m |, (3)
roe F' — HenuHeliHoe npeobpa3soBaHuie, OCYLIECTBSEMOE HEMPOHHO CeTblo cornacHo dhopmynam (1) v (2);

~Sl P - 9 ~
Ci-k (k = l,m) — BMHapHbIA BEKTOp ANst KOMaHAbl ¢, ;X,, C;" — BXO W BbIXO[ CETH, COOTBETCTBEHHO (B

[aHHOM Cry4ae pa3MepHOCTb BekTopa X, COCTaBnseT g*m, a ¢," — 1); ¢;' — i-Tas kOMaHAa ceaHca S; m —

KONMYECTBO KOMaHA, Ha OCHOBE KOTOPbIX MPOVUCXOANT NPOTHO3MPOBAHMWE CrieaytoLLei (OKHO MPOTHO3MPOBaHHS).
Ha ocHoBe konuuecTBa komaHf, KOTopble Obln MpaBUMbHO CMPOrHO3WMPOBAHbI HEMPOHHON CeTbio, AenaeTcs
BbIBOZ, O TOM, COOTBETCTBYET NN TeKyLLee NOBEEHe NONb30BATENS paHee NOCTPOEHHON MOAENN.
[ycTb

! o —_ 1 eciu ¢;' =c’'
ZZ(Ej/’Cj’)’ Z(eracjf = ! /

1
(i—m) S 0, 6 npomuenom ciyuae

() = (4)
BennunHa O(i) onpedensieT OTHOCUTENBHOE YKMCNO BEPHO CMPOrHO3MPOBaHHbIX kKomaHd. Ecnm O()<@’, T.e.
3HayeHne O(i) MeHblue HEKOTOPOro nopora, TO MOBEeAEHWE MONb30BaTeNs CrneayeT CunTaTb aHOManbHbIM, B
NPOTUBHOM Clly4ae — HOpMarbHbIM.

Mpn 3TOM HEOBXOAMMO YuMTbIBATb, YTO MOMbL30BATENSIM CBOWCTBEHHO W3MEHSTb MOBEAEHWE C TEYEHUEM
BPEMEHM, NO3TOMY C Lienbto obecneyeHns aganTalmm K ux NOBEAEHUIO HENPOHHYIO CETb CneayeT Nepyoanyecku
poobyvartb. (Kputepuit uI3MEHeHWs NOBEAEHMs Nonb3oBaTtenen Oyaet pacCMOTPeH Jarnee.)

CeaHcoBas Mofenb npeaHasHayeHa Ans BbISIBNEHUS HEXapaKTEpHOW LeATENbHOCTW NOMb30BaTENs 3@ CEaHC B
LenoMm W Ans 9TOr0 MCnonb3yeT CTaTUCTMYeCKMW Habop fdaHHbIX. JTa MHGOpMauus, B CBOW 0Yepessp,
NCMonb3yeTcs Ans NOCTPOEHUS M 0OYYEHWS HEMPOHHOW CETU, KOTOpas onpesensieT, Ha CKOMbKO aKTUBHOCTb
nonb3oBaTeNsi COOTBETCTBYET paHee MOCTPOEHHOM moaenu. MMpu 3TOM OXMOAEMbIA BbIXOL HEAPOHHOW CETU
MOXET NpUHUMaTL ABa 3HayeHns: 1 — Ang HOpManbHOTO NoBeaeHus nonb3osatens u 0 — 41 aHoOMarnbHOro,
T.e. HEMPOHHas ceTb paboTaeT B KA4eCTBe Knaccudukaropa.

BbIxop e HEMPOHHOM CETW MO 3aBEpPLLEHNN CeaHca S; ONpeaenseTcs cneayowmm COOTHOLLEHNEM:

Asr = F(xst )’ XSr = (nsz ’ Osz ’ hsf ’ dsz ’ Sst ) ! (5)
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roe I — HenvHeHoe npeobpa3oBaHue, OCYLLECTBNSEMOE HEMPOHHOM CETbIO cornacHo dopmynam (1) u (2);
X, , A, — BXOQ ¥ BbIXOZ CETW, COOTBETCTBEHHO (B JAHHOM CIlyyae pa3MepHOCTb BekTopa X, COCTaBMIseT 5,
a A, —1); n, — KONM4eCTBO KoMaHA 3a ceaHc, o, =O(N ) — pesynbTaTbl MHTEPAKTUBHOM MOAEMK
(NPOLEHTHOE  COOTHOLLUEHME MPaBUIbHO CMIPOTHO3MPOBaHHbIX KOMaHA 3a BECb CeaHc), /s, — Homep
KoMnbloTepa, d — NPOAOIIKUTENBHOCTL Ceanca, s, — BPems Hayana ceaHca.

Cnepyet 3ameTuTh, YTO BbIXOA HEMPOHHOW ceTh A He obasatenbHo Oyaer pasHbiM 0 wnn 1, a Gynet
t

npuHagnexatb otpesky [0;1] W onpegenstb BEPOSTHOCTb HOPMAnbHOMO (COOTBETCTBYHOLIENO MOAENM)
noBefeHUs Nonb3oBaTens.

3. OnucaHue gaHHbIX

[ns mogenvpoBaHns NoBefeHUs Nonb3oBaTenei KOMMbIOTEPHbLIX CUCTEM UCMONb30BaNNUCh peanbHble AaHHbIE,
koTopble Bblnu cobpaHbl B NoKamnbHOM ceTn MHcTuTyTa KocMudeckux uccnegosannii HAHY-HKAY B nepuog 3a
ABa-Tpn Mecsua. B paHHoM ceTw pabouve cTaHumW (YHKUMOHMPOBanM Mo YnpaBfieHMEM OnepaLOHHbIX
cuctem (OC) Windows 98, XP, 2000. MMockonbky 3t OC Heobxogumoit uHcbopmaumein 06 akTUBHOCTM
nonb3oBatens obecneynBanu He B NONHON Mepe, bbino paspaboTaHo cneymanbHOe NPOrpamMMHOe NPUNOXEHNE.
[ns kaxporo ceaHca nonb3oBaTens Co3gaBancs OTAENbHbI ayauT-hann (Ha3BaHWe KOTOPOrO OZHO3HAYHO
ONpeaensno UM Y4ETHON 3anucy Nonb3oBaTens v gaty ero paboTbl), B KOTOPbIN COXpaHsanach MHGopMauus B
crnegytouem opmare:
8pems 3anycka koMaHObI|udeHmugukamop komaHAbl|HassaHuUe koMaHObIl|ghriae Hayana unu 3agepuieHus

HeobxognMo oTMETUTb, YTO MAeHTUdukaTop KomaHdbl npucsansaetcs OC M ABNSeTCS yHWKamnbHbIM (Ans
KOMaHZ C OOHWM W TEM XE UMEHEM OH pasnuyeH, NPUYEM OT CeaHca K CeaHCy OH Takke MeHsieTcs). [oatomy
NP KOQMPOBAHWW KOMaHA BaxHO 06ecneynTb, YToObl 0ANHAKOBLIM KOMaHAaM COOTBETCTBOBANM OLHW U TE Xe
3HaueHms. C 3TOM Lenbio A1 MHTEPAKTUBHOM YacTu KOMMIEKCHOM MOLENN Ha OCHOBE COBpaHHOM MHGopMaLmi
AN Kaxporo nonb3oBatenst Obin nocTpoeH andaBuT komaHg A (T.e. Habop koMaHd, KOTopble BBOAMUIMCH
nomnb3oBaTeNieM Ha MPOTSHKEHWW YKa3aHHOrO nepuoga Bpemenu). [lanee kaxgoi komaHze Obin npuCBOEH
COOTBETCTBYHLUMA AECATUYHBIA HOMEP, KOTOPbIA BMOCNEACTBMM UCMONb30Bancsa npu npeobpas3oBaHun ayanT-
(hannos B nocnegoBatenbHOCTM komaHa (A ={1,2, ..., N}). B pesynbtate Ana Kaxgoro nomnb3oBatens 6Gbin
NpeacTaBeH creayrowmit Habop LaHHbIX:

ol ©)

roe ¢ €A — [ecATUYHbI HOMep i-O/f BBEJEHHOW KOMaHAbl ceaHca S; T— KONMMYECTBO CEaHCoB; NS[ —

obLLee KOMMYEeCTBO BbIMOMHEHHbIX KOMaHZ 3a ceaHc S:. Ha puc. 1 npuBegeH npumep nocresoBaTeNibHOCTU
KOMaH, BBOZMMbIX NMOMb30BaTeNeM 3a OAMH CeaHc.
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HOMep KOMaHAabl B nocrnenosaTesibHOCTU

HOMep KoMaHfb! B andasure

Puc. 1. MNpumep nocneaosatensHOCTY KOMaHZ, BBOAUMbIX NOSb30BaTENEM 3@ OAWNH CEaHC

B cBot ouepedp, AN CEAHCOBOM 4YacTX KOMMMEKCHOW mogery Obli nonyyeH criedytowmin Habop AaHHbIX,

-« T
ncnonb3ys MHGopMaLuMio U3 ayanT-annos: {”s,’ ho,d,, s, }t

o The t— YyCnoBHbI HOMep ceaHca; T—

KOMMYECTBO CEaHCOB; MapameTpbl 7, , /i, d , s ONpeseneHbl B COOTHOLWEHMM (5).
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4, Vlsyqel-me AWHAaMUKKN nNoBeeHNA nNonb3oBaTesiad BO BpeMA ceaHca

Mpu uccnenoBaHUN AYHAMUKI NOBEAEHMS NOMb30BaTENs N0 NOCHeL0BATENBHOCTSM BBOANUMBIX UM KOMaHZ, Hac,
B NepBylo ouependb, OYAET MHTEpecoBaTb pelUeHWe CRedyloLmMX 3ahay: OnpefeneHue KonuyecTBa KOMaHg,
KOTOpble CrieayeT WCnonb3oBaTb A NPOrHO3a Criedylollen, a Takke MOCTPOEHUE KPUTEPUS M3MEHEHUS
MoBEeHIs NONb30BATENS C LIENbo YMEHbLUEHWS! NOXHBIX TPEBOT M NepeobyyeHns HEMPOHHbIX CETeil.

4.1. MocTpoeHne aBTOKOPPENALUOHHBIX (PYHKLMIA

nOCKOﬂbe WHTEPAKTNBHAA Moaenb OCHOBaHa Ha MPOrHO3MpoBaHWU HeﬁpOHHOPl CeTb0 KOMaHA NoJib3oBaTend,
BaXHO 3HaTb, Ha CKOJIbKO €ro nosegeHne B ,anHbIVI MOMEHT BPEMEHW 3aBUCUT OT npeablayLlero. ,D,J'Iﬂ 3TOoro Ang
KaXgoro ceaHCa nonb3oBatend St Obinu NOCTPOEHbI aBTOKOPPENALWOHHbIE KpUBbIE, OnpeaendaemMbie
COOTHOLLEHNAMKM cneyoLlero siaa:

N, —n

St

1 0 Yom 1l
p, (M) =+ Mler —u, e —ny ) ng = v ;:ci -

S i=l Sy
rne p, (1) — KO3(PPUUMEHT KOPPENALMM AMSi NOCTIEAOBATENBHOCTI KOMaHA, BBEAEHHbIX 38 CeaHC S; 1 —
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Puc. 2. Mpumepbl aBTOKOPPENALMOHHBIX YHKLMIA AN pasHbIX NoSb3oBaTesnen

AHanu3 nOCTPOEHHbIX KPUBbIX MOKa3blBaeT, Y4TO C POCTOM 4WCMa NaroB aBTOKOPPENALMOHHbIE (PYHKLMM
ybbIBatoT. [Mpy 3TOM IKCTPEMYMbI HAaBo4aAOTCS NPK 3HAYEHWsX naros oT 1 fo 5. Takum o6pa3om, Npy NporHose
KOMaHZ nomnb3oBaTens crnegyeT WCMONb30BaTb WMEHHO 3TO KOMMYEeCTBO koMaHa. [pu 3ToM Heobxogumo
yunTbIBaTh CredyloLee: UCnonb3oBaHWe CIMULWKOM BOMbLIOTO KOMMYeCTBa KOMaHA NpuBedeT K TOMY, YTO Ha
NPOTSKEHUM 3TOTO Mepuoja BpemMeHW 6ydeT HEeBO3MOXHO OCYLLECTBNATb MNPOTHO3 KOMaHZ, UTO CHM3MT
BO3MOXHOCTM MO BbISIBMEHNS aHOMAIbHOM AeATENbHOCTM MOMb3oBaTenen.

4.2. MocTpoeHne KpuTepus U3IMeHeHUa NoBeAeHUA Nonb3oBaTens

PaccmoTpuM Tenepb BOMPOC, CBA3AHHbIA C MOCTPOEHUEM KPUTEPUS [N ONPEAENEHNs U3MEHEHUS NOBEAEHMS
MoNb30BaTeNs KOMMbIOTEPHBIX CUCTEM. OTO MO3BOMUT YMEHBLUMTL KONIMYECTBO NOXHBIX TPEBOT, CBSA3AHHbLIX C
MPOrHO3MpOBaHWEM [AEACTBUA MOMb30BaTeNs, W ONpeaenuTb  MOMEHT, korga cnefyeT nepeobyyatb
HEPOHHbIE CETH.

Mpyu NOCTPOEHUM MHTEPAKTWUBHO MOAENW NONb30BaTENs HEOOXOAUMO Y4UTbIBATb, YTO C TEYEHWEM BPEMEHN
rnoBefeHle Monb3oBaTenss MeHseTcs. IJTO MOXET NPOMCXOAWUTb MO  pasHbiM  MpudMHam. Hanpuwmep,
rnonb3oBaTenb YCTAHOBMN HOBOE MpOrpamMMHoe obecreveHve M Hauan 4acTo ero 3anyckatb, a [Apyrue
MporpaMMHbIe MPOAYKTbI OH CTan WCMONb30BaTb HAMHOrO pexe. Torga B 9TOM CNyyae TOYHOCTb MPOrHO3a,
OCYLLECTBIIIEMOTO HEMPOHHOM CeTblo, CHU3UTCS W Takoe MOBEAEHMe, COOTBETCTBEHHO, OyAeT WHTepnpe-
TUPOBATLCS Kak aHOMarbHoe. Mo3ToMy npy MOCTPOEHUM UHTEPAKTMBHON MOZENM BaXHO 3HaTb, YTO NOBEAEHWE
MoNb30BATENS U3MEHUIOCH U HEMPOHHYIO CEeTb 1S HErO CrieayeT NepeodyymTh.

OpHako ¢ 3TUM HeoBXoaMMO 3aMeTWUTb, YTO aHOMarlbHOe MOBEAEHME TakKe MOXHO MHTEPNPeTMpoBaTh Kak
n3MeHeHe noseaeHMs. [oaToMy Npy NOCTPOEHUM KpUTEPUS ByLeM UCXOAUTb U3 CReayHOLLMX NPENONOXEHMIA:
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— bygem cuntath, 4TO aHOManbHOE MOBELEHWE MOMb30BATENS XapPaKTEPU3YETCH PE3KUMU USMEHEHUSMU U
CKOPOTEYHOCTBIO;

— B cBo 04epeb, eCTECTBEHHOE U3MEHEHWE NOBELEHUS MPOUCXOAUT Ha MPOTSHIKEHUM HECKOMbKUX CEaHCOB M
He XapaKTepu3yeTcs peskuMn nepenagamu.

[Nepenaem Tenepb k POPMYNMPOBKE KPUTEPUS M3MEHEHWS NOBEAEHMS NOMb30BaTENS.

lMycTe A — andaeuT KOMaHg HEKOTOPOro nonb3oBaTtens (T.e. HAbop BCeX KOMaHL, KOTOPbIe BbINOMHAMMCH Ha

NPOTSKEHUM HekoToporo BpemeHu T). MpegnonaraeTcs, 4TO 3a 9TOT MPOMEXYTOK BPEMEHW NOBefeHWe

nonb3oBartens He nameHsnock. O603Haunm nocpeacTsom |A| = N — konuuecTBo komaHg B andasurte. Mpu aTom

Oygem cuutatbh, YTO Kaxgon komaHge npucBoeH Homep oT 1 go N, npuyem Homep N 3apesepBupoBaH 3a

KoMaHZamu, KoTopble OTCYTCTBYIOT B andasute. [ycTb S; (> T) — TekyLimuit ceaHc nonb3oBaTens, Ans KOTOporo

“MeeTcs cregytoLas nocnefoBaTenbHOCTb BbIMOMHEHHbIX UM KOMaHA:

¢’ = (cf', Clyey C )
st
Anst Toro YTo6bl OMPefenuTb, U3MEHUIOCh M MOBEAEHUE MONb30BATENSsl, MO OKOHYaHWM CeaHca S; CTPOUTCS
BEKTOP g(S:), KOMMOHEHTbI KOTOPOrO OMpPeAEnsIoTCs Takum 06pasom:

1, ecnncywjectsyer Takoe k=1, N, 4TO cl=j jed

gj(st) = (7)

0, BMNpOTMBHOM Cryyae
T.e. ecnu onpeaeneHHas komaHaa Obinia BbINMOMHEHa BO BPEMsi CeaHca S, TO 3HAYEHWE COOTBETCTBYHLLEN
KOMMOHEHTbI BekTopa g(S;) CTaHOBMTCS paBHbIM 1, B NpOTMBHOM criyyae — 0. 3aTeM 3TOT BEKTOp NOMapHO
CPaBHWBAETCS C aHaNorMyHbIMM BEKTOPaMM, NMOCTPOEHHBIMM ANs NpeablayLUX CEaHCOB St.1, Stz, ..., St/ U T.4. (B
AaHHON paboTe | = 5). B kauecTe Mepbl CPABHEHMUS CMONb30BANOCh PACCTOSHUE XIMMUHTa:

N lL,ecrmg (s,.)#=g.(s,.)
? JNTt JNTt
N(g(st')a g(Sz" )) = ZX(g/ (St')J g_/ (Sz" )) ! X(gj (Sz'): gj (Sz")) = '
= 0,B NPOTMBHOM CNny4yae
T.e. BenuunHa N onpegensieT YMCNO KOMMOHEHT [BYX BEKTOPOB, 3HAYEHWS KOTOPbIX OTMNYHbI. lonyuus B
pesynbTate CpaBHEHUs | 3HAYeHWW, BblYMCISEM cpedHee W JenWM ero Ha obliee KOMMYecTBO KOMaHa B
andasute:;

(8)

% %Zx(g(s,xg(s,_k)) . o)

Ecnn nosegexve nomb3oBaTens He M3MEHWNOCh W He aHOMarnbHO, Torga BekTop g(Si) bydeT oTnnyaTbes oT
NpeaLEeCTBYIOWNX HeaHaunTenbHo. COOTBETCTBEHHO, 3HayeHWe napametpa H; OyaeT Hebonblumm (MeHblue
HekoToporo nopora H:). W HaobopoT, ecnu HabnogaeTca aHoOManbHOe NoBedeHWe MoNb30BaTeNsl, BEKTOP g(S:)
OypeTt 3HauMTENbHO OTMWMYATLCS OT BCEX OCTaNbHbIX M 3HaveHue napametpa H: 6yneT Gonbwwum (Bonblue
HekoToporo nopora H'). Ecnu xe 3HaveHwe H; npuHagnexut uHTepsany (H+ HY), MOXHO TrOBOPUTL O
€CTECTBEHHOM M3MEHEHUN NOBEAEHNS NONb30BaTeNs.

Takum 06pa3om, KpUTEPUA U3MEHEHWS NOBEAEHNS NONb30BATENS MOXHO COPMYNMPOBATh B CrieAyHOLEM BULE:
Ons 0aHHO20 (MeKywe20) ceaHca nonb3oeamesnis S; Ha ocHose opmyn (7)-(9) ebiyucnsiemcs 3Ha4YeHue
napamempa H;. Ecnu H; < H., cqumaemcs, 4mo nosedeHue He UBMeHUNock, ecru H-< H; < H— usmeHusnocs,
ecnu xe Hy> H"— moa0a nogedeHue aHoMarbHO.

[Ona Toro ytobbl NPOBEPUTb AAEKBATHOCTb MPELNIOXEHHOMO KpUTepus, 4N pasHblX nonb3oBaTenei Gbinu
npoBeseHbl 3KCNePUMEHTbI. [Ns 3TOro UCNoNb30BanMech peanbHble faHHbIe, ONcaHe KOTOpbIX NPUBOAWIOCH B
pasgene 3. CHayana 3HayeHue H; BbIMMCNAMOCH AN CEeaHCOB, BO BPEMS KOTOPbIX MOBEEHME Monb30BaTens
ObIN0 HOpManbHbIM (XapakTepHbIM). (Ha puc. 3 UM COOTBETCTBYHOT HOMEpa ceaHcoB OT 1 4o 24.) Kak BuaHO n3
puC. 3, 3HaYEHNs 3TOro NapameTpa Ans PasHbIX CEaHCOB OTNMYAOTCSA HE3HAUNTENbHO W nexar B npegenax (0;
0,15). Ana mopenupoBaHus aHoManbHOW paboTbl MONb30BaTENs OCYLIECTBASNACh NOAMEHA AaHHbIX. T.e.
BEKTOp g(S:) CTpowncs [Ansg ceaHca ApYroro MOnb30BaTeNns M CPaBHWMBANCA C aHanorvyHbIMU BEKTOpamiu,
NOCTPOEHHbIMA ANA MpEeALIECTBYIOWNX CEaHCOB MCXOLHOro nonb3oBatens. [lonyyeHHoe B 3TOM cnyyae
3HaueHue napameTpa H; pesko yeenuunsanocs (Ha puc. 3 go 0,32).

Ana Toro ytobbl CMOAEnMpoBaTb ECTECTBEHHOE M3MEHEHME MOoBedeHWs mnonb3oBatenen, Obino caenaHo
cnegyloLlee: 3HaYeHUst ANEMEHTOB BekTopa g(Si) cnyvanHbiM 06pa3om (¢ BeposTHOCTbIO 0,25) M3MeHSNMCh Ha
NPOTMBONONOXHbIE (Ha pUC. 3 UM COOTBETCTBYIOT CeaHchbl ¢ Homepamu 35-50). T.e. MogenupoBanack cuTyaLms,
Koraa nonb3oBatenb NepectaBan BbINOMHATL O4HW KOMaHIbl M Ha4MHan 1cnonb3oBath Apyrue. B atom cnyyae

H, =
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3HaveHne napametpa H: ysenuumsanocs 4o 0,25 (ceaHc ¢ Homepom 35), a 3aTem CHOBA, Kak W B Cryyae ¢
HOpMarnbHbIM MOBEAEHUEM, BbIXOAMUIO Ha 0ObIYHbIN YPOBEHS.

BaBUCHMOLTb KpUTepHA H3MeHeHWA NoBeaeHuA nonbsoBaTenai
0,3
0,30
0%

020

JHavenne H

018
010

0,05

0,00
1 g 9 13 17 pal 5 29 33 37 4 45 48
Howep ceaHca

Puc. 3. UameHeHune 3Ha4yeHus H;

Takum o6pa30M, pesynbTaTtbl NPOBEAEHHbIX 3KCMNEPUMEHTOB MOKa3bIBAKOT, YTO UCNOJIb3OBaHME MapamMeTpa Hi
NO3BONAET onpeaennTb MOMEHT BpEMEHW, KOrfja noBeaeHne noib3oBaTesnia U3MEHU0Cb.

5. MogenupoBaHue faHHbIX 0 paboTe nonb3oBaTens

B obwem cnyyae ¢yHKUMOHMPOBAHWE HEMPOHHOM CETW 3HAYUTENbHO 3aBMCUT OT KavectBa Obyvatowlen
BblOOpkK. [eno B TOM, 4TO npu HebombloM pasmepe 0OYYaKOLWEr0 MHOXECTBA HEWPOHHas CETb WMeeT
TEHAEHUMIO K KECTKOMY 3anoMWHaHMI0 06pa3oB, YTO MPUBOAMT K YMEHBLUEHWIO ee COCOBHOCTM K 0BOBLLEHNID.
Tak, npu NOCTPOEHUN WHTEPAKTUBHON MOAENM NOMb30BATENS B HALLEM Cnydyae npobnema ¢ npeacTaBUTENbHOM
BbIDOPKO/ AaHHbIX HE BO3HWKamna, MOCKOMbKY [axe 3a HenpoAOIKUTENbHbIA nepuod BpemeHn paboTbl
nonb3oBaTens MOXeT ObiTb COBpaHO AOCTAaTOMHOE KONMMYECTBO 00Opas3oB (MpeacTaBUTENbHBIX) Ans 0ByyeHus
HENpOHHOW ceTu. (Hanpumep, ¢ y4eTOM TOro, YTO Monb3oBaTent B cpeaHem BeoauT oT 80 go 150 komaHg 3a
CeaHc, TO 3a AecaTb ceaHcoB obyyaroLias Beibopka MoxeT HacumTbiBaTh 40 1000 obpasos.)

B cnyyae ceaHcoBon Mogenu pasmep 0Oyualollero MHOXECTBA HanpsMyld ONMpeaenseTcs KonU4ecTBOM
CeaHcoB, BO BpeMS KOTOPbIX MPOBOAWNIOCH HabriogeHue 3a paboTon nomb3oBaTens. Tak, 3a Tpu Mecsua
TaKoBbIX CeaHCOB MOXeT aocturatb 100, YTO B Hawem crnyyae ObiNO HEJOCTATOMHO ANS KAYeCTBEHHOro
00y4eHNst HEWpPOHHOM CEeTW M ONTUMM3ALMM €€ apXUTEeKTypbl. [ns pelueHus 3To npobnembl MOXHO
“cnonb3osaTh ABa noaxoaa. Mepsbiit U3 HUX COCTOUT B 3HAUUTENBHOM YBENMYEHUM OTPE3Ka BPEMEHM, B paMKax
KOTOPOro NpomcxoauT HabnoaeHe 3a nNoBeaeHneM nonb3oeartens (ckaxem 4o 8-10 mecsues). OgHako B 3TOM
cryyae Benuka BEPOSTHOCTb TOMO, YTO 3a 3TOT MPOMEXYTOK BPEMEHU OHO W3MEHWUTCS W, Takum obpasom,
obyvatoleecs MHOxecTBO OydeT cogepxaTb npoTuBopeuuBble o6pasbl. BTopoi noaxon 3akniovaeTcs B
CTaTUCTMYECKOM MOZENUPOBAHUM AaHHbIX HA OCHOBE MMetoLLencs Bblbopku. OH 1 ByaeT NCnonb3oBaH B JaHHOM
paborte.

lMockonbky B CEAHCOBOA MOAENM Ans oByyeHWst HEMPOHHOW CEeTW WUCMONb3yeTcs MHGOPMALMS O KONUYECTBe
BBOAMMbIX KOMaHZ 3a CeaHC, HOMepe KOMMbIoTepa, MPOLOSMKUTENBHOCTA M BPEMEHM Hayana ceaHca, Ans
Ka)k[oro nonb3oBaTens NpoOBOAMNOCH MOLENMPOBAHNE UMEHHO 3TOro Habopa AaHHbIX. [ 3TOro NpoBepsnoch
COOTBETCTBME 3MMUPUYECKOr0 pacnpefeneHns Habopy TeopeTuyeckux (HOpManbHOMY, IorapugMUYEcKoMy
HOpManbHOMYy, paBHOMEPHOMY U T.4.). B kauyectBe KpuTepus cormacis WCMonb30Bancs Tak HasblBaeMbli
kputepni 2 Mupcona [5, 6].

Kputepun cornmacua y2. lycTb AN Kaxgoro ceaHca S; UMeeTCs Chnepytolmi Habop AaHHbIX 0 paboTe

T “
nonb3oBarens: i, h , d_, s, }t .- Kaxpylo v3 aTux BEnMYMH MOXHO paccmatpusaTb Kak ClydavHyto,
2t ot ot 21 =

npuHMMatowylo T onpedeneHHbix 3HadeHun. K Tomy e, Oydem cuutaTb 3T BENUYMHBI HE3ABUCUMbIMM.
OBosHaumm nocpeacTBoM X OAHY W3 3TUX CryyaiHbIX BenuyuH. PasobbeM ee 3HaueHWs no k uHTepBanam w
npeacTasuM B BULE CeayHoLLEero CTaTMCTUYECKOro paaa:
Lo Ixpxe I xexs | oo | X Xeer
* * * *
P; D §2 P
rAe |;— i-blil IHTEPBAM 3HaYEHU, p; — YacToTa nonafaHns B uHTepBan /i
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TpebyeTca npoBepnTb, COrNacylTCs MM 3TU LaHHble C MMNOTE30i O TOM, YTO cryyaiHas BenuynHa X uMeet
3aKOH pacnpefenenns, 3afdaHHbli DYHKUMEn pacnpedeneHus F(x) wnum nnoTHocTblo f(x) (HasoBem ero
TEOpeTMyecknm). 3Has TeOpeTUYECKUA 3aKOH pacnpefenieHusi, MOXHO HalTU TeOpeTUYecKue BEPOSITHOCTM
nonagaxus Cry4yanHoi BeNUYMHbI B TOT UMW UHOWM MHTEPBAN: P1, P2, ..., Pk.

MpoBepss CornacoBaHHOCTb TEOPETUYECKOrO W CTATUCTUYECKOTO (3MMMPUYECKOr0) pacnpeaeneHuii, BO3HUKaeT
BOMPOC O TOM, Kakum xe cnocobom cneayeT BblbupaTb Mepy pacxoxaeHuit. B kayecTBe Takon Mepbl B
MaTeMaTU4eCKOi CTaTUCTIKE 0BBIYHO BbIOGUPAKOT BEMUYMHY:

vosalrr)

i=1 D;
Tak, MnpcoH nokasan, 4To NP AOCTAaTOMHO OOMbLUMX 3HAYEHWMSIX N 3aKOH pacnpedeneHns BennuuHbl U
npakTuyeckn He OyaeTt 3aBuCETb OT (YHKUMM pacnpedenenus F(x) n uucna n, a 6ygeT 3aBUCETb TONMBKO OT
KONM4YECTBA NHTEPBASOB K 11 C YBEMMYEHWEM N NPUBNMXATLCS K Pacnpeaenermio x2 ¢ NoTHOCTb:

1
JW==—75
i
2
o
roe Mo) = J.t“’le"dt — ramma-yHKLMS; r— KONM4YEeCTBO cTeneHen cBobogbl. Mockonbky pacnpeneneque y2
0
3aBICUT OT napameTpa r (41cro cTeneHeit cBobozbl), TO 47151 €r0 BbIYUCTIEHNS UCTIONB3YIOT CReayHoLLee NpaBumo:
r=k-s,
rAe S— KOMMYECTBO HE3aBUCUMbIX YCIOBMIA, HANOXEHHbIX Ha BEPOSTHOCTU p. . K npuMepam Takux ycrioBuit

(10)

r u

u? e 2 (u>0),

MOXHO OTHECTU TpeGOBaHMe, 4yTo Obl CymMma BCeX 4acTtoT pl* Obina paBHa eguHule, unu Tpe6OBaHlAe

PaBEHCTBA TEOPETUYECKOrO CPEAHEro U AUCMEPCUM CTaTUMECKOMY U T.4.

[ns pacnpegenexus x2 cocTaBneHbl cneuyanbHble Tabnuubl. Monb3ysc UMK, MOXHO A5 KaXA0r0 3HA4YEHMS 2

W yncna cTeneHeit cBoGOAbl I HAUTU BEPOSITHOCTb P TOTO, YTO BENWYMHA, pacnpeaeneHHas no 3akoHy 2,

NPeB30MAET 3TO 3HAYeHue.

Takum 06pa3om, cxema npUMEHeHUst Kputepus x2 K OLEHKe COrnacoBaHHOCTM CTaTUCTUYECKOTO M

TEOPETUHECKOro pacnpeaeneHnin CBOANTCA K CneaytoLemy:

1. Onpepenserca Mepa pacxoxaeHus U B cootsetcTin ¢ chopmynoi (10).

2. OnpepgensieTca 4ncno creneHeit cBobodpl r kak pasHOCTb MEXOY YMCMOM WHTEPBANOB K U KONMYECTBOM
HaNoXeHHbIX CBA3EN S.

3. Tlo nonyyeHHbIM 3Ha4YeHUaM U 1 r (C NOMOLLbH creuuanbHbIX Tabnuu Ans x2) onpegensetcs BEpOSTHOCTb p.
Ecru aTa BeposATHOCTb BeCbMa Mana, rMnotesa O COOTBETCTBMM CTATUCTUYECKOTO pacnpeneneHus
TeopeTuyeckomy otbpacbiBaeTcs. Ecnn ke 9Ta BEpPOSTHOCTb OTHOCUTENBHO BENWKA, AaHHYI0 rUnoTesy
MOXHO NPWU3HATb HE NPOTUBOPEYALLEN ONbITHBIM AAHHbIM.

PaccmoTpum Tenepb 3aBMCUMOCTH, KOTOpbIe Oblnn NoMyYeHbl NPy MOAENMPOBAHNM.

KonnyectBo BBOAMMbBIX KOMaHA. bbin NpoBedeH aHanu3 pasnuyHbiX pacnpegeneHun. Hawnydwee sHayeHue

kputepus 2, paeHoe 1,98, 6bino nonyyeHo 4ns norapudMUYeCcKoro HopMankbHOro pacnpeaeneHus. Mockonbky B

[aHHOM Cryyae Konmm4yecTBo cTeneHen cBobogsl r paeHsnock 7 (k= 10, s = 3), 310 3HauyeHne obecneumBarno

97%-0e COOTBETCTBME TUNOTE3bl peanbHbiM AaHHbIM. Ha puc. 4,a npuBefeHO AMNMPUYECKOe U NOCTPOEHHOe

TeopeTMYeckoe pacnpedeneHue 4ns aToro napameTpa.

Homep komnbtoTepa. [pu aHanu3e 3HayeHWn 3TOro napameTpa HeOBXOAMMO yuuTbiBaTb CriedyloLlee:

nonb3oBaTesb, kak NpaBuno, IMEET CBOE OCHOBHOE MECTO paboTbl 3a KOMNBIOTEPOM W O4EHb PeaKo paboTaeT 3a

ocTanbHbIMW. 103TOMY BCerga CyWecTBYeT 3HayeHue, BEPOSITHOCTb KOTOPOro Haubonblias W cocTaBnser
0,8...0,95. CobbiTna xe, cBs3aHHble ¢ paboToit Monb3oBaTeNns 3a APYrUMM pabounmu CTaHUMAMM, MOXHO
cunNTaTh PaBHOBEPOSTHLIMMU.

[MpoOomKk1TENbHOCTL CceaHca. AHammM3 3HayeHWid 3TOro napameTpa MokasblBaeT, YTO OHW pacrnpeferneHbl

PaBHOBEPOSATHO (puc. 6). 3HaueHne kputepus ;(2, paBHoe 2,19, (npu 3HauveHusx mapameTtpoB r=7, k=10,
s = 3) obecneunBaet 94%-0e COOTBETCTBUE rUNOTES3bI peanbHbIM AaHHbIM.
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Bpems Havana ceaHca. Haunydiwee 3HayeHue KpuUTepus ;(2, paBHoe 0,87, ons atoro napametpa Obino

nomnyyYeHo Ans HopmarnbHoro pacnpepenenus. Mpu r=3, k=6, s=3 910 3Ha4yeHue obecneunBano 85%-oe
COOTBETCTBME TUNOTE3bl peanbHbiM faHHbIM. Ha puc. 4,6 npuBEAEHO SMMMPUYECKOE U NOCTPOEHHOE
TEOpeTMYecKoe pacnpeaeneHme.

14 - 12 1 O SrnMpMUEckoe
1 pacrpegensHie
,,,//_“H O 3mMnHpHuzck oe 18 4
10 4 pacnpegensHie —+— TeapeThdeckoe
1 pacnpegenetme]

=)

B paGNpes] ENEHMe 25 |
£ I
=6 #
-\\\ 49
44 ]
74 ;%:_F N
il T T T . g

10 M5 13 145 16 175
40 65 o 15 1%5-«114!1855(100 190 c'rxyfco ] 265 3"3..3"“"?3 Hacan)

(a) (6)
Puc. 4. Smnupnyeckoe 1 TEOPETUYECKOe pacnpeaeneHns 4s KonuyecTsa BBOAUMbIX KOMaHA ()
11 BpEMeHM Havana ceaHca (6)

Ha ocHoBe nonyyeHHbIX TEOPETUYECKUX 3aBUCUMOCTeN Bbina paspaboTaHa nporpamMma, MOAENMpytoLLas paboty
nonb3oBaTens 3a ceaHc. ChopMMPOBaHHbIE C ee NMOMOLLbI0 AaHHbIE MO3BOMMUMM OMTUMU3MPOBATL apXUTEKTYPY
HEPOHHON CETU M YNYYLINTL Ka4ecTBO e (hyHKLIMOHMPOBAHHS.

6. 3aknoyeHue

B naHHoi paboTte npoBoAMNOCH MaTemMaTUieckoe MOLENMPOBaHNE MOBEAEHUS NONb30BaTeNel KOMMbIOTEPHbIX
cuctem. [ins aToro ucnonb3oBanack KOMMMeKCHas Mogenb, npeanoxerHas B pabote [3]. Wsyyanack guHamuka
paboTbl NONb30BaTENs BO BPEMS CeaHca. [10CKonbKy onpeaeneHne onTUManbHON apXUTEKTYpbl HEMPOHHON CETM
SBNAETCA HETPWUBMANBHOW 3adavel, B MHTEPAKTMBHOM MOAENM BaXHO 3HATb, CKOMbKO KOMaHh cregyet
ncnonb3oBatb npu 00yyeHuM [4ns NporHo3a cregytowein. Ha OCHOBE NOCTPOEHHbIX aBTOKOPPENSALMOHHBIX
KpuBbIX ObINO BbISBNIEHO, YTO ANS 3TOr0 CreayeT yunTbiBaTh 40 BOCbMU KOMaHA.

Takke 6bIN0 NPOBEAEHO CTATUCTUYECKOE MOAENMPOBAHWNE AaHHbIX, UCMONb3YEMbIX AN 00Y4YEHWS HENPOHHOM
CETW B CEaHCOBOM MOAENU. AMNMpUYECcKne pacnpegeneHns bbinu annpokCUMUpoBaHbl TEOPETUYECKUMM. Ha ux
OCHoBE Oblnn creHepupoBaHbl HEOOXOAMMBIN Habop AaHHbIX, YTO [ano BO3MOXHOCTb ONTUMWU3WPOBATb
apXMTEKTYPY HEMPOHHOMN CETW 1 YNYYLWNTL €€ (DYHKLMOHUPOBaHME.
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JAMMING CANCELLATION BASED ON A STABLE LSP SOLUTION

Elena Revunova, Dmitri Rachkovskij

Abstract: Two jamming cancellation algorithms are developed based on a stable solution of least squares
problem (LSP) provided by regularization. They are based on filtered singular value decomposition (SVD) and
modifications of the Greville formula. Both algorithms allow an efficient hardware implementation. Testing results
on artificial data modelling difficult real-world situations are also provided

Keywords: jamming cancellation, approximation, least squares problem, stable solution, recurrent solution,
neural networks, incremental training, filtered SVD, Greville formula

Introduction

Jamming cancellation problem appears in many application areas such as radio communication, navigation,
radar, etc. [Shirman, 1998], [Ma, 1997]. Though a number of approaches to its solution were proposed
[McWhirter, 1989], [Ma et al., 1997], no universal solution exists for all kinds of jamming and types of antenna
systems, stimulating further active research to advance existing methods, algorithms and implementations.

Consider an antenna system with a single primary channel and n auxiliary channels. Signal in each channel is,
generally, a mixture of three components: a valid signal, jamming, and channel’s inherent noise. The problem
consists in maximal jamming cancellation at the output while maximally preserving valid signal.

Within the framework of weighting approach [Shirman, 1998], the output is obtained by subtraction of the
weighted sum of signals provided by the auxiliary channels from the primary channel signal. The possibility of
determining a weight vector w* that minimizes noise at the output while preserving the valid signal to a maximum
degree is, in general case, provided by the following. The same jamming components are present both in primary
and auxiliary channels, however, with different mixing factors. Valid signal has small duration and amplitude and
is almost absent in auxiliary channels. Characteristics of jamming, channel’'s inherent noise, and their mixing
parameters are stable within the sliding "working window".

These considerations allow us to formulate the problem of obtaining the proper w* as a linear approximation of a
real-valued function y=f(x):

F(x) = wih1(x) + woho(X)+...+ Wy hn(X) = 3 i=1, 0 Wi by (X), W)
where hy(x),...,hn(x) is a system of real-valued basis functions; ws,...,w, are the real-valued weighting parameters,
F(x) is a function approximating f(x).

In our case, h¢(x),...,ha(x) are signals provided by the n auxiliary channels. Information about y=f(x) at the output

of the primary channel is given at discrete set of (time) points k=1,...,m (m is the width of the working window) by
the set of pairs (h%y¥). It is necessary to find w* approximating f (x) by F(x) using linear least squares solution:

w* = argmin , ||H w=y||2, (2)

where H is the so-called mxn "design matrix" containing the values provided by the n auxiliary channels for all
k=1,...m;and y = [y1,...,ym|" is the vector of corresponding y values provided by the primary channel.

After estimating w*, the algorithm's output s is the residual discrepancy:
s=Hw" -y. 3)

Such a system may be represented as a linear neural network with a single layer of modifiable connections, n+1
input and single output linear neurons connected by a weight vector w (Fig. 1). In the case of successful training
w* provides an increased signal-jamming ratio at the output s compared to the input of the primary channel y, at
least, for the training set H.



KDS 2005 Section 6: Neural and Growing Networks 579

output s = hw*-y A peculiarity of jamming cancellation problem in such a
formulation consists in contamination of both y and H by
+1 the inherent noise of channels. Existing algorithms for

jamming cancellation in the framework of weighting
processing (2)-(3) [Shirman, 1998] do not take into

-1 account inherent noise contamination of y and H. This
results in instability of w estimation, leading, in turn, to a

Wt W2 eee Wnl deterioration of cancellation characteristics, and often

é &) b even to amplification of noise instead of its suppression.

y e o Therefore, methods for obtaining w* should be stable to

inherent noise contamination of y and H. Other necessary

requirements are real-time operation and simplicity of
Fig 1. A neural network representation hardware implementation.

of a jamming canceller

main channel auxiliary channels

Least Squares Solution and Regularization

Generally, the solution of the least squares problem (LSP) (2) is given by
wr=Hy; 4)

where H* is pseudo-inverse matrix. If H is non-perturbed (noise is absent), then:

form = n, rank (H) =n=m = det H# 0. H* = H"; ()
for m > n, rank (H) =n, = det H # 0: H* = (HTH)-"HT; (6)
form=n,m>n, rank(H) <n = det H= 0, H* = limy,_o (HH +v2)-'H". (7

H* for (7) can be obtained numerically using SVD [Demmel, 1997] or the Greville formula [Greville, 1960].

The case when y and elements of matrix H are known precisely is very rare in practice. Let us consider a case
that is more typical for jamming cancellation, i.e. when y and H are measured approximately: y =y + ¢ H=H +
Z; where ¢is noise vector, = is noise matrix. In such a case, solutions (5)-(7) may be unstable, i.e. small changes
of y and H cause large changes of w* resulting in instable operation of application systems based on (5)-(7).

To obtain a stable LSP solution, it is fruitful to use approaches for solution of "discrete ill-posed problems"
[Hansen, 1998], [Jacobsen et al., 2003], [Reginska, 2002], [Wu, 2003], [Kilmer, 2003]. Such a class of LSPs is
characterized by H with singular values gradually decaying to zero and large ratio between the largest and the
smallest nonzero singular values. This corresponds to approximately known and near rank-deficient H.

Reducing of an ill-posed LSP to a well-posed one by introduction of the appropriate constraints to the LSP
formulation is known as regularization [Hansen, 1998]. Let us consider a problem known as standard form of the
Tikhonov regularization [Tikhonov, 1977]:

argmin w{|ly = Hwl|2+ A [|w]]2}. (8)
Its solution wy may be obtained in terms of SVD of H [Hansen, 1998]:
wi= 310 fi Uy /07 v; )
fi= 0%/(0%+ A2, (10)
where g; are singular values, us...u, vs... v, are left and right singular vectors of H, fiare filter factors.

Note that solution of (8) using truncated SVD method [Demmel, 1997] is a special case of (9), (10) with f; € {0, 1}.
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Algorithmic Implementation of Solutions of Discrete ill-posed LSPs

Requirements of an efficient hardware implementation of jamming cancellation pose severe restrictions on the
allowable spectrum of methods and algorithms. In particular, methods of w* estimation are required to allow for
parallelization or recursion. Taking this into account, let us consider some algorithmic implementations of (8).

SVD-based solution. The implementation of SVD as a systolic architecture with paralleled calculations is
considered in [Brent, 1985]. We have developed a systolic architecture that uses effective calculation of u;, ¢;, and
v; for obtaining the regularized solution w;* (9)-(10). The architecture implements two regularization techniques:
truncated and filtered SVD [Hansen, 1998].

Advantages of SVD-based solution are accuracy and parallelism. Drawbacks are connected with the hardware
expenses for calculation of trigonometric functions for diagonalization of sub-matrices and implementation of
systolic architecture itself.

Solution based on the Greville formula and its modifications. Let us consider another stable method for w*
estimation based on the Greville formula, which can be readily implemented in hardware because of its recursive
character. A recursive procedure for the LSP solution [Plackett, 1950] for a full-rank H is as follows:

Wis1 = Wi+ bst(y ko1 — T w); k=0, 1,..., (11)
b1 = thk+1/(1 + Wi Py hk+1),' (12)
Pt = (His1" Hist)! = (I - b1 hTie1)Pig (13)

where hy is the kth row (sample) of H; Py = 0; wy = 0. Note that this provides an iterative version of training
algorithm for a neural network interpretation of Fig. 1.

The Greville formula [Greville, 1960] allows by:s calculation for (11) without (Hik:1" Hi1)" calculation, thus
overcoming the problem of rank-deficiency of H:

bier=(I - HtcHi) b1 / ATao(l - HHi) Bis; if AT (1 - HcH)hwes # 0; (14)
bt = Hox (H) Thier / (1+ ATiss Ho (H) Thiss); i WTas(1 - H i Hi)hys1 = 0; (15)
Hf s = (H+k— (bk+1th+1 H*, | bk+1)). (16)

w* obtained by (11)-(13) using (14)-(16) is equivalent to w* obtained by (7) for precisely specified H. Presence of
H*« and Hi in (14)-(16) makes recursion more resource- and computation-expensive than (12)-(13). As a new
sample arrives, it is necessary to calculate H*«Hi or H*«(H*)T that requires calculation of H*« and storage of H*
and H,. These drawbacks are overcome by an improvement of the Greville formula proposed recently in [Zhou,
2002].

For hTy+1Qx = 0 calculations of bi+1 and Py+1 are made by (12)-(13). If AT1Qx = 0

b1 = Quhis /(T 1Quchis 1); (17)
Pi1 = (1 - biethTs1)Pi(l - bys1 ATy 1) T+ br1b Ty (18)
Q1= (1 - bis1hTie1) Q. (19)

Here Py = Hi*(H¢*)" is Hermitian nxn matrix; Po=0, Q= I- H¢t Hi; Qo= 1.
We further modified the Greville formula so that wi+s is equivalent to the regularized solution w;* (9). This is

achieved by comparison of vector norm h7.+Qx not with 0, but with some threshold value Oes calculated from
noise matrix =. We name such an algorithm "pseudo-regularized modification of the Greville formula" (PRMGF).

The algorithm (11)-(13), (17)-(19) calculates w* using all previous samples. However, for a non-stationary case it
is necessary to process only a part of the incoming samples inside a sliding working window. Full recalculation of
Hy.+ for estimation of wi.s as each new sample arrives can be avoided by using inverse recurrent representation
of [Kirichenko, 1997]. For the purpose of removing the row h7; from H w1, Hi* is represented through H*s =
(b1|By+1) as follows.

For a linear independent row:
(H + he’)* = H* - H'hh’Q/(h"Qh) - Qee’H'/e’Qe + Q eh” Q(HT) (1+eH*h)/ h” Q(H")h e'Qe; (20)
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and for a linear dependent row:
(H+ he")* = (1-zZ'/ ||z ||) H; z= H*h - e/||€||> (21)

Thus, we propose to use PRMGF with a sliding window for the case, when it is required to obtain w* not for the
whole training set, but for its subset of a fixed size. For initial k < K samples hy (where K is the size of working
window) w* is recursively calculated by PRMGF. For k > K, (20)-(21) are used for updating H* by removing the
sample that has left a working window, and the incoming sample s is taken into account using PRMGF as earlier.

Advantages of PRMGF with a sliding window include:

- natural embedding into recursive algorithm for w*;

- increase of calculation speed due to using h'y instead of Hy, also resulting in reduction of required memory;
- additional memory reduction since Py, K and Qi have fixed nxn dimension for any k;

- further increase of calculation speed when sliding window is used due to the Greville formula inversion;

- considerably smaller hardware expenses in comparison with SVD;

- w* close to the Tikhonov regularized solution for noisy, near rank-deficient H (at least, for small matrices);

- natural interpretation as an incrementally trained neural network.

Example of Modelling a Jamming Cancellation System

Let's compare the following jamming cancellation algorithms: ordinary LS-based (6); non-truncated SVD-based
[Demmel, 1997]; truncated SVD-based (9) with f; = {0, 1}; PRMGF-based (section 3.2). We use near rank-deficient
H, which is critical for traditional jamming cancellation algorithms — e.g., for ordinary LS-based ones.

Testing scheme and cancellation quality characteristics. In a real situation, all antenna channels receive
jamming signals weighted by the gain factor that is determined by the antenna directivity diagram in the direction
of particular jamming. We simulated signals in antenna channels as follows:

X=SM+ = (22)

where Xis Lx(n+1) matrix of signals in antenna channels (H is sub-matrix of X); L is the number of samples; n is
the number of auxiliary channels; S is jamming signals' matrix; = is channel inherent noise matrix; M is mixing
matrix.

Jamming signals and channels' inherent noise are modeled by normalized centered random variables with normal
and uniform distribution correspondingly. M is constructed manually, values of its elements are about units, rank
deficiency was achieved by entering identical or linearly dependent rows. For ideal channels without inherent
noise, rank deficiency of M gives rise to strict rank deficiency of H. Inherent noise results in near rank-deficient H.
Tests were carried out for n=8 auxiliary channels.

The main characteristics of jamming cancellers are: jamming cancellation ratio (K¢) and jamming cancellation
ratio vs inherent noise level in auxiliary channels K"aux: K¢ = f(Knaux) [Bondarenko, 1987] at fixed inherent noise at
the primary channel K0,

Ke = Pinjpout (23)

where P and Pout is power of jamming in the primary channel and in the output of jamming canceller,
respectively. In all tests, the valid signal with amplitude not exceeding amplitude of primary channel jamming was
present at the input for 5 nearby samples. L=1000; m=16; K" = {0.1, 0.2, 0.3}, K" >> Knaux to complicate the
algorithm's operation.

Testing results. A family of jamming cancellation characteristics Ke= f(Kaux) for rank-deficient M and near rank-
deficient H is shown in Fig.2. K»ux varied from 1.6 10 up to 6.4 106, K¢ for the ordinary LS did not exceed 1 at
Kraw < 2.5 108, For truncated SVD and PRMGF K¢ =~ 10 (K" = 0.1) are nearly constant over the whole range of
Krauxand close to each other. Note that for a full-rank matrix H, K" for all algorithms was approximately the same
and large in the considered range of Knaux,
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—+—TrSVD(0.1) S ———
99 | —¢—LMS(0.1)
1 —— PRMGF(0.1)
—A—SVD(0.1)
7 41 ——TrSVD(0.2)
64 | —=<LMsS(0.2)
———PRMGF(0.2)
—A—SVD(0.2)
44 |——TrsvD(0.3)
—>—LMS(0.3)
—=—PRMGF(0.3)
—A—SVD(0.3)

Jamming cancellation ratio
o
I

1.6e-9 3.2e-9 6.4e-9 1.3e-8 25e-8 5.0e-8 1.0e-7 2.0e-7 4.0e-7 8.0e-7 1.6e-6 3.2¢e-6 6.4e-6
Inherent noise level

Fig. 2. Kc= f(Knaux) for near rank-deficient H

It may seem from the analysis of the shown results that one may use the ordinary LS algorithm at increased level
of Kmaux, However, roll-of of cancellation characteristic is also observed when jamming intensity in auxiliary
channels is much more than the inherent noise level. To show that, let us consider K¢(P") for near rank-deficient
H (Fig.3). Jamming power P changed from 9-10° to 1.2-107 by step 2-102, Krax = 0.1. For P > 104, K¢ for
ordinary LS and non-truncated SVD decreases. For truncated SVD and PRMGF, K¢ ~ 9 (K" = 0.1) are constant
and close to each other. In this case, we cannot artificially increase inherent noise level because it will completely
mask the valid signal.

10 —+—TrSVD(0.1)
9 —¢—LMS(0.1)
——— PRMGF(0.1)|
—A—SVD(0.1) |
—+—TrSVD(0.2) R
69 | —><—Lms(02)
———PRMGF(0.2)
4+d | ——svD(.2)
—+—TrSVD(0.3)
—%—LMS(0.3)
———PRMGF(0.3)
1 |—A—svD(0.3)

Jamming cancellation ratio
o
2

0 v v v v

9.0e3 92e3 94e3 9.6e3 9.8e3 1ed 2.66 4.66 8.66 1e7  12e7

Jamming level
Fig. 3. Kc(Pin) for near rank-deficient H

Conclusions

In the framework of this work, two new jamming cancellation algorithms have been developed based on the so-
called weighting approach. Special requirements to the problem have resulted in its classification as a discrete ill-
posed problem. That has allowed us to apply an arsenal of the regularization-based methods for its stable
solution - estimation of weight vector w*.
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The standard form of Tikhonov regularization based on SVD has been transformed to efficient hardware systolic
architecture. Besides, pseudo-regularized modification of the Greville formula allowed us to get weight vector
estimations very close to estimations for a truncated SVD based regularization - at least for H of about tens of
columns. Testing on near rank-deficient H has shown that distinctions in w* obtained by both algorithms are of
the order 105, A combined processing technique based on a regularized modification of the Greville formula and
inverse recurrent representation of Kirichenko permits a more efficient processing of data for a sliding
working window.

Testing on artificial data that model real-world jamming cancellation problem has shown an efficient cancellation
for near rank-deficient H. For the developed PRMGF-based algorithm the jamming cancellation ratio is near
constant and considerably higher than 1 in the whole range of variation of auxiliary channels' inherent noise and
jamming amplitude. On the contrary, for the non-regularized LS method the ratio roll-offs to less than 1, meaning
jamming amplification.

A straightforward neural network interpretation of such a system is provided. The developed algorithms and
computer architectures for their implementation can be applied to solution of other discrete ill-posed LS problems
and systems of linear algebraic equations.
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GRAPH REPRESENTATION OF MODULAR NEURAL NETWORKS
Michael Kussul, Alla Galinskaya

Abstract: Modular neural networks are widely used for applied tasks solving due to its flexibility and big potential
abilities. As a result, development of modelling aids for modular neural networks become very important.
Networks that contain cycles are of particular interest. However, for the networks with cycles there is necessity to
have tools for formal analysis, which allow defining sequence of run of modules in the networks. We propose
representation of modular neural networks with help of directed graphs. This representation is intended for
general analysis of modular architectures and, first of all, for analysis with automatic systems. On the basis of
proposed representation we give definitions of cycles, build its classification and examine properties of cycles in
modular neural networks.

Keywords: neural networks, modular neural networks, graph of neural network, cycle.

Introduction

Modular approach is actively developed in the field of application of artificial neural networks during last decade
[1]. Modular networks, in particular, allow dividing a complex task into simple subtasks that are solved by
individual modules and construct whole task decision as a combination of solved subtasks. Because of growing
interest to modular architectures, development of modelling aids for modular neural networks becomes very
important. By amodular network, we imply arbitrary set of algorithms for data processing, including artificial neural
networks that combined for some task solving.

We should solve several problems both general and particular nature for modular neural networks application.
There are questions of choosing the architecture of modular network for concrete task solving among particular
problems. General problems are methods of combination of heterogeneous algorithms to one modular network,
run sequence determination and methods of training of modular network as a whole.

The most of combination problems are solved in software neural computer MNN CAD [2]. Training of modular
networks is a separate task, which solving is often architecture-dependent. Different approaches of modular
networks training are given in articles [3] and [4].

Modular network can contain both algorithms that process data in parallel and modules that process data
sequentially. Also, modular architectures can contain cycles. By the run sequence of modular network, we'll imply
a sequence, in which modules process input data. Run sequence is obvious when there are no cycles in modular
network. However, if we use cycles and run sequence is not defined by outer conditions it is possible that some
contradictions occur. An example of such contradiction is a trigger scheme of modules' combination shown at the
picture 1. The result of data processing will differ depending on what algorithm b or ¢ was applied first or they
work in parallel.

Pic. 1. Trigger scheme of modules’ combination

Determination and resolution of contradictions in modular architectures is important task of modular networks'
application. This task is of particular significance for development of interactive aids for modular network
modelling such as MNN CAD. CAD system should automatically determine and interdict creation of contradiction
architectures or demand contradiction resolution from user.

The main goal of this work is an attempt to propose model of modular neural networks, which allow creating
consistent architectures and automatic determination of run sequence of modules.
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We propose representation of modular networks with help of directed graphs. On the basis of proposed
representation we give definitions of cycles, build its classification and examine properties of cycles in modular
neural networks.

Digraph Representation of Modular Neural Networks

Modular network can be described by digraph G(V,E), where vertices v e} correspond to network modules
and edges e E are connections between modules. We'll consider that digraph edge e(v,,v,) correspond to
all connections between modules v, and v,. That is if module v has » inputs, some & of which connected to
the outputs of module v, and remaining »—k to the outputs of module v,, then v will have two incoming
edges ¢,(v;,v) and e,(v,,v). Similar to the definition in graph theory, we'll denote a walk as an alternating

sequence of vertices and edges, with each edge being incident to the vertices immediately preceding and
succeeding it in the sequence. A path (elementary path) is a walk with no repeated vertices. Walk and path from
vertex v, to vertex v, we'll denote w(v;,v,).

Let's introduce two special "virtual" modules representing inputs and outputs of whole modular network. All inputs
of modular net we'll consider as input module and outputs — as an output module. Input and output modules are
virtual in the sense that they do not realize data processing algorithms.

By the analogy with graph theory, we'll consider vertex 7, which corresponds to virtual input module of network,
to be input or source of graph G . Input of graph is determined by the condition s,,(/) =0, where s,,(/) - the

number of incoming edges.
Output or sink of graph we'll denote vertex O that corresponds to the virtual output module. The next assertion
is true for output: s,,(0)=0, where s,,(O)- the number of outgoing edges. It should be noted that the
number of the module outputs (in fact outputs of network) can be arbitrary.
In order that digraph G can be regarded as some modular network, it must satisfy the next conditions:

1) Digraph G is weakly connected, i.e. undirected graph corresponded to G is connected;

2) Graph G has not multiple edges;

3) There is single input vertex 7€V in G and every vertex is accessible from input:
VveV:v#I=3w(l,v) andtherefore Vvel vl =ys, (v)>1

124

in

4) There is single output vertex OeV in G and output is accessible from every vertex:
VveV:v#0=3Iw(v,0) andtherefore VvelV :v0=s,,(v)21

The last two conditions are obvious if we take into consideration that modular network are built for data
processing. If network don't meet the condition 3 then there are modules that have not input data. Condition 4
guarantees that result of every module processing will reach output of network directly or after another modules'
processing.

In contrast to the definition accepted in the graph theory we'll consider walk w from vertex a to vertex » as a
set of vertices and edges not including final vertex. According to such definition we can pick out six walks on

picture 2 wy(a,b)={a;e,}; wy(a,c) ={a;e;;b;es};

wy(a,c)={a;e;byey;b;est; wy(b,b)=1{b;e,}; ws(b,c)=1{b;e;} e2

and wg(b,c) =1{b;e,;b;e,} . There is no walk w(a,b) ={a;e;b;e,} o C: ]e3
because vertex b cannot belong to the walk by our definition. Similar, a > b » C
path not includes final vertex. Correspondingly, there are four paths on

picture 2: wy, w,, w, and w;. Pic. 2 Example of cycle

Specification of the walk definition pursues the next aim: if we consider subgraphs of modular network as a set of
vertices and edges then exclusion of final vertex in the walk definition let us use difference operation without
explicit indication of membership of vertices in the resulting set. That is, if we have walk represented by the set of
vertices and edges w(a,c) ={a;e;;b;e,}, then this walk can be represented by two non-overlapping subsets

w,(a,b) ={a;e,} and w,(b,c)=1{b;e,}, each of which is also a walk due to our definition.
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In the subsequent text, we'll require two definitions: projection P of one module onto another and degree of
module uncertainty U .

Definition 1: Projection P(b,a) of vertex (module) @ €V onto vertex (module) b €V is a directed subgraph
of digraph G(V, E) inclusive all possible paths w(b,a) from b to a :

! J

P(b,a)= Uw(b,a), VYw(b,a) ={v,vy,....,v,}:v,=b,v,,,=a, Vv,zv, Vi,j=1ln.

That is this subgraph contains all vertices and corresponding edges of all paths form bto a, except vertex a
according to our definition.

One of the most important projections is a projection of some module a onto network input 7: P(1,a).

Definition 2: |f we associate every vertex v eV with a parameter #(v): #(v) =1 if outputs of corresponding
network module are not computed at given run step and #(v)=0 if module is already calculated, then
uncertainty of vertex a will be defined as

U= 1),

ve P(1,a)

Uncertainty of input module U (1) is always equal to zero. As input module is virtual we consider its outputs to be
always calculated.
Necessity of such definition directly follows from goals putted by. Checking modular architectures on consistency

and construction of sequence of network modules' run requires introducing of some comparison criterion, which
of modules should be calculated first. Defined uncertainty can be such criterion.

Axiom 1: Module with less uncertainty should be calculated first if there are no special outer conditions.

Let's illustrate requirement of this axiom by the example of sequential modules' connection (picture 3). Outputs of
input module 7 are determined by our definition and outputs of module « are not calculated at the beginning of
modular network's run. Hence, the uncertainty of module a is equal to zero and uncertainty of module 4 is equal
to one according to Definition 2. Therefore, according to Axiom 1, module @ should be calculated before module
b as it obvious for sequential modules' connection.

| > a » b @]

Pic 3. Sequential connection of modules

Necessity of Axiom 1 becomes even more evident for modular neural network training. If untrained module
(neural network) a is found on a walk from input to module &, then training of module 5 is meaningless while
network « is untrained.

Cycles in Modular Networks

Cycles are of special interest with relation to application tasks. If input data are organized as time series we mean
"recurrent" cycles. If modules, contained in a cycle, realize associate fields or other algorithms that require
several run iterations with one input vector then we mean “iterative” cycles. Hence, cycle can be recurrent or
iterative.

It's necessary to introduce clock of modular network run for recurrent cycles description but for iterative cycles it's
enough to define the number of cycle's round, where cycle's round is a single run of all modules contained in a
cycle. In this article we discuss only general definitions related both to iterative and recurrent cycles.

Primary types of cycles and basic definitions
First, we need to introduce general definition of cycle in modular network.



KDS 2005 Section 6: Neural and Growing Networks 587

Definition 3: Cycle with first vertex « is a directed subgraph C,(V,,E,) of a modular network digraph
G(V,E) that contains all possible walks w(a,a) from vertex a into itself:

Ca(Va,Ea)=Uw(a,a), vYw(a,a)={v,,vy,...,V,} Vv, =a,V,,, =a

It should be noticed that walks but not paths are appearing in a cycle definition in contrast to definition of
projection. Definition 3 generalizes cycle definition that is common in graph theory [5] in the sense that it includes
all possible walks w(a,a) . It is not difficult to show that cycles according to Definition 3 correspond to strictly

connected components in a digraph and have obvious property: C, NC, =& .

&

Y
S

C

Pic 4. Simple cycle scheme

Architecture on picture 4 illustrates the necessity of definition of a cycle as a set of all walks. It's obvious that
while modules’ run in the cycle C, :V, = {a,b,c,d} it's necessary to calculate both modules »and ¢ before

calculating module d . Note that Axiom 1 requires the same run sequence

It's directly follows from a cycle definition that virtual modules (input and output) can never belong to a cycle
because input module has not incoming edges and output module has not outgoing edges. Moreover, according
to the conditions imposed on a modular network graph, any cycle must have both incoming and outgoing external
edges.

Definition 4: First vertex f of a cycle C(V,E) we'll denote such vertex that d . =min min d(w), where

velV w=w(l,v)
d(w) is alength of walk w. Last vertex / of a cycle is such vertex that d(w(l, /))=1.
Given definitions do not guarantee the uniqueness of the vertices but nevertheless such definition allows
classifying cycles.
Lets introduce definitions for two types of cycles that fundamentally important from a point of modular networks’
run.

Definition 5: Ordinary cycle with first vertex a is a cycle Co,(V,,E,) where there are no pair of vertices that
belong to each other projections onto input, i.e. Vv,v, eV, v, e P(I,v,) = v, ¢P(l,v,).Crossed
cycle with first vertex b is a cycle Cc,(V,, E,) that contains at least one pair of vertices belonging to each other
projections onto input, i.e. Iv,,v, €V, v, e P(I,v,) & v,€P(,v).

Introducing of term “ordinary cycle” is necessary for order determination of run sequences for modular network,

and first of all for separation of all possible trigger schemes (picture 1). It can be easily shown that cycle on the
picture 1 is crossed and has two first vertices.

Properties of cycles
The development of algorithms for automatic analysis is substantively simplified if such algorithms are built on the

basis of inherent cycles’ properties.
Proposition 1: For each vertex v contained in a cycle Cf one can find at least one walk w(v,v) that contains
first vertex 1 of a cycle.

This proposition is trivial but not always evident because cycle can contain arbitrary number of walks buy our
definition.
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Proof: Let v belongs to C, then
AW ) =w( mUnw, /) = Fwy)=w, HUw(f,v) =

Theorem 1: For every two vertices a and b ofacycle C,(V,,E ), projection P(a,b) always exists and this
projection is entirely belongs to a cycle:

Va,beV,:3P(a,b)cC,

Proof: Lets show that as long as vertices @ and b belong to the cycle then at least one walk #(a,b) exists.
From Proposition 1, it is follows that

aeC, = 3Iwaa)=wa, )Uw(f,a) =3Iwa,f)

Then if bew(a, f) = w(a, f)=W(a,b)Uw(b, /). That is walk from a to b exists. If vertex b does not
belong to the walk from @ to /" then aslongas be C, = I w(b,b)=w(b, /)Uw(f,b), therefore walk

w(a,b) =w(a, ) Uw(f,b) exists.
Let walk #w(a,b) is not an elementary path. That is vertex ¥ is included in this walk at least two times:

Wwa,b) ={a,v,..v;,7,...,V,v, v,}, v, =b.Thenitis possible to construct a path from a to b:

itkooVnso
w(a,b) ={a,v,.v;,,V,V; 4 »....V, }, V,,; =b. Thatis at least one path exists w(a,b) and P(a,b)#J .
Let's show that all paths from a to b belong to the cycle. Since both vertices belong to the cycle then
aeC,=3w(f,a) and beC,=3Iw,(b,f). Then wak Iw(f,[)=w(f,a)Uw(a,b)Uw,(b, )
exists. Hence, every path w(a,b) belongs to the cycle as it contains all possible walks from first vertex to itself
by the definition. m

Theorem 2: (Sign of cycle existence) Graph of a modular network will contain cycle (cycles) if this graph contains
at least one vertex having at least one edge not belonging to the projection of this vertex onto input.

Proof: Let network digraph has vertex a having incoming edge e(b,a) not belonging to the projection of this

vertex onto input. According to projection definition, this means that for the vertex 5, from which this edge comes
out, there are no walks from network input not containing vertex a . As by the conditions imposed on a graph,
every vertex is accessible from the input, there is at least one walk w(7,b) for the vertex b. Hence, if there is

edge e(b,a), then vertex a belongs to every walk
w(l,b): Je(b,a):e¢ P(I,a) < aew(,b) Vw(,b).
Then at least one walk from vertex a to itself exists: w(a,a) = w(a,b)Ue(b,a) and, hence, cycle exists. m

It should be noticed that sign of cycle existence proposed in the Theorem 2 gives only sufficient condition for
cycle existence. It allows finding all ordinary cycles in a modular network but only some crossed cycles.

Let's consider some important properties of ordinary cycles.

Theorem 3: (Theorem on uniqueness of ordinary cycle). If ordinary cycle exists, then the first vertex of this cycle
can be selected uniquely.

Proof: Lets carry out the proof ex adverso. Let C,(V,,, E ) is an ordinary cycle. Let there is two first vertices
in this cycle, i.e. 3 f2eV,y, f2= f1: d,=d; = r?,in)(dv) VveV, (from the definition of first vertex).

As minimal distances from the network input to the first vertices are equal then for the vertex f1 there is a walk
from the network input not containing vertex f2,i.e. 3w, (Z, f1): f2 ¢ w,. In the same way, there is a walk
Iw,(1,f2): flew,, because f2 is also a first vertex. From the other side, as long as vertices f1 and /2
both belong to the cycle then according to the Proposition 1 there are walks w;(f1, £2) and w,(f2, f1). And
according to a walk definition f2 ¢ w, and f1¢& w,. Then next walks exist:
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(flew, & flew,)=3Iw, fD)=w,(, f2)Uw,(f2, /1) and

(f2em & f2¢wy)=3Iw, f2)=w(, [HUw(f1, /2).

The next follows from the definition of projection of a vertex onto input: fle P(1,f2) & f2eP(l,f1).
Thatis cycle C,,(V,,,E ) is crossed by the definition and therefore there is only one first vertex in an ordinary
cycle. m

Consequence 3.1: If ordinary cycle Co ,exists: V', =0, then for a given set of vertices it can be determined
uniquely.
Indeed, as long as all possible walks from first vertex of a cycle to itself are contained in the cycle by the

definition, then every cycle is determined accurate to a first vertex. Since first vertex in an ordinary cycle is unique
then cycle is determined unambiguously.

Theorem 4: There is the only vertex in an ordinary cycle connected by incoming edges with vertices outside the
cycle and this vertex is the first vertex.

veCo,: Je(p,v),pgCo,=v=7f

Proof: Lets carry out the proof ex adverso. Let C,(V,,E ) is an ordinary cycle and there is a vertex v (except
the first vertex) having outer incoming edge e(p,v), ie. IveV,,v= f: Fe(p,v), p&V,. Since every

vertex is accessible from the input then walk w(Z, p) exists. Lets show that if vertex p does not belong to the
cycle then for every walk v w(Z, p), peV, = f&w.

Let walk exists that contains first vertex of the cycle: Iw(Z,p): few = w,p)=w(,)Uw(f,p).
Correspondingly, walk w(f’, p) exists. According to the initial assumption veV, =3 w(v, f) and edge
e(p,v) exists. Hence, walk from the first vertex to itself through vertex p exists:
w(f, ) =w(f,p)Ue(p,v)Uw(v, ). Therefore, p eV, that conflicts with initial condition.

As first vertex of the cycle does not belong to a walk from the input to the vertex p then there is a walk from the
network input to the vertex v not containing first vertex f : w,(1,v)=w(I, p)Ue(p,v). Also there is a walk
Iw (I, f):vew , because f is the first vertex. On the other hand, both vertices /" and v belong to the cycle
and according Proposition 1 there are walks wy(f,v) and w, (v, f) . According to a walk definition v ¢ w; and
f & w, . Then next walks exist:

(few & few)=3Iwl,f)=w,,v)Uw, (v, f) and
vew &vew)=3Iw,v)=w I, HUw(f,v).

From the existence of such walks and definition of a projection of a vertex onto input the next follows:
feP,v) & veP(l,[f).Because of this, the cycle C,(V,,E ) is crossed that conflicts with condition.

Hence, there is the only vertex connected by incoming edges with vertices outside the ordinary cycle. m

Consequence 4.1: For an ordinary cycle projection of first vertex into network input does not contain any vertex
of the cycle.

Proof: Let there is a vertex in the ordinary cycle C,(V,,E ) contained in the project of its first vertex onto
input: IvelV,: ve P(I, f). From the definition of a projection of a vertex onto input we'll find that walk
w(l,f):vew& f¢w exists and correspondingly this walk can be broken down into two:
w(l, ) =wI,v)Uw, f) < 3Iwd,v): f¢w. Also, there is the shortest walk Iw(l, f):vegw,
because 1 is the first vertex. By analogy with the proof of the Theorem 4, we'll find that the cycle is crossed. m
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Consequence 4.1: For an ordinary cycle C ., all paths from the input contain the first vertex for every vertex
v [ e

P(L,v)=P(L, IUP(f,v) VveC,

Proof: As every vertex is accessible from the input and according to the Theorem 4 none of the cycle's vertices

have outside edges (except the first); therefore all paths (walks) from the input to vertices of the ordinary cycle
contain the first vertex. m

Conclusion and Further Work

Given definitions are related mainly to the architectures of modular networks containing cycles. It's obvious that
it's necessary to have some assumptions about rules and sequence of cycle's traversal for defining the run
sequence of such architectures. Properties of considered types of cycles could be used as a basis of such rules.

Besides the classification based on architectures' types, cycles vary in types of processed data and used
algorithms of neural networks. Cycles' types regarded above allow to take into consideration the specificity of
processed data and neural algorithms in the form of corresponding modular architectures.

General cycles' properties, considered in this article, allow formal analyzing of modular neural networks. Use of
cycle's properties allows constructing algorithms for analysis of architectures with automatic system. Moreover,
automatic search of all modules contained in a cycle allows formal attaching of some properties to every cycle.
This turn out to be very helpful in CAD systems where user can, first, specify run sequence and, second, define
each cycle as recurrent or iterative.

Data processing with a help of modular neural network means that run sequence is determined. The definitions
given above are assigned, first of all, for derivation of rules for automatic construction of run sequence and for the
controlling of architectures created by user. Cycles' properties allow determining, which architectures of modular
networks are valid without introducing additional conditions.

Proposed theory was successfully used in the subsystem of automatic analysis of modular architectures in the
MNN CAD [2]. Formal definitions of valid and forbidden architectures of modular networks and ways of settlement
of contradictions in forbidden architectures, algorithms of modular networks analysis, based on the properties of
proposed graphs, will be subject of future works.
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FETEPOIEHHLIE NONMHOMUANBHBIE HEUPOHHbIE CETH ]
Aana PACNO3HABAHUA OBPA30B U AMATHOCTUKKA COCTOAHUN'

Apunb B.TumocpeeB

AHHOmauyus: PaccmMompeHbl pasfuyHble nhapannefbHble apXumekmypbl U Memodbl camoopeaHu3ayuu u
MUHUMU3aUUU  CIOXHOCMU  26MePO2EHHbIX  NOMUHOMUaNbHbIX  HelpoHHbIX cemel (MMTHC) e 3adayax
pacno3HaeaHusi 06pa308 U OuacHOCMUKU COCMOsHUU. [lonyyeHbl KOHCMPYKMUBHbIE OUEHKU CMmeneHu
2emepo2eHHOCMU U haparnienuama 8 npouecce asmoHOMHO20 NPUHSMUST KNacCuguUUPYWUX peweHul ¢
nomowpto THC pasnuyHbix munos. [lokazaHo, Ymo napannenuam, caMoopeaHusauusi U pobacmHoCmb
eemepoeeHHbix [MHC moeym 3HayumesnbHO 803pacmu npu KOMNEKMUBHOM (My/bmu-a2eHmHOM) PeweHuU
CrIOXHbIX 3aday pacnosHasaHus 0bpasos, aHanusa u3obpaxeHul, passepHymol (8ekmopHol) duagHoCMUKu
cocmosHull u adanmusHoli Mapwpymu3sauuu UHGOPMaUUOHHbIX NOMOKO8

BBegeHue

OpHum 13 Haubonee 3h(PEKTMBHLIX CPEACTB MACCOBOMO pacnapannennBaHus U YCKOpPeHUs npoLeccoB
0bpaboTku 1 nepedayn MOTOKOB [aHHbIX B 3adavax pacrnosHaBaHus 00pas3oB, Knaccudvkauuu AaHHbIX 1
ONarHoCTUKN COCTOSIHUI SIBNSIOTCS UCKYCCTBEHHbIE HenpoHHble ceth (HC) u HelipoceTeBble TEXHOMOMuM.
EcTecTBeHHbIM NPOTOTMNOM WUCKYCCTBEHHbIX HC sBnsieTcs Guonormyeckuin Mosr W LeHTpanbHasi HepBHas
CUCTEMA YernoBeka W XWBOTHbIX KaK CIOXHAs reTeporeHHas HeMpoHHas ceTb, obecneuymBaiollast BbICOKYH
CTeneHb napannenuama, camoopraHusaum u pobacTHOCTW NPU PeLLeHUM PasfMYHbIX MHTENNEKTYanbHbIX 3adaq
(pacnosHaBaHue 00pa3oB, Knaccudmkauus [OaHHbIX, MOWCK 3aKOHOMEPHOCTEN, aHanu3 1306paxeHui,
ANarHoCTuKa COCTOSIHWIA, MPOrHO3MPOBaHWe SBEHWA 1 T.M.). BO3MOXHOCTW MCKYCCTBEHHBIX 1 Gruonornyeckux HC
MOTYT  3HAUMTENbHO  PacWMPWUTLCS  MPU KOMMEKTUBHOM  (MyNMbTWU-areHTHOM)  pelieHuM  CMOXHbIX
WHTENMeKTyarnbHbIX 3aaay.

1. OCHOBHbI€ UAEeN U NPUHLMNBI NOCTPOEHMUSA FEeTEPOreHHbIX NOSIMHOMMUANBHbIX HEMPOHHbIX
ceten

Bbicokasi CNoXHOCTb M pa3MepHOCTb MHOMMX 3afay pacno3HaBaHus 06pasos, KnaccudukaLum AaHHbIX, aHanuaa
n306paXeHnn M AMarHOCTMKM COCTOSHUA, @ TakKe 4acTo BO3HMKAOWaAs HeOOXOAMMOCTb WX pELIeHWs B
pearnbHOM BpeMeHu TpebylT MaccoBOro napannenuama 1 camoopraHu3aumm pacnpefenéHHbIX BblYUCTIEHNA Ha
6ase HC. C a0l TOUKM 3peHust 0cobbli MHTEPEC NPEACTaBNSOT reTeporeHHbe NOMMHOMMANbHbIE HENPOHHbIE
ceTu (MHC) ¢ camoopraHm3ytoLLencst apXMTEKTYPON 1 UX Pa3HOBUAHOCTY, NPEAnoxeHHble B paboTax [1-9].
OcHoBHble Mgen, MatemaTnyeckme Mogenu, MetToabl 06yYeHUs U NPUHLMMBI CaMOOPraH13aLn reTeporeHHbIX
MHC 6binn onucaHbl B [1-3] v pa3suTsl B [4-9]. K HUM Npexae BCcero 0THOCUTCA creayioLLee:

— apxutektypa IMHC reteporeHHa n MHOTOCMONHa;

—  Hann4me crnost NofMHOMMarbHbIX HEMPOHHBIX 31eMeHTOB ([-HeNpOHOB);

—  BO3MOXHOCTb M Lienecoobpas3HoCTb camoopraHuaauum apxutektypbl MHC pa3nuyHbIX TMNOB;

—  [eTEepPMUHWNPOBAHHbIE U BEPOSATHOCTHbLIE METOAbI 0BYYEeHUs 1 caMmoopraHu3aLmm reteporeHHbix MHC;
—  MPWHLMMbI MUHUMATBbHOW CMIOXHOCTY 1 BbICOKO SKCTpanonsyum reteporeqHsix MHC;

— anrebpanveckoe  TpeboBaHMe  AMOGAHTOBOCTM  (LEMOYMUCNEHHOCTM  CMHAMTUYECKMX  BECOB)
reTeporeHHbIx MHC.

B npouecce panbHeiiwero passutus Teopumn reteporeHHblx MHC 6binu npeanoxeHsl MOLENM MHOTO3HAYHBIX
HEWPOHHbIX  9neMeHTOB  (M-HEApOHOB) 1 CBSA3aHHbIX C  HUMW  KOHBIOHKTUBHbIX,  MOMUHOMWAMNbHbIX,
ON3BIOHKTUBHBIX U CYMMUPYIOLLMX HEMPOHHBIX anemeHToB (MK-, MM-, M- n MX-HelpoHOB), a Takke HOBble
pasHoBMAHOCTM reTporeHHblX MHC (reHHO-HEMPOHHbIE CETU, KBAHTOBbLIE, HEMPOHHBLIE CETU, MyNbTU-areHTHbIE
MHC n 1.n.), onucanHble B [4-14].
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B HacTosiwen cTaTtbe aHanuauMpyloTCsl rETEpPOreHHOCTb  apXUTEKTYpbl, BO3MOXHOCTWM CaMOOPraHW3aLmuu
pacnpefenéHHbIX BblYMCNEHNA W cTeneHb napannenuama [MHC pa3anuyHbIX TWUNOB, NpeaHasHauYeHHbIX Ans
pacno3HaBaHus 0Bpasos, AMArHOCTUKN COCTOSHWUA W PEeLIeHns OpYrUX WHTennekTyanbHbix 3agay (data mining,
knowledge discovery n T.n.). MonyyeHHble TeOpeTUYeckue (anpuopHbIE) OLEHKM CTEMEHW napannenuama u
camoopraHusauum reteporeHtblx [HC noaTteepxaatoTcs SKCMEPUMEHTarbHbIMU - pesyrnbTaTamu  peLueHus
NpUKNagHbIX 3agay. 3HauuTenbHbli WHTEPEC NPEACTaBMSAT Takke HOBble npobrnemMbl OpraHW3auum
KONMNEKTUBHBIX (MyMNbTU-areHTHbIX) pelleHnil Ha 6ase reTeporeHHbix MHC.

2. 3agauvm knaccudpukaumm v ugeHTUUKaummn obpasos n nx obobLeHne

MHC c reTeporeHHON apxWUTEKTYpOii MpeaHas3HayYeHbl ANS PeLeHUs CROXHbIX WHTENMeKTyanbHbIX 3adau.
Mpumepamy Takux 3agay MOryT CRYXMTb 3adaynM pacno3HaBaHws 00pas3oB, Knaccudukauum AaHHbIX,
ONarHoCTUKN  COCTOSHWA, naeHTUdMkaumm obbektoB M T.N. OO6bMHO 9TWM  3ajaun  popMyIupyrTCS
cneaytowmm obpasom.
lMycTb 3afaHO KOHEYHOE MHOXECTBO 0BbLEKTOB {a)} = ¥ cywecTtByeT (HO HEM3BECTHO) ero pasbuenne Ha K
HenycTbIX NOAMHOXECTB (KNaccoB) Buaa

K
Q:lflek,Qk;t@,kaQj:@ npu k =j. (1)
OTO 03HAyaeT, YToO CyL|eCTBYET HeM3BECTHas Knaccuduumpytowas gyHkums R(w), cTaBswas B COOTBETCTBUE
kaxaomy 06bekTy ® € € Homep knacca K, kK KOTOPOMY OH NPUHALANEXMT, T.€.
R(w)=koeQ, k=12,..K. (2)

Kpome Toro, CyLecTByeT MHOXECTBO HEU3BECTHbIX UAEHTUPUUMPYIOLLMX (YHKLMA BUAA

Rk(ﬁ)):{

Lecmuw € Q,

(3)

0—B IpoTUBHOM cilyyae,
SBNSAIOWMXCS XapaKTePUCTUYECKAMM (PYHKLUMAMK KnaccoB €2, k = 1,2,...,K, KOTOpble OTAENSOT BCE 0OBLEKTHI
o € (X 0T OCTanbHbIX.

MpennonoxuM, 4TO MMEETCS HekoTopasi M3MepuUTeNbHas cucTeMa (4aTyuku  WHGOpMaLMK, CEHCOpbI,
n3mepuTenbHble NprUbOPbI 1 T.M.), KOTOpas B pe3yrbTaTe U3MEPEHHs! CBOVCTB UMM ONPEAENEHNsl XapaKTEPUCTUIK
nio6oro obbekTa @ € £2 OHO3HAYHO CTaBUT B COOTBETCTBUE OOBEKTY @ €ro MH(OPMALMOHHOE OnMCaHWe B

BUIE BEKTOpA NPU3HAKOB X(w) = |xi (a))| ::1 . Torna BekTOpHas yHKUMs X: Q—>R" onpeaensieT oTobpaxeHne

MHOXecCTBa 00BEKTOB (2 B N-MEPHOE MPOCTPAHCTBO MPKU3HaKoB R". 310 oTOOpaxeHWe nopoxaaer pasbueHue
onvcaHuit 06bEKTOB B NPOCTPAHCTBE NMPK3HAKOB R Ha knacchl (06pasbl) B1Oa

Xk :X(Qk ),k :1,2,...,K.

OtoBpaxeHue x: Q—R" 6yem Ha3biBaTb KOPPEKTHBIM UM MHAOPMATUBHBLIM, €CIIU BbINOMHAIOTCS CrIeAyoLme
YCIOBMA:

1)ecnm x(o; )=x(®;), 70 R(w; )=R(w; ), (4)

T.e. 00BEKTbI WM @) C OAUHAKOBbLIM ONCaHUEM NPUHALANEXAT OOHOMY Kraccy,
2) ecnu R(o;)#R(w;),T0 x(w; ) #x(®; ), (5)

T.6. 06BEKTAM @) U @j; V3 Pa3HbIX KNacCoB COOTBETCTBYIOT pasnnyHblie onncaHus.

Takum o6pasom, KoppekTHoe OToBpaxeHue OOLEKTOB B MPOCTPAHCTBO MPU3HAKOB HE MPUBOAMT K noTepe
nHdopmaLun o kraccax. JTo MHOpMATUBHOE OTOBpaXeHne onpepensieT cregyloiee pasdueHne onucaHuil
06bEKTOB Ha knacchl (06pasbl)

K
k=1
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W3 cooTHolweHwiA (1) - (6) criepyeT, 4To ecnin @ & £ T0 X(e) €X«,  HaoGopoT. B Tom cnydae, koraa | > |X],
KOpPPEKTHOE (MHpOPMATMBHOE) OTOBpPaXeHNe X(w) ABNAETCS CRUMAILLMM.

Byaem cuutath, 4to oToOpaxeHue x: Q—>R" ABnseTcs WHPOPMATUBHBIM W, BO3MOXHO, CXUMarowmM. Toraa
3afjaun Knaccudvkaummn n naeHTUdrkaum 0bpa3os CBOAATCS K BOCCTAHOBIEHWIO (ONpeaeneHuio) Hen3BeCTHbIX
peLuatoLmx yHkuuia Buga (2) v (3). Mpu 3TOM eanHCTBEHHOM AOCTYNHOM MHGOpMaLment o knaccax (1) senstoTes
TabnmyHble 6a3bl AaHHbIX BUAA

{x(mh),R(a)h )}hmzl Y {x(ooh),Rl(wh),Rz(coh),...,RK(coh )}21:1, (7)
HasblBaeMble 0byqatoLLen BbIOOPKOA.

MolHocTb aTOM BbIOOPKM m > K [omkHa ObiTb AOCTATOYHO OONbLUOW, T.€. MHOXECTBO (7) AOMKHO ObITh
penpeseHTaTnBHbLIM. [103TOMY Byaem npeanonaratb, YTO MHOXECTBO (7) COAEPXMT AOCTATOMHYIO MHAOPMALMIO
06 anpuopHomM pa3bueHnn o6bekToB (1) 1 Mx onucaHum (6) Ha knaccel (06pasbl). B yacTHOCTU, BaxHO, YTODLI
obyvatouiee MHOXECTBO (7) GbINo NONHbLIM, T.€. CoAepKano xots 6bl N0 0AHOMY 0OBEKTY M3 KAaXZOro Knacca, 1
HEMPOTMBOPEYMBLIM, T.€. HE COAEpKano OAMHAKOBBIX OMMCAHWIA, OTHOCALLMXCA K 06BEKTAaM 13 PasHbIX KIaccos.

Hapsgy c knaccuyeckumu 3apavamu knaccudukaumm 1 uaeHtudukaumy obpasoB € MOMOLLBK CKansipHbIX
peLuatoLmx yHKUMIA Buaa (2) 1 (3), 3HAUMTENbHBIN MHTEPEC ANS MPaKTWUKWM npeacTaBnseT ux obobuleHne Ha
Crnyyait BEKTOPHOrO pacrno3HaBaHus 00pa3oB 1 AMarHOCTUKN COCTOSIHUIA. MpUMepoM Takux 3aday MOryT CRyXuTb
CMOXHbIE 3aauM MEeOMUMHCKOM AMarHoCcTuKW, korga Tpebyetcs Ans kaxaoro GONbHOT0 weC) C BEKTOPOM
CUMNTOMOB MPU3HAKOB X(m) ONMpeaenuTb He TONMbKO AuarHo3, T.e. knacc 3aboneBaHuit C, K KOTOPOMY OH
OTHOCWTCS, HO U AaTb €ro “pacluMpOBKY”, T.e. HANTW PAQ YTOYHAKLWMX WU AEeTanu3NPYIOLWNX XapaKTepUCTUK
B BUAE BEKTOPA

q
z(0)=|z; (), ®)
rae z;(®) - MHOTO3Ha HblE NPe/MKaTHI, NPUHVMAIOLLME LIENoUMCTIEHHblE 3HaueHNs B HTepeane [0, pj.

dopMansHO pasBepHyThIN (AeTanM3npYOLLWIA) OuarHo3 MOXHO NPEACTaBUTb B Buae (q+1) — MepHoOro Bektopa
L(®)=|R(0),2(0),2(0),...z,(0) )

KomnoHeHTamn 3TOrO BekTOpa SBNSETCA  Knaccudvumpylolwmin  npeavkat R(®) € LenoYMCnEHHbIMA
3HayeHusMU (Kodamu) OCHOBHOMO AuarHosa u3 wHtepeana [1,2,....K] u getamusupylowime 3ToT [OMarHo3
[ONOMHUTENbHbIE MHOTO3Ha4HbIE MpeaukaTel z;(® ), j= 1,2,...,q, KaX[OMY M3 KOTOPbIX MOXHO MOCTaBUTL B

COOTBETCTBME NTOKasbHYHO “pacLumMdpoBKy” OCHOBHOMO A4arHo3a Ha eCTECTBEHHOM SA3bIKeE.
Mpn 0606LLEHHO BEKTOPHOM Knaccudmkaumm obpa3oB rnaBHbIA Npeaukat R('® )onuckiBaeT anpuopHoe
pasbueHne mHoxectBa Q Ha knaccel (1), @ AoMonHUTENbHbIE Npeaukatbl z (@) onpefensior pasbueue

KaXXgoro Knacca QkHa noaknaccbl Bnaa:
q

Qp =UQy ;- (10)
J=1

Mpeovkatel R(®) n zj( ® ) 3apaHee Heu3BeCTHbl. OAHaKo M3BECTHbI M3 3HaYeHUs Ha obyvaroleit
BbIOOpKE BUaA

(04 R0y )21 (0 )23 (0) )ezg (0] (1)

Mo 3TM JaHHbIM TpebyeTcs BOCCTAHOBUTL (OMPEAEnnTb) HEM3BECTHYH) BEKTOP-(hYHKLMIO (9) N €€ KOMMOHEHTI
(2) n (8). HekoTopble MeTOAb! PELLEHNs 3TOW 3af4ayun BEKTOPHOW (paclumMpeHHOM) knaccudmkalmm obpa3os Ha
6a3e 0by4yeHus 1 camooprannsaumu reteporenHbix MHC npeanoxeHo B pabotax [11 - 13].
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3. HerpoceTeBble apXuUTEKTYPbl M anrOpUTMbI

B HacTosllee BpemMs M3BECTHO MHOMO MaTeMaTWYeckux W 9BPUCTUYECKMX MOAXOAOB K  PELIeHMI0
CchopMynMpOBaHHbIX 3adady knaccudmkaumm u naeHTudmkaumm obpasos. Cpean HUX BaXHYK ponb UrparT
HeMpoceTeBble NOAXOAbl, OCHOBAHHbIE Ha CUHTE3e PasNNYHbIX MOZeNen (apXMTEKTyp) 1 anroputMoB 00y4eHms
HC nns pacnosHaBaHus 06pa3oB 1 ANArHOCTUKI COCTOSIHWA.

OpHako Bo MHorux cryyasx ot HC uMeroT romoreHHyto apxutektypy. Mpy 3ToM 3apaHee He U3BECTHO, Kakoe
YMCIIO CMOEB M HEMPO3NEMEHTOB HEOBXOAMMO AMs peLleHns 3a4aun. AnropuTMbl 0BY4EHIUs TakMX TOMOTEHHbIX
HC He Bcerga cxoasTcst K PELUEHMIO 3aja4i 3a KOHEYHOe YMCIIO LLaroB.

Mpumepamu romoreHHbIXx HC MoryT cnyxutb ogHocrnoiHsle HC Xondwunga unm XeMMuHra unm MHOroCIonHbIe
NepLEenTpOHbl, WCMONb3yloLWMe MOPOrOBbIE WKW CUTMOMAANbHbIE HEMpoaneMeHTbl. [lonynspHble CeroaHs
rpagveHTHble anroputMbl 00yyeHus romoreHHblx HC Tuna Backpropagation u ero mogudmkaumm (Quick
propagation, Rpro 1 T.n.) MEANEHHO CX0aaTCA Unn BOOOLLE HE NPUBOAST K PELLEHNIO 32 KOHEYHOE BpEMS.

OnucbiBaemble  Huxe reTeporeHHble [MHC  pasnuuHbiX  TWNOB  SBRAOTCA  3((EKTUBHBIM  CPEACTBOM
BOCCTAHOBIEHNS (ONPEeAeneHmMst) HEM3BECTHBIX KNacCuhuumMpyowmx 1 naeHtuduumpyowmx dyHkumn (2) un (3)
no obyvatowmm 6asam gaHHbIx (7) n ux peanusaumv Ha Base MHC ¢ camoopraHM3yLLENCs apXMTEKTYPOM
MWHAMAnbLHOM CNOXHOCTM. B ocHoBe Teopum aTux reTeporeHHblx [MHC nexar wagem u  NpUHUMNBI,
chopmynmpoBaHHble BhiLLe, a Takke B pabotax [1 - 9].

Mpegnaraemble reteporeHHble [MHC nosBonsiioT Takke pewatb 000OWEHHblE 3agaynM  BEKTOPHOM
knaccudmkaumm n onucaHus 0bpasos, T.e. BOCCTAHABNMBATL (ONPeLensiTb) HEU3BECTHbIE BEKTOPHbIE (DYHKLIN
(9) no paclumpeHHbIM obyyatowum Boibopkam Buaa (11). Kpome TOro, OHM MOryT YCMEWHO MUCMonb30BaThCs B
KayecTBe HEMPOCETEBbIX areHTOB MpW KOMMEKTUBHOM (MYNbTU-areHTHOM) PELIEHUM CROXHBIX (rnoGanbHbix)
3ajay pacriosHaBaHWs 06pa3oB, pacLUMPEHHON (BEKTOPHOWM) AMArHOCTUKW W afanTMBHOW MapLupyTU3auuu
MH(OPMALMOHHBIX NOTOKOB [7 —14].

4. F'eTepOreHHOCTb, Mapannenu3M U camoopraHu3aLus NopPoroBo-NOSMHOMUANbHbIX
HENPOHHbLIX ceTen

Apxutektypa MHC reteporeHHa n npeactaBnseT coboi NocneaoBaTeNbHOCTb HECKOMbKMX OAHOPOAHBIX CIIOEB
(HenepeceKarWMXCs NOAMHOXECTB) napannensHo paboTarwmx HenposnemeHToB (HO) pasnnyHbix Tvnos. B
pasnnyHbIX crosix reteporeHHoi MNIMC moryT ucnonb3oBaTthes pasHbie HO, HO kaxabii crioi (nogMHoxecTso HO)
SBNSETCA OQHOPOAHbLIM (roMOreHHbIM). Mpu aToM 06paboTka MHhopMaLmm B kaxaom crnoe HO ocyliecTBnsieTcs
napannernsHo.

KaHanbl cBS3W mexay npeabigywum W nocnegylowmm  cnosmu - reteporedHon  [MHC  siBnsitoTes
OHOHaNpaBEHHbIMM (OQHOCTOPOHHUMI) U UMEIOT PErynMpyeMble BeCa (CUHaNTUYEeCKue napameTpel). ATh Beca
KaHanoB CBS3M HACTpauBaKOTCs B npouecce 0byyeHns n camoopraHuaayum apxutektypbl INMHC no nmetowmmcs
3KCMEePUMEHTabHBIM AaHHBIM UNi NpeleaeHTam Buaa (7), HasbiBaeMbiM 06yyatowen 6asoi gaHHbix (OBL).
Onuwem hopManbHO reTeporeHHy) apxXUTEKTYpYy TPEXCIOMHON MOPOroBO-NOMMHOMUANBHON HEMPOHHOW CETH
(MMHC) [1-4] n paccMOTPUM NPUHLMMBLI €€ camoopraHu3aLmum.

Mepsbin cnoi MMHC cocTonT M3 n NOPOroBbIX HenpoanemeHToB (H3), Ha BXOA KOTOPbIX MapannesibHo
nocTynawT curHanbl y+(w), ..., Yo(®), XapakTepuaylowme pasnuyHble CBOWCTBA 0ObekTa ®, a Ha Bbixoge

hOpMMUpPYETCS BEKTOP ABOMYHBLIX CUrHAMOB (BMHapHbIA koa) X(m)= |xl-|:’:1 , T3 Xi =Xi (1,...Yp). OTOT GUHAPHBIN KO
aBnsieTcs Bbixogom HO nepeoro cnost MIMHC.

Ha Bxogbl kaxgoro “accounatuBHoro” HO BTOpPOro crnosi noctynaet BEKTOP X (@) OMHApHbIX CUrHanoB ¢
‘peuenTopHbIX”  (Kogupytowmx) noporoBblx HI nepsoro cnos. 3T “accoumatuBHble” HO  peanusyior
NonMHOMWanbHble  Npeobpa3oBaHNst  a(X) BXOAHbIX CUrHaNoB W HasbiBawTcs  [1-HeipoHamu  umu
MynbTUNAuKkaTUBHeiMM - H3. Bbixogom BToporo cnos [MMHC saBnsetcs BeKTOp [BOMYHBIX  CUrHaNoB

N
a(x)=|a,(x )\jzl .
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Tpetuin cnon MMHC cocTtouT M3 “pewwatoymx” noporoBbix HO, Ha BXOA KOTOPbIX NMOCTYMaeT BEKTOP BbIXOAHbIX
CUrHanoB a(x) nonnHomMuanbHelx HO BTOpOro cnos. 3atem 3Tu CUrHanbl YMHOXAKOTCS Ha CMHANTUYeCKue Beca
Uj, CyMMUPYIOTCS 1 NpeobpasyloTcst B BbIXOAHbIE CUrHarbl HO TpeTbero cnos B Buae Cynepnosunuuin yHKLui

N
Ri(@) = sign (g ja;(x(y(0 ) k=1,... K, (12)
j:

rAe u, ; —HacTpanBaeMble CHanTU4eckve napameTpel, a K — 4ucrno HenepecekaroLxes Kraccos (06pa3os).

Kaxgas pewatowas (naeHtuduumpytowasn) dbyHkums Rw) Buaa (8) SBnseTcs xapakrepucTuieckoin dyHKumen
k-ro knacca. [loatomy oHa oTaenser o00bekTbl Kk-ro knacca OT oOCTanbHbIX. MHOXECTBO — Takux
naeHTMUUMpyroLWMX dyHKUMIA (8) pelaeT 3apady Knaccudukaumm obpasos.
MpuHumn camoopranmsaumm MMHC ¢ reTeporeHHoN apXMTEKTYPOI 3aKTioYaeTCs B MOCTPOEHUN “accoUMaTUBHbIX
MOMMHOMOB &;(X) HenocpeACcTBeHHO no obyyatowien 6ase aanHbIx (OB[) (7) B BUAe ogHoUneHos [1-3]

n X; (yj )

aj(x(y))= [[1xi (y),j=L..m (13)

3pecb m — uucno anemeHToB (MowHocT) OB[l, onpenensioliee oueHKy cBepxy Ha umcno N Heobxoanmbix

nonuHommanbHeix HA BToporo crnost MIMHC, 1.e. m >N >K.

Yto6bl MUHUMM3MPOBATL CnoxHOCTb MIMHC, HYXHO HalkTV B uaeHTMMLMPYIOWMX PYHKLMSX Buga (8) BEKTOPbI
N

CMHaNTU4YECKUX NMapaMeTpoB u, = ‘ukj‘ - C MakCMManbHbIM YMUCINOM HYNEBbIX KOMMOHEHT. 310 npuMBOANT K
J1 =

aBTOMATUYECKOW NINKBUAALNN HEMH(OPMATMBHBIX (M3DbITOYHBIX) CUHANTUYECKNX CBA3EN B reteporenHoi MMHC
0e3 noTepu TOYHOCTM NPUHUMAEMbIX peLLeHuin Ha OB[] (7).

BbicTpble peKyppeHTHble anropuTMbl OBYYeHMs W MUHUMM3ALMM CRoXHOCTM reTeporeHHoi [MHC 6Gbinu
npeanoxeHsl B [1-4]. Oum ocywectensawt otobpaxeHne OBl Buga (7) Ha MHOXKECTBO CHMHAMTUYECKMX
napameTpoB noporosbix HI Tpetbero cnos MMHC, npuyém uncno waros anroputma obyyeHns r <m.

CteneHb mapannenuama npu pacro3HaBaHuMM WU uaeHTU(MKaLMM 0Bpa3oB ONpeaensieTcs Tem, YTO NpUHSATHe
peLenunin ocylectensetca MMHC 3a 3 Takta OAHOBPEMEHHBIX BbIYMCTIEHWIA B KaxaoM cnoe HI HesaBMCUMO OT
pasmMepHOCTH peluaemMoit 3agaum D=nxmxK.

Camoopranusaumns MMHC obecneunBaetcs Tem, uto HO BTOpOro crosi copmupyrotes cornacHo (9)
HenocpeacTBeHHo no OBJ (7).

leTeporeHHocTb apxutekTypbl MMHC onpegensetcs Tem, YTO NepBblit U TPETUIA CMOA COCTOSAT U3 MOPOroBbIX
HO, a BTOpOW Croi — TOMbKO 13 NONMHOMUanbHbIX HO.

5. FeTeporeHHOCTb, Napannenusm u camoopraHm3auus AMogaHToBbIX U CNNAaNHOBLIX
HENPOHHbLIX ceTen

'eTeporenHble MHC ¢ LenoyncneHHbIMM CUHANTUYECKUMI NapaMeTpamm HasbiBatoTcs anodantosbiMu HC [1,5].
Mpumepamu anodantoBblx HC ¢ caMoopraHu3yoLencs apXMTeKTypon, MOryT CRyxuTb reteporeHHble MHC,
npegnoxeHHole B [1-3].

Paccvotpum  apyron  knacc  avodbaHToBblx  HC. [eTeporeHHoCTb MX  apXMTEKTypbl — Onpeaensercs
MCNOMNb30BaHWEM CMOEB, COCTOALLMX U3 NONMHOMMArbHBIX UMK cnnainHoBbIx HO.

lMep.biit cnoi anodaHtoon HC coctout 13 noporosebix HO. Bbixomom nepeoro cnost HO siBnsieTcs ABOUYHbIN
obpa3 (onucaHue) x(w) obbekTa w.

HQ3 BTOpOro crnos koaupyoT ABOUYHbIE 006pasbl X(w) HATypanbHbLIMK YKUCaMM BUAA
d(0)= 3 x(0)-2"". (14)
i=1

[ns ynpolueHns anroputMoB OBDYYEHWSt U CaMOOPraHM3aUMn reTeporeHHon apXuTekTypbl AuodaHToBon HC
noctpoum H3 TpeTbero cros B BUAe OPTOroHasnbHbIX NOMMHOMOB (O4HOUNIEHOB) BAA



596 6.1. Neural Network Applications

)= 1)), )" s
J#h

Lpyrue cnocobel nocTpoeHns HO TpeTbero crnos npeanoxeHb B [5].

UeTBEpTLIN Croit reteporeHHon anodgantoron HC coctout 13 “pelarownx” noporosblx HO ¢ cuHanTuyeckumm

napameTpamu, HactpamBaemMbiMu no OBJ] (7) cornacHo BeICTPLIM anropuTmMam 0by4veHus, NpeanoXeHHbIM B [5].

OnucanHble auodanToBble HC wenecoobpasHo NpuMeHsTb Ha cpaBHuTENbHO kKopoTkux OB[l Buga (7). YTobel

CHSITb 3TO OrpaHNYeHNe, PacCCMOTPUM reTeporeHHble cnnaitHosble HC.

CnnaitHoBble HC 0CHOBaHbl Ha KyCOYHO-MOMMHOMMAMNbHOM WNW CMNAHOBOA anmnpoKCUMaLMM  peLuaroLmx

(noeHTuuumpyrowmx) cyHkumuin Buaa (8). Moes coctont B cuHTese HI no OBJ (7) B BuAe HesaBUCUMbIX Opyr

OT Apyra MONMMHOMOB MMM CMNailHOB Ha Kaxaod nape HatypanbHblX uncen {d(w; ). d(w;.;)} n wx

KOMMyTauuu 1o onpefenéHHbiM npasunam B yeTBepTom cnoe HC, coctoswem w3 noporoBblx HO ¢
HacTpausaembiMu no OB[ (7) cuHanTuyeckuMm napameTpamu [5].

CuHTe3MpoBaHHble auochaHToBble U chnanHoBble HC UMEIOT YETbIPEXCMONHYIO FeTEPOreHHy apXMTeKkTypy,
OMMCLIBAEMYHO CynepnoauLueil napannenbHbix Nnpeobpa3soBaHuii B kaxaom cnoe HO.

CamoopraHusauns M MUHAMW3ALMS CIIOXHOCTW reTeporeHHOM apxuTekTypbl Takux HC obecneuumsatotcs
CaMOHACTPOMKO MOSIMHOMMANbHbBIX 1 cnnanHoBbIX HO BTOPOro v Tpetbero crnoés (Hanpumep, suga (10) u (11))
N ObICTpbIMK anroputMamm obyyeHnst noporoBblx HO 4YeTBEpTOro €nosi, TPeBYIoWMMM TONBKO OAHOKPATHOMO
ncnonb3oeaHust OB Buga (7), T.e. r <m.

Mpu pacnosHaBaHMM 06pasoB M AWarHOCTUKE COCTOSIHUA MPUHSATME PEeHWA C NOMOLLb  OnMMCaHHbIX
anodanToBoi unm cnnainHoeoi MNMHC ocyllecTBnseTcs 3a 4 TakTa napannesfbHbIX BbIUMCIEHWA B KaAOM CIloe
HO HesaBucKMOo OT pasmepHocTh 3agaum D =n x m x K.

[eTepOoreHHOCTb apXMTEKTYpbI AN0GaHToBbIX W crnaiHoBblx HC onpeaenseTcs TeM, YTO NepBbIi U YETBEPTLIN
CTMOWN COCTONAT U3 NOPOroBbIX HY, a BTOPO 1 TPETMIA IOV BKIKOYAKOT NONIMHOMMArbHbIE UK cnnaiHoBkle HO.

6. FeTeporeHHOCTb, Napannenusm U camoopraHusauus Knaccuuumpyrowmux NONMHOMUaNbHbIX
HENPOHHbIX ceTen

Paccmotpum yeTbipéxcroittyto NMHC, npegHasHayueHHyto 4ns knaccudmkaumm 06pasos.

Mepsbin cnon atoin MHC coctout n3 dyHKUMOHanbHbIX HO (F-anemeHToB) Fi(y(w), ) C CUHaNTUYeCKUMM
napameTpamu yi.

BTopoit cnon atoi reteporeHHon MHC coctonT n3 nonnHoMmuanbHeix HO (M-anemeHToB) Buaa

(@ =15 (o), (16)

rae F(y,y)=0 npn y<y n F(y,y)=0 [6,9].

Tpetuin cnon MHC cocTouT M3 ogHoro cymmupytowero H3 ( 2 —HenpoHa).

UetépTbin cnoin MHC cocTouT M3 OAHOr0 MHOrosHauHoro H3 (M-HelipoHa), onucbiBaemoro K-3HauHbIM
npegukatom M, npuHumMaroLem 3Havenuns 1,2,...,K 1 onpegenstowmm npuHaanexHocTb 0bbekta @ K OgHOMY 13
KrnaccoB (.

UetbipéxcrionHas  apxutektypa [MHC  peanusyer  cregylowee — mocreaoBaTenbHO-NapannenbHoe
npeobpa3oBaHne BEKTOPA BXOAHbIX CUrHAMOB () B BEIXOAHOW LienovncrneHHbIn curdan R(w,u,y) Buga

N

R(o,uy)=M(uy+ Xu; TIE(H@)y;), (17)
J= e,

OnpeaensLLMin HOMep Knacca, kK KOTopoMy 6yaeT OTHECEH Pacno3HaHHbIN OOBEKT .

3apaun 0byyeHns, MUHAMM3ALMK CIIOXKHOCTM U CaMoopraHu3aLmMm reTeporeHHbIX knaccuduumpytowmx MNMHC ¢

aHanUTUYeCKMM onucaHvnem Buaa (16),(17) 3akmouaroTcs B onpeaeneHni ckanspHbIX MYHKUMA y,F; n BEKTOPOB
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1, N
CHHANTMYECKMX NapameTpoB » = [y, nu = |“i|j:1 no OB[ (7) Takum 06pa3om, 4To6bl obecneumBanacs He

ToNbKo GesowmnboyHas knaccudukauyns obbektoB M3 OBJl (7), HO 1 Opyrux pacno3HaBaeMblX (KOHTPOMbHbIX)
06bekToB. [Ns peLueHns 3TOM 3aayn HYXHO KOHCTPYKTUBHO 3aAaTb PyHKUMOHanbHble HO Fi(y, ;) v BeKTOpbI
CUHaMNTUYeCKWUX NapamMeTpoB Yy W U C BO3MOXHO MEHBLUMM YNACIIOM HEHYNEBBIX KOMMOHEHT [5-7].

CteneHb mapannemmsma B knaccuduumpytowmx MHC, onucbiBaeMblX MHOrO3HauHbIM npegukatom (17)
onpedensieTcs Tem, YTO pacnosHaBaHue 00pasoB, knaccudvkauus OaHHbIX MMM AMArHOCTWKA COCTOSIHUIA
OCYLIECTBNAIOTCS 3a 4 TaKkTa napanmnenbHbiX BbluACneHU B HO pasHbIX CMOEB HE3aBMCHUMO OT COXHOCTY
pewaemon 3agaum D=nxm x K.

l'eTeporeHHOCTb apxuTekTypbl aTuX MHC xapakTepusyeTcs TeM, YTO NepBbIid COI COCTOUT U3 (DYHKLIMOHAMBHBIX

HO, BTOpOM Cnon BKMOYAET MOMMHOMWANbHble HJ, a TpeTuin M YeTBEPTHIN CroW cogepxar Mo OZHOMY
CYMMUPYHOLLEMY 1 MHOrO3Ha4YHomMy HO.

7. eTeporeHHOCTb M Napannenn3m B reHHO-HEMPOHHbIX CETAX C CaMOOPraHU3YyHoLWencs
apXuTEKTYPON

Myctb umeeTcs nonynaums {o}= Q ocobel w, kaxaas 13 KOTOpPbIX MOXET NpUHaanexaTb ogHomy 13 K obpasos
(knaccos) cornacHo pastuennto (1). Ocobb m xapakTepusyeTtcs HAbopPOM NPU3HAKOB X (m), KOTOPbIE NPUHUMAIOT
3HAYeHUsl, COOTBETCTBYIOLME OOHOMY W3 AWUCKPETHbIX COCTOSHWN reHoB X{). Mpyu 3TOM COCTOSIHUS KaXaoro
reHa OnMcbIBaKTCS MHOTO3HAYHbIM NPEeaVKaTOM.

Bektop x(w) = |x,-( ® )|:':1 COCTOSIHWW TEHOB HAa30BEM XPOMOCOMOIA (MOKanbHbIM onucaHnem) ocobu «. bygem
FOBOPUTb, YTO ABE 0COOM UMEIOT OAMHAKOBBIA FTEHOTUM, ECAIM Y HAX COBNAAAKT COCTOSHWS BCEX FEHOB, T.€.
xi(0;)=x;(0,), Vi=12,..nj#h. (18)

MHOXeCTBO XpOMOCOM 06pa3syeT Kracc reHoTUMOB, COOTBETCTBYHLNX HEKOTOPOMY reHeTyeckomy obpasy ¢
XxapakTepucTiieckon yHkumein R, (o) suga (3).

3apaum reHeTMYeCKoro onucaHus 1 pacro3HaBaHns 06pa3oB CBOAATCS K annpOKCUMALN HEN3BECTHbIX (PYHKLMIA
R(®), Ri(®) no reHeTuyecknm (uenouncnenHeiM) OB Buaa (7). [ins pelueHuns aTUx 3agay MOXHO MCMOMb30BaTh
TPEXCIONHYI0 reTePOreHHy0 reHHO-HEMpPOHHYH ceTb (FTHC) nonmMHoMManbsHoro Tuna, onnucaxHyio B [7].

OBbyueHHble THC obecneynBaloT MaccoBbIM Napannenusm npu o6paboTke reHeTUYECKUX JAHHbIX, a UMEHHO:
NPUHATWE ONTUMANbHbBIX PELIEHWI NpU pacno3HaBaHUM 06Pa30B UMK AMArHOCTMKE COCTOSHWN OCYLLECTBNSETCS B
MHC 3a 3 TakTa napannenbHbIX BblYUCAEHUA B HO KaXmoro Crios Hes3aBWCUMMO OT pa3MEepHOCTM 3afauu
D=nxmxK.

leTeporeHHoCTb apxuTtekTypbl THC nposiBnseTcs B TOM, YTO NEPBbIA U TPETUIA CNOU COCTOSAT U3 NOPOroBbIX HI,
a BTOPOIA CMOA COAEPXMT NONMMHOMMaNbHble HO.

[pyroii meton oOyyeHns WM camoopraHmsaumm MHorocnoiHblx THC OCHOBaH Ha NOMMKO-BEPOSITHOCTHbIX
reHeTUYeCKUX anropuTMax cenekLym MHOPMaTUBHBIX FEHOB M KOHBIOHKTMBHBIX HO (K-HelpoHoB) Buaa

n
al(0)= & =1, m, (19)
i=1
a TaKXe JT0rnko-BepPOATHOCTHbIX peLlaroLmx (VlﬂeHTI/I(bI/ILI,VIpy}OLLI'VIX) npasuin UMNNNKATUBHOIO TUMa
A
{aj(co)—)Rk(co)}iZI,ISr] <..<ry<n. (20)

3pecb Py - MakcumarnbHas anocTepuopHasi BEPOSTHOCTb MPUHALMEXHOCTW 0cobu @ K k-OMy kmaccy (2,
oueHeHHas no OB[] suga (7).

CWHTE3MpOBaHHbIE reHeTMYeCkie pellatolme (MGeHTUUUMpYIOLLMe) NpaBKia B Cyyae, Koraa i-biii rfeH MOXEeT
UMETb TONMbKO [1Ba COCTOSIHWSI, MOXHO MPeACTaBuTb B BiAE MHOrOCNOMHOM MHC MUHMMAmNbHON CHIOXHOCTH,

npeacTaBnawolwmin cobon buHapHOe “mepeBO pelleHwin”. BeTBsiM 3TOro aepeBa COOTBETCTBYET K-HEMpOHbI
Buaa (19), a nMCTbAM - HOMepa KnaccoB reHoTUNoB [3,7].
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B pabotax [7 -9] npeacrasneHo 0606LweHne onucanHbix THC Ha cnydvan, KOraa kaxabli reH UMeeT He [ga, a
NPON3BONBLHOE YNCIIO AUCKPETHBIX COCTOSIHWMA, T.€. FEH ONUCHIBAETCS MHOTO3HAYHbIM NPeanKkaToM Buaa

x;(0)ef{0l,..1 11 >2. 1)

[na ysenuyeHus napannenusma B npoLecce NpUHATUS ONTUMarbHbIX (B CMbICe KpuTtepus bBaiteca) pelueHuit
ONMMCaHHble MHorocnonHble THC ¢ OpeBOBMAHOM apXMTEKTYPOM MOXHO npeobpas3oBaTb B TPEXCIOMHbIE
anodantosble MHC ¢ LenouncneHHbIMM CUHANTUYECKAMW BECaMU C MOMOLLbIO METOAOB, OnMCaHHbIX B [3,7]. B
3TOM Ccy4ae pacnosHasaHue 0bpa3oB N AMarHoCTMKa COCTOSIHUA MPOU3OMMYT He 3a r <'r, LaroB COrnacHo

(19) n (20), a 3a 3 TakTa mapanmnenbHbIX LEenoYNCIEHHBIX BbIYUCIIEHNA B KaxaoM cnoe H3 Hesasucumo oT
pasmepHocTV 3agaum D =nx m x K.

[eTepOreHHOCTb apXMTEKTYpbl CUHTE3MPOBaHHOM AnodaHToBo MHC XapaktepuayeTcs Tem, YTO NEePBbli U
TPETUIA CNOM COCTOSIT M3 MOPOroBbiX HO, a BTOpOI Croii BKIKOYAET KOHbIOHKTMBHEIE HO Biaa (19).

8. Mapannenusm u camoopraHu3auusi B MynbTU-areHTHbIX HEUPOHHbIX CETAX C FOMOTEHHON MK
reTeporeHHOW apXmTeKTypoi

TpaanUMOHHO TOMOreHHble Wnn reTeporeHHble HC 1cmonb3ayloTcs Ans aBTOHOMHOTO MPUHSATUS PELLEHNA B
3afjayax pacrnosHaBaHusi 06pa3oB, ANArHOCTMKA COCTOSIHUM, Knaccudukaumn AanHbIx W T.0. Mo cywecTsy T
HC sBnstoTcs oby4aeMbiMM MHTENMEKTYanbHBIMIA areHTamu, KOTOpble HACTPauBalOTCA Ha WHAMBMAYanbHOe
(0gHO-areHTHOE) peLLeHmne KOHKpEeTHbIX 3agay no OBl Buaa (7).

B 710 Xe Bpems cywecTByeT OOMbLWON KNacc MHTENNeKTyanbHbIX 3afay, Tpebylownin He TOMbKo
WHOMBNOYaNbHbIX  (OQHO-AreHTHbIX), HO U KOMMEKTUBHbIX (MYNbTU-areHTHbIX) peleHni. Knaccuyeckum
NpPYMEpOM 3TOr0 MOTYT CIYXWUTb OCOBEHHO CNOXHble W OTBETCTBEHHblE 3afaui MEeaWULIMHCKOW OWarHoCTUKM,
Koraa Bpauu BblHYXAeHbl npuberatb K NOMOLM CBOWX KOMMer Ans COBMECTHOM MOCTaHOBKA OKOHYaTeNbHOro
AnarHosa. lpu aToM hopMuUpyeTecs “KOHCUMAMYM”, T.e. MpodeccHoHanbHas rpynna Bpayel, MHTerpupytoLas
3HaHWS W ONbIT BXOAAWMX B HeE UNeHOB ANA KOMMEKTUBHOMO MPUHATUS Hawbornee npaBunbHbIX W
cbanaHcMpoBaHHbIX AMArHOCTUYECKUX PELLEHMIA.

[Opyrm npumepoM CnoXHbIX 3apad, TpPeOylwwmx KONNEKTUBHLIX PeLLeHuit, sBnstTcA rnobanbHble 3agayun,
JonycKaloLwpe ecTeCTBEHHYI0 (HanpuMep, Mepapxuyeckyld umu MynbTUPaKTanbHyK) LEKOMNO3WLMI0 Ha
MHOXECTBO fOKamnbHbIX 3afgady. B atom cnyvae peleHne crnoxHoi (rmobanbHoM) 3agaym MOXeT ObiTh
pacnpefeneHo Mexay WHTennekTyanbHbiMu HC-areHTamu, cneumanuaupyiowmmmcs Ha pelueHinn M yacTHbIX
(nokanbHbIX) 3agay. MapannencHas pabota M Takux HC-areHTOB MOXET 3HAYMTEnbHO YCKOpUTb 006paboTky
WHEOPMALMN 1 NOBBICUTbL HAZEXHOCTb peLueHus obLeir (rnobanbHo) 3agaym.

B ponu MHTENNEeKTyanbHbIX areHTOB MOTYT BbICTynaTb rOMOreHHble unu reteporeHHble HC pasnnyHbIx TMNOB.
OpfHaKo OHW AOMKHBI ObITb B3aMMOCBS3aHbI C MOMOLLbHO KaHanoB 06MeHa MHGopMaLMen B NPOLIECCE MPUHATUS
KOMMEKTUBHBIX peLeHnin. B aToM criyuae MOXHO co3aaTb MynbTU-areHTHyto (rnobarnbHyio) cuctemy 06paboTku n
nepesayn HopMaLmm, MHTErpupytoLLYyto B cebe BO3MOXHOCTW BXOAALLMX B HEE nokanbHbix HC kak areHToB.

Apxutektypa Takux MynbTU-areHTHblX HC moxeT ObiTb FOMOTEHHOM UMM reTeporeHHon. B romoreHHom
apXMTEKTYpe B KayecTse areHToB ucnonbayetcs HC ogHoro tvna. Hanpumep, 310 MoryT 6biTb roMoreHHble HC-
areHTbl TMNa “nepuenTpoH” iu reteporeHHsle amodaHTosele NMHC. B reTeporeHHON apxuTekType UCMonb3yoTCs
HC-areHTbl pasnuyHbIX (CMelaHHbIX) TUMoB. Hanpumep, OHWM MOTYT coaepxaTb pasHble TWUMbl reTEePOreHHbIX
MHC wnu moryT umeTb cneumanbHbIX areHTOB-KOOPAMHATOPOB, OPraHU3ylLWMX LeneHanpasneHHyl paboty
nokanbHbix HC-areHToB.

AreHTbI-KOOPAMHATOPb! MOTYT MPUHUMATL KOMMEKTUBHbIE (MYMbTU-areHTHbIE) PELIEHNS HA OCHOBE NOKarbHbIX
(opHO-areHTHbIX) peLueHui ocTanbHblX HC kak aBTOHOMHbIX areHTOB C MOMOLLbIO MaXOpUTapHbIX MPUHLMMOB
WK npoueayp ronocosaHus (Hanpumep, no “6onblumHcTBY ronocos”) [11 — 14]. Mpu atom BCe noKarnbHbIe
PELLEHNS NPUHUMAIOTCS NapannenbHo, YTO YCKOPSeT NPUHATUE rNobanbHOro (KOMNEKTUBHOIO) peLUeHus
B M pas.

B psge cnyvaes rnobanbHas camoopraHusaums HC-areHToB obecneunBaeTcs nepapxmyeckon, dpakranbHom
UM MynbTUdpakTanbHOM Aekomnosnumen obweid 3agaum Ha M noasagady. [pu 3TOM CTENEHb BHELLHEro
(rnobanbHoro) napannenuama B MyNbTU-areHTHOM HEMpOCETEBOM CUCTeMe onpefensietcss napameTpom M,
XapaKTepu3ytoLleM OfHOBpeMeHHyt0 paboty M nokanbHbix HC-areHToB, kaxabli W3 KOTOpbIX obnagaet
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BHYTPEHHWUM (NOKamnbHbIM) NapanfienMsaMoM Mpu PELIeHNN WHTENNEKTYarbHbIX 3afay, XapakTepuaylLwymMcs
yucrnom crnoés HO.

MynbTu-areHTHOe pacrno3HaBaHue crioxkHbix 2D-n3obpaxeHuii unu 3D-CLEH B psiae CryuaeB OCHOBLIBAETCA Ha
NX BEKOMNO3MLMM Ha camonofobHble (PpakTanbHble) KOMMNOHEHTbI U Ha 0BYYeHUN 1 CAaMOHACTPOIIKe NOKasbHbIX
reTeporeHHbIX MHC Ha pacnosHaBaHve chparmeHToB no nokanbHeiM OB, XapakTepuayowmum ath (parMeHTbI.
B pesynbTaTe BHyTpeHHei 1 BHelwHen camoopraHudauum MNMHC kak HC-areHTOB JOCTUraeTcs BbiCOKas CTENEHb
napannenuama B NpoLecce pacno3HaBaHUs W aHanm3a CoXHbIX U30BpaxeHUn 1 CLeH.

HeobxognmocTb B ucnonb3oBaHu HC - areHToB W MymbTU-areHTHbIX TEXHOMOMA BO3HUKAET B rnobanbHbIX
TENEKOMMYHUKALMOHHBIX 1 KOMMbOTEpHbIX cuctemax [10]. B atom cnyyae HC-areHTbl obyvaroTes u
camoopraHuaytotcs no nokanbHeiM OB[l Buga (7) 1 nepegatoT no kaHanam CBsA3M HaKOMMeHHble “Henpo3HaHUs”
n “onbIT” ppyrum HC-areHTam. [ins adpdekTMBHOrO (B 4aCTHOCTM, ONTUMANLHOIO) YNpaBneHUs NOToKamMu AaHHbIX
Mexay yOanéHHbIMW CEeTeBbIMW NONb30BaTENAMM Kak BHELHUMM areHTamm (kneHTamu) 1 nokanbHbiMu HC kak
BHYTPEHHUMM areHTamu LienecoobpasHo MCnonb3oBaTb HEMPOCETEBbIE MApLLPYTU3ATOPbl NOTOKOB AaHHbIX[10],
NO3BONSIOWME afanTMpPOBaTbCA K HEnpeackasyeMbiM W3MEHEHUsM CTPYKTYpbl W MpameTpoB rnobanbHbIX
TENEKOMMYHUKALMOHHBIX U KOMMBIOTEPHBIX CUCTEM B MpoLiecce UX (YHKLMOHMPOBAHUS B peanbHOM BPEMEHH.

3aknioyeHue

OnucaHHble reTeporeHHble apxuTekTypbl 1 GbicTpble anroputMbl 06yyeHns MHC pasHbix TMNOB obecneynBatoT
BbICOKWA napanmnenuamM M camoopraHu3auuio HEeMpOBBLIYMCIIEHUIA B MPOLECCE PeLeHUs MHTEeNNeKTyanbHbIX
3agay. OHM YCMEWHO NPUMEHANUCH ANS peleHus psaa NPUKNagHbIX 3afjad  pacnosHaBaHus 00pasoB
(pacnosHaBaHWe [eTanei Ha KOHBenepe, Krnacudukauus OOPOXHbIX CUTyauud W T.4.), MEAWLMHCKON
ONarHoCTUKM  (guarHocTka M oueHka 3GhDEKTUBHOCTU JIEYEHUS apTPWUTOB, BEKTOpHAs [AuMarHocTMka U
paclngpoBka racTputoB W T.4.), NPOrHO3MPOBAHUS SBMEHWA (MPOrHO3MPOBAHWE MCXOA4A YEepenHO-MO3roBbIX
TpaBM ¥ T.4.) U HEAPOCETEBOro NPeACTaBneHus reHetudeckoro koga [1-9, 11, 12]. MognduumposanHbie HC
Xondunga ycnewHo 1Cnonb3oBanuch ANs pelleHus 3aaay MynbTU-areHTHOW MapLupyTU3aunun napasnnenbHbIX
NOTOKOB AaHHbIX B rMobanbHbIX TENEKOMMYHUKALMOHHBIX U KOMMbBIOTEPHBIX CETSX C MEPEMEHHON CTPYKTYpOi
[10]. MynbTu-areHTHble HeMpoceTeBbIE TEXHOMOMMKU Ha Gase reTeporeHHblx AuodaHToBeix HC 1 npoueayp
roflocoBaHNs MO3BONAIM  3HAYUTEMNBHO MOBBICUTH TOYHOCTb M POBACTHOCTb BEKTOPHOW (pPacLUMPEHHOM)
AnarHocTuku racTputos [12-14].

BaxHoe 3HaueHwe [Ans 3GdEeKTMBHOrO pacrno3HaBaHus 00pa3oB WM AMArHOCTWKM COCTOSHUIA B peanbHOM
BPEMEHN NpefcTaBnseT TOT (hakT, YTO akkymynupyemble B reteporeHHbix [MHC ¢ camoopraHusyrowieiics
apXMTEKTYpoOn “Helpoobpasbl” ¥ pewatowe (knaccuduumvpyrowme W naeHTMduLMpyowmre) npasuna
obecneynBaroT MaccoBbIii Napanneniam, XopoLLUyo 3KCTPanonALMo 1 BbICOKOe BbICTPOAECTBIE NPW NPUHATUM
ONTUMAIbHBIX UK Cy6ONTUMAnbHbBIX PELIEHMIA.

KonnektusHoe (MynbTU-areHTHOe) ucrnonb3oBaHue reteporeHHblx MHC B kayecTBe HeMpOCeTeBbIX areHToB
Mo3BONSET LOMOMHUTENBHO pacnapannienuTe U pacnpefenuTs Mexay nokanbHeiMu HC-areHTamu npouecchl
PELLEHNS CHOXHbIX (rnobanbHbIxX) 3apay pacno3HaBaHus 06pa3oB, aHanu3a u3obpaxeHuit 1 CLeH, pacLUMPEHHO
(BEKTOPHOI) AMArHOCTVKM COCTOSIHUI W afanTUBHON MapLLpyTU3aLum MHPOPMAaLMOHHBIX MOTOKOB.
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NEURONAL NETWORKS FOR MODELLING OF LARGE SOCIAL SYSTEMS.
APPROACHES FOR MENTALITY, ANTICIPATING AND MULTIVALUEDNESS
ACCOUNTING.

Alexander Makarenko

Abstract. It is consider the new global models for society of neuronet type. The hierarchical structure of society
and mentality of individual are considered. The way for incorporating in model anticipatory (prognostic) ability of
individual is considered. Some implementations of approach for real task and further research problems are
described. Multivaluedness of models and solutions is discussed. Sensory-motor systems analogy also is
discussed. New problems for theory and applications of neural networks are described.

1. Introduction

There is one principal feature of the present state of contemporary World: their evolutionary nature. That is the
rate of changes that is accelerating rapidly now and the problems of evolution of global systems became more
and more complicated. So, the applicability of existing theories and models of society are under question. One of
the main tools for the investigation of evolution is the approach from the physical theories - that is synergetic.

There also exists the great variety of the mathematical models. It is known that the above models present mostly
three types of global blocks (biospherical, climate and anthropological). The block of human (anthropogenic)
factors actually seems to be the less developed one. The artificial intelligence theory can give the answers on
some questions, but there is the lack of practical operational models with artificial intellect.

We may say that in spite of many successes of system analysis and mathematical modelling there is the
necessity to have socio-economics models. So, main basic items for the theories and models of the World exist:
the society as the whole object, the evolutionary nature of the society, the mentality problems and some
propositions on the laws of their behaviour. In proposed report, we briefly consider the principles of new models
construction, some applications and further scientific problems. The main goals of this report in to describe the
ways of mentality accounting and especially the anticipatory property accounting consequences.
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2. Short Description of Models

Let us take that society consisting of N >> 1 individuals and each individual characterising by vector of state
S, = {shrnss! S| a8, LSt €M 1= 10s M, where Ml.’ is a set of possible values s; . There are many
possibilities to compose the elements in blocks and levels in such models. In sufficiently developed society
individuals have many complex connections. Let us formalise this. We assume that there are connections

between i and j individuals. Let Lj’q is the connection between p components of element i and g component of
element j Thus the set Q = ({s; }{ 4;"’ } 1, = 1,....N) characterises state of society. Analysis of recent models for

media from sets of elements and bonds shows the resemblance of such society models to neural network
models.

2.1 Possible Structures of Models

Now we follow the description of hierarchical systems similarly the one in papers by Mesarovich and Takahara.
We suppose initially that there are M hierarchical levels in the socio-economical system with N ;. elements on

j-th level. Each I-th element on j-th level have description by vector of parameters Ql,j i=1,2,...,Nj 11,2, M.

Some elements on chosen levels can be in associations, marked by set of possible indexes in
associations L{f c{l2,.,N ; }. Many elements in developed society have a vast number of interconnections

on there and on upper and lower levels. We may denote connections (bonds) between i1 elements on j1 level
with i2 element on j2 level by J(i1,j1;i2,j2). Remark that other fields of interest (political, social, educational and so
on) have similar network representation and society, as a whole is a union of such networks.

The bonds from the connection sets may be very different on the nature. The values of bonds may represent the
normalisation of economical, informational, control channels, nationality, family bonds, and participation in
professional associations and so on. The general model of system as in general system theory can be introduced
with the help of input X1, X2, ..., XM and output Y1, Y2, ..., YM spaces for every level with input variables xi € Xi
and output variables yk € Yk.

In reality society is evolutionary system with dynamical changes on time. Further we for simplicity will consider
only discrete time models with moments of time: 0,1,2,....,n,... . Following evolutionary nature of systems
considered it is natural to consider as input of system in moment n the values of parameters from X in n-th time
moment and as output the values at next (n+1) time moment (for n=0, 1, 2, ...). Remark that in developing society
the content of elements set may changes. For example in economics the list of firms and corporations changes
gradually by bankruptcy and by creating of coalitions. Social, political, governmental networks are often in

transformations. This lead in general to changing the number of elements N ; (n) and number of hierarchical
levels M(n) for different moments of time. Next if we wish to take into account the past states of society explicitly

we should introduce to equation (1) or (2) the values X(0), X(1), X(2), ..., X((n-1)). Than the system description
takes the form

2.2 Dynamics in Model

The equation above is rather general but for further investigations and practical applications we should have more
developed models. Because we should consider evolutionary problems the main difficulties consist in searching
the principles for modelling dynamics.

The author's models consider the Society as large complex object constructed from many elements with
interconnections. The considerations of Society properties allow picking out some interesting properties and then
to propose the models, which can imitate society behaviour. Surprisingly the models are familiar with models of
brain activity - the neuronets [1]. Such models are under investigation by author since 1992 and yet had some
interesting applications. In the processes of model consideration author continuously tried to take into account
recent state of above mentioned sciences.
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Now let us briefly describe the models. The first step of model building consists in the choice of model element
and their description. Because it is need to take into account mentality of peoples in simplest models as the
elements was took the individual with their description by series of mental and other (economical, demographic,
and other parameters). These parameters may be evaluated in some scales psychology, sociology and other
humanity sciences.

Next there are a lot of interconnections between elements in society - informational, business, relationship, and
infrastructure. The elements are connected by bounds. The bounds correspond to influence by individual, the money
flows and others. Such connections are created historically. The set of element states and bounds give the
description of society in some period of time. Remark that such description is familiar with verbal description in
humanity sciences. For example the pictures in L.White’s works remember the pictures for global socio-economical
models. But if we wish to describe the dynamics of society and should to evaluate the influence of control than we
must to know or dynamical laws or tendency in dynamics. The proposed models have such dynamical principles that
they can imitate the behaviour of global culture in time. This is because the models have the property of associative
memory. That is it can learns from historical processes the bounds and tends to very stable constructions- to so
called attractor in pattern recognition in informatics and neuroscience. It is important that many social sub-processes
in society also have the properties above allow considering the separate sub-models.

In earlier papers author introduced new class of society models as modification of neuronet models such as Hopfield,
Potts, Ising. It is well known that Hopfield model is derived from the functional called 'energy’. In case of hierarchical
systems and symmetfrical bonds between different elements and different levels there also exist functional —
counterpart of ‘energy’. Remark that there also may be formulated generalisation of Hebbian leaming rules.

3. Mentality Accounting

The mentality accounting requires considerations internal structures and incorporating them in global hierarchical
models. There are many approaches for mentality accounting (see review of some aspects in [2,3]). The most
natural way for implementing this task is to consider as model for internal structure also neuronet models.
Remember that originally neuronet models were introduced in the investigation of brain. Firstly we can change
the basic laws. On phenomenological level it may be implemented by introducing subdivision of elements
parameters on external and internal variables and establishing separate laws for two blocks of parameters. But
one of the most prospective ways for mentality account lies in searching equation also in neuronet class. Here
proposed to introduce the intrinsic mental models of World in elements, which represent the individuals or
decision-making organisations with human participation. The simplest way consists in representing image of
World in the individual’s brain or in model as collection of elements and bonds between elements. In such World
pattern there exist place for representing individual himself with personal beliefs, skills, knowledge, preferences.
The mental structures on other individuals are also represented. Then the laws for element evolution should
depend on such representation.

4. Anticipatory Property

The next step of developing models consists in accounting anticipatory aspects of individuals. It is evident that
individuals in decision-making processes have prognoses on future. In such case the states of elements in model
should depend on the images of the future described in internal representation. As in usual reflexive system there
may exist some stages of iteration in anticipating future. We call such case as hyperincursion.

The verbal description of internal structure was described in previous section. Now we give the possible structure
of models and some corollary. First we describe the model structure with one element with internal structure. If
there were no internal structure it was the system in section above for dynamical law. Let the individual with
internal structure has the index i=1. Their dynamic is determined by two components. First component determines
by external mean field as above. Second part of dynamic is connected with internal dynamics of first individual.
Remark that this dynamic partially account the willing of individual. There exist many models for such part of
dynamics but it is useful to put the neuronet models for our purposes.

Let us named the pattern of society Q()(t) in section above as 'image of real world ' in discrete moment of time t.

We also introduce the Quish(t) - ' desirable image of world in moment t by first individual' as the set of element
states and bonds wishes by first individual in moment t. Qisn(t)=({S1s(t)},Jis"(t)}). Then we assume that the
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change of first individual state depend on difference between real and desirable image of the world. The resulting

system takes the form:
Si(t+1)=G({sit)L{si(t+1)}... {sit+g()}, R),

where R the set of remaining parameters. It is very prospect that the structure of system above coincides with
anticipatory systems with incursion [4]. This follows possible similarity in properties.

5. Multivaluedness in Neural Networks

So far the neuronet approach had followed after the original problem formalisation. But with spreading neural
network methodology some new mathematical problems had aroused which may have long- term influence on
the development of neurocomputing and not only it. Such problems follow from models above. First topic
concerned the neuronet models with hierarchical structure. The second and very interesting connected with
possible multivaluedness in neuronet.

The main source of multivaluedness lies in neural elements with internal structure with anticipatory property when
the dynamical behaviour of element depends from desired pattern of future [3]. Some preliminary results were
received with R.Pushin on modelling unique multivalued neuron. Also the principles for dynamics were considered.

In parallel (and forwards) some possible range of applications may be proposed. Some such issues are brain
processes and conscious, quantum mechanical analogies, many worlds concept in physics, logic and philosophy,
complexity, multivalued solutions of differential equations.

6. Some Relations to Sensor-Motor Robotics

The models described in previous sections already were applied to some practical problems. Further
development will follow by exploiting concepts from another research fields. Surprisingly such enrichment leads to
considering some fundamental problems of cybernetics. The main tool is inter- disciplinarily methodology.

One of the sources of new ideas is the psychological investigation of visual perception. Remember that the
perception process not only include the reception of signal by visual sensor system but also include internal
comparison with patterns. Such patterns are internal constructs of visual perception system [5,6]. Further
development of proposed models will lead to complication of internal models and to modelling of process of
norms learning. It is directly connected the investigations on norms ruled behaviour. Society norms, morals,
religion and so on determine the rules. Remark that till now there was a little investigation on such topics mostly
of model character [7].

From another side further development of proposed models needs further re- considering of basic principles of
artificial intelligence in application to such problems. From such point of view especially interesting are
investigations in formally different research field in automation and control — that is from behaviour theory of
mobile robot. The short list of investigations (see [8,9]) includes analysis of sensor- motor robotics; comparison of
formal language’s and behavioural approaches; internal representation of external environment; role of sensor
information channels. Some of such concepts may be transfer to the neural type models of large socio-
economical systems. One of the basic concepts in the mobile robot theory is physical landscape. In social
systems case the evolution takes place in many- dimensional space constructed from physical and mental space.
The points in this space are representation of system space in different time moment. Remark that the description
of environment as network from [10] may be useful building internal description of world.

Conversely, the author's model may be interesting for considering mobile robot problems. The neuronet
description of external environment is first example for such application. But more prospects may be the
investigation on anticipatory agents. As already had formulated above, anticipating property account leads to
multivaluedness of behaviour scenarios in systems with self- reference. Concerning mobile robot it may lead to
more intelligent behaviour (in definition of intelligence from [11]).

The next perspective approach follows from the considering neuronal models with many agents. As background
for modelling large systems it allows to solve the optimal control and game- theoretical problems. The robot
soccer may be one of such issues. The second is the control problem for many vehicles with internal structure in
2D and 3D space cases.

7. Applications and Discussion
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Now we should discuss some issues connected to above problems. It should be stressed some relations to
another topics in artificial intellects. One of such item is so called artificial agent’s theory. Now there are many
investigations on artificial agents. In this approach some non-classical logic are accepted. Moreover our neuronet
type models follows to consideration of some non-classical logic. Another interesting aspect is the structure of
neuronet models itself. Our investigations lead to the necessity of considering set valued neural networks.

The possible applications of models with mentality account to election processes, negotiations, public relations,
education are discussed. Also pure mathematical problems on multi-valued maps and on conflictly-controlled
systems are posed. As application it were considered the modelling future geopolitical relations and collective
security system structure in World after the destruction of the USSR, sustainable development, epidemiology,
conflict theory, stock market and others [12,13]. It was created as mathematical model as computer program
implementation. Remark that recently we had received interesting result on models with internal structure
application to the stock market process. This is the example of mental agent application. Recently new possible
fields of applications are outlined. Moreover the connected to multi-agent modelling, cellular automata, decision-
making in social systems became visible. Also new analogies of quantum mechanics and social system
behaviour are found. Besides the theory of distributed reflexive systems can receive the strict models for
consideration. Ontology of knowledge and systems description may easy take into account mentality aspects. All
this follows to new problems in neural network design and in neural network theory, which the author supposes,
discuss in the report. One of the main conclusions is that the new proposed fields of neural network applications
can lead to reconsidering some backgrounds of the network considerations.

The paper had been partially supported by Ukrainian Grants 0205U000622, 0105U000490
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6.2. Neural Network Models

NPEOCTABNEHUE HEUPOHHbIX CETEN AMHAMUYECKUMW CUCTEMAMM

Bnagumup C. [loHyeHko, lenunc M. CepbaeB

Abstract: Paccmampusaemcs npedcmagneHue HellpoHHbIX cemeli 8 8ude duHamuyeckux cucmem. lpednoxeH
memod 0byyeHusI HelipOHHbIX cemeli ¢ NOMOLbI0 MEoPUL ONMUMaITbHO20 YNpageHus.

Keywords: HelipoHHbIe cemu, duHaMUYecKue cucmembl, 0byYeHue.

BseneHue

B HacToslLLee BpeMs HEMPOHHbIE CETW MONYYMM CaMOe LIMPOKOe pacnpoCTpaHEeHMe M YCNewWwHO NPUMEHSIITCS
ANS peLeHns pasnuyHbIX CRIOXHBIX 3aay Takux Kak, HanpumMep, ynpaereHne U MOeHTUPUKALMUS HENMHENHbIMM
CUCTEMAMW, aHann3 (UHAHCOBOrO pbiHKa, MOAENMPOBaHME curHanos v T.4. KayecTBo paboTbl HEMPOHHOW CETU
BO MHOTOM 3aBMCUT OT 3(h(PEKTUBHOCTM BbIOPAHHOrO anropuTMa ONpederneHns BECOB CETU ANs LOCTUXKEHMUS
TpebyeMon TOYHOCTM Ha obyvaltowlen M TeCToBOW BblGOpKAxX. Hwxe NpeanoxeH METOA HaxXOXOEeHWs BECOB
HEAPOHHOI CETU Ha OCHOBE TEOPWUW ONTUMANbHOMO yNpaBfeHUs W NPeACTaBIEHNs HEMPOHHOW CETU B BuMAae
JNHAMUYECKOW CUCTEMBI.

MpencTaBneHne ceTM CUCTEMON PEKYPPEHTHBLIX COOTHOLIEHWUI

Kak n3BecCTHO [4], HEMPOHHAs CeTb — 3TO COBOKYMHOCTb OAHOTUMHBLIX 3NIEMEHTOB - HEMPOHOB, — pasbuTbIX Ha
4acTu-cnom, onpeaeneHHeiM 0bpasom NocneaoBaTeNnbHO CBA3aHHble Mexay coboi. Kaxabiii n3 HEMpOHOB, 13
KOTOPbIX CKNafblBAETCA Kaxabl U3 CNOEB, COOCTBEHHO, OTBEYAET CKamnsPHOM (PYHKLMM BEKTOPHOTO apryMeHTa
y=F(WTX), 4TO SIBMsieTCS CynepnosvUMen NMHENHOM (POpPMbI C BEKTOPOM NIMHEWHOM (HOPMbI W, KOTOPbIA
Ha3bIBalOT BEKTOPOM BECOM, — U CKansipHOM doyHKLmMK F. MocneaHiol HasbiBatoT YHKLMEN akTUBaLMK HENpOHa.
ApPryMeHT X — BEKTOPHbI — BXO, HEPOHA, CKanspHoe 3Ha4YeHue Y — BbIxod. Bxoabl HeMpoHa, CBsi3aHHbIE C UX
NPUHALNIEXHOCTBIO ~ TOMY WAW WHOMY CROKW, Ha KoTopble pasbuta ceTb. OTU CMOW  YNOpPsBOYeEHb
nocneaoBaTenbHO Tak, YTO BbIXOAbl BCEX HEMPOHOB MPEALECTBYIOWEro Cros NOJATCa Ha BXodbl Noboro u13
HENPOHOB CchnefyloLlero cnos. Bxogom nepeoro Cros ABNSETCS CUrHas, KOTopbIn ABNSETCS BXOAHLIM 419 BCEM
cetn. [ina craHaapTtusaumn obosHayeHuin, bygem cumtatb, YTo BX0oA 006pa3oBbIBaeT croi ¢ Homepom 0. 3ToT
CMoW, B OTNMYME OT APYrUX, HE COOEPXUT HEMPOHOB U, COBCTBEHHO, 3aaaeT BxogHon curHan x(0)=Xo, KOTOpbIN
cocTonT U3 lp kKoMnoHeHT.  Cron ¢ HoMepoM N ecTb BbIXOAHbIM. Kaxabli U3 CNOEB C COOTBETCTBYHOLMMM
Homepamu k: k=0,...,N uMeeT KOnMM4ecTBO HeMpoHOB I. CkanspHble BbIXOObl HEWPOHOB OOHOMO Cros
obbegunsiotcs B oguH Bektop X(k), k=0,...,N, koTopbIit Oygem cunTaTb BbIXOZOM COOTBETCTBYIOLIETO CHOS.
PasMepHOCTb Takoro BekTopa coBnagaet ¢ konmyectBoM Iy, k=0,...,N HeiipoHOB B COOTBETCTBYHOLLEM CrIOE.

Byaem cuntatb, YTO BCE HEMPOHbI OAHOTO W TOTO XXE COS UMET 0aMHaKoBble Beca. OBLLMIA Ans BCeX HEMPOHOB
ofHoro crnos Bec Byaem obo3Ha4aTb COOTBETCTBEHHO HOMepa crnos W(k): w(k)=(w(k),...w(k . )T

k=1,...,N... PasmepHOoCTb BekTOpa BECOB, E€CTECTBEHHO, COBMagaeT C KONMUYECTBOM |1 HEMPOHOB Cnos-
npeaLwecTBEeHHMKa.
Y0 e kacaeTcs (PyHKLMIA akTMBaLumM Noboro M3 HEMPOHOB COOTBETCTBYHOLLErO cnosi, Byaem cunTath, YTO OHU
SBNSATCS pasHbIMW 4719 KaXOoro HenpoHa v ByayT 0603HavaTbes Fl-(k)(z) , =1, k=1,...,N... Hanomnum,
4TO (DYHKLMM aKTUBALMM ABNSIOTCSA CKaNAPHbIMU YHKLMAMN CKaNSPHBIX apryMeHTOB.
Takum oBpasom, npeobpasoBaHne BxoaHoro curHana x(0)=xo nocnegoBaTeNbHbIMK CIIOSIMU HEMPOHHOW CETU
OMMCLIBAETCS CUCTEMOMN PEKYPPEHTHBIX COOTHOLLEHMUIA:
F5Y ok +1)" x(k))

x(k+1)= , k=0,...,N-1... (1)

FZZ i”)(w(k +1)T x(k))
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OGo3HaunB 4epe3 g(zk+1) BEKTOPHYI CYHKLMIO (Fl(kH)(z),...,FlikH)(Z)), nepenmiwem (1) B Gomee
KOMNaKTHOM BUAE:

x(k+1)=g(w(k+1)"x(k), k+1), k=0,...,N—1. (2)
C y4eToMm TOro, YTO Kaxmbl CMON CETW OCyLLECTBNSIET 0ToOpaXeHne 13 OHOrO NMWHEHOro MpOCTpaHCTBa B
Jpyroe B cooTBeTCTBIN C (1) unm (2), cxema HENPOHHO CETH MOXET ObITb NPEACTABNEHA PUCYHKOM 1.

Ha pucyHke 1 crnou npeactaBneHbl MPsIMOYrOrbHUKAaMK, KOTOpble OCYLLECTBNSIOT npeobpa3oBaHue B

cootBeTcTBUM C (1) M (2). B kaxgom Takom
NPSIMOYTONbHUKE BblgeNeHHbIe YacTyh, KOTOPbIEe UMEKT eCTECTBEHHYIO MHTepnpeTaumio: w(K) oTBe4aeT BXOAHbIM
CMHancam, YacTu ¢ (YHKUMSMU aKTMBaLMK Flk,...,F,l’f OTBEYalT HeWpoHam, 4acTb ¢ X(k) oTBevaeT 3a

KOHLIEHTPALMIO BbIXOZ0B HENPOHOB CIOSt B €[MHbIIA BbIXOZ BCETO CIOs B LIENIOM.

Cmoi 0 Cmoit k Crmoft N
Iy Ig I
— Fll:h:l Fll:N:l
O e ) | R e e wan | [ XD
— Flihl FILNJ
PucyHok 1.

3apgaya obyyeHMs HeMPOHHOM ceTu

3apaya 0byyeHns HEMPOHHOM CETM COCTONT B TOM, 4TobbI nogobpate Beca w(k), k=1,...,N crnoes cetn TaK,
4TOObI Ha 3aaHHoN y4ebHoM BbIOOpKE: nocnefoBaTesibHOCTH nap

(xV, y ™V ) (xM) M) ) () e R,y e R, i=1,N, B KoTOpbix Mepeas  KOMNOHeHTa
MHTEPNPETUPYETCS KaK OAUH M3 BapUaHTOB BXOAA CETU U MMEET pa3MepHOCTb BXOAHOTO criost lo, @ BTopast — Kak
enaTerbHblil BbIXOf CET! 1 MMEET Pa3MepHOCTb BbIXOAHOTO ot |, — [OCTUranoch HauMeHbLLEE OTKMOHEHME

BbIXOJHbIX CUrHamNoB CeTU OT XenaTenbHbiX. Takum 06pas3oM 0ByyeHne HeNPOHHON CETW COCTOUT B TOM, YTOGbI
MUHUMU3MPOBATL (yHKLMoHan J(w(1),...,w(N)),koTopbIn onpesenseTcs COOTHOLLEHNEM:

JW(1),....W(N))= §| NI, 3

roe X (N), i =1, N — BbIXOA CETW Ha i-TOM N5 i-TOr0 aneMeHTa y4ebHON BbIGOPKN: 0ObEANHEHHBIN BbIXO4
HEMPOHOB MOCMEeAHEro Cros HEMPOHHOM CETK, KOTAa Ha BXO4 NOJAETCA COOTBETCTBYHLIEE BXOAHOE 3HAYeHMe
anemeHTa y4ebHomn BbIBOPKY.

OTMeTMM, YTO ecrniu yyebHasi BbIOOPKA COCTOMT 13 OHOTO 3NEMEHTa, TO eCTb €CIN Ha BXOA NOMJAeTCs CurHan, a
CeTb [10SMKHA 00Y4NTLCS HA BbIXOAHOW CurHan, (PyHKLMOHar kayecTea 0byyeHus npuobpeTaeT BUA;

JW(L),..., wN))= ||y —x(N )| (4)

CTtaHAapTHbLIN NOAXOA K PeLeHuto 3a8a4mn oby4eHns HeWpOHHOW CeTu

CtaHgapTHbIM NOAX0A0M K 0BYYEHWUO HEMPOHHOW CETW eCTb TaKOW, COrNacHO KOTOPOMY MO (hMKCMPOBAHHOMY
BXOAY W3 BO3MOXHbIX BapWaHTOB Bxoga Yy4ebHOI BbIOOPKM M NepBOHAYamnbHO (PUKCMPOBAHHBIX Ha KakOM-TO
YPOBHE BECOB CrOEB MPOUCXOAMT MOCMefoBaTeNlbHOE WM3MEHEHWE 3TWX  BECOB Kaxdoro M3  CrNoeB B
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HanpaBneHnn, NPOTUBOMOMOXHOM rpagueHTy yHKkumoHana J(w(1),...,w(N)) no Becy cOOTBETCTBYHLIETO CMOS
w(k), k=1,...N... KoahdmumeHThl, KOTOpble ONPEdensioT ANMMHY Wara B COOTBETCTBYIOLLEM HanpaBleHWM,
BepyTcs CpaBHUTENBHO HEBGOMbLLNMM.

PeweHue 3agaun obyuyeHss HEUPOHHON CETV NPUMEHEHMEM pe3ynbTaToB ANA 0606LWeHHON
CUCTEMbI YyNpaBeHus

MpUHLUMNMANbHBIMA NS PeLeHUs 3afaduu o0yYeHns ecTb YTBEPXAEHUE TEOPEM 1, 2 HUXE O NMPeACTaBNEeHUN
3afaum obyyeHnst ceT 06OBLYEHHOI CUCTEMOII YNipaBNeHUst AN COOTBETCTBEHHO: OAHOM TPAEKTOPWM W Myuka
TaK1X TPAEKTOPHIA.

Teopema 1. 3agaya 0OyyeHWUs HEHMPOHHOM CETM Ha OOWH BXOAHOM CUrHan npeacrtaenseTr coboo
ONTUMW3ALMOHHYIO 3aa4y Ans 0B0BLIEHHO! CUCTEMBI YNPaBNEHNS, B KOTOPO COOTBETCTBEHHO:

- (pasoBble nepemeHHble X(k), k=0,...,N sBnseTcs BbIxogamu CNOEB C COOTBETCTBYHOLMMU HOMEPaMMU;
- ynpaeneHue u(k) ¢ cootsetcTBylowum HomepoM k=0,...,N-1 coBnapaeT ¢ Becom k+1 cnos 1 onpegensiercs
cooTHoweHuem: u(k) = w(k+1), k=0,...,N-1;
- (yHKUMM f, KOTOpbIE OMMCLIBAIOT PEKYPPEHTHYIO CBS3b MEXOY 3HAYeHus MM (Ha3oBO MEpPeMEHHON,
onpegensTcs MYHKLUMAMM g BEIXOLOB CMOEB MO COOTHOLIEHNAM:
fx(k), u(k), k)=g(w(k+1)"x(k),k+1), k=0,...,N-1 (5)
- (yHKUMoHan I(uo,...,un-1) coBnagaet ¢ J(w(1),...,w(N)) ¢ (2).
[lokazaTenbCcTBO TEOPEMbI MPUBEAEHO B [2].

Cnepcteuem Teopembl 1 SBNSETCA BO3MOXHOCTb MCMONb30BaTh TEOPEMY O BUAE rPaANEHTOB Ans 0606LLeHHO
CUCTEMbI YNpaBMeHus AN nojcyeta rpagneHToB (yHKUMOHANa kavecrtBa 0OydveHus B 3agadun oOyyeHus
HEeApPOHHOM ceTh. [2]

Teopema 2. 3agaya 0by4eHUst HEMPOHHO CETU Ha y4ebHyto BbIGOPKY Npon3BoNLHOro o6bema M npeacTasnsieT
CODOK ONTUMU3ALMOHHYID 3ajady [ANs nyyka TpaekTopuit 0BOGLLEHHOM CUCTEMbI YNpaBfeHus, B KOTOPOW
COOTBETCTBEHHO:

- (pasoBble nepemeHHble X(k), k=0,...,N sBRsOTCA MaTpUUHbIMA U COCTOST M3 CTONGLOB x(“)(k),i=1,_M,
Kakdbll M3  KOTOPbIX €CTb BbIXOA Cnosi C COOTBETCTBYHLIMMM HOMEPOM, €Cfi Ha BXO4 nogaetcs
COOTBETCTBYIOLLMIA BXOAHOM ANEMEHT Xo™,i=1, M 13 y4eBHON BbIGOPKY;

- ynpaenenue u(k) c cootBeTcTBYtOWMM HoMepom k=0,...,N-1 coBnagaet ¢ Becom k+1 crnos u onpeaensieTcs
cooTHoweHnem: u(k) = w(k+1), k=0,...,N-1;

- yHkumm F= F(X(k), u(k), k), KOTOpble ONMCHIBAIOT PEKYPPEHTHYIO CBA3b MEXAY 3HaYeHusMM (ha30BOW
nepemMeHHoW, ABnATCA MaTpuyHbiMu 1 coctoaT u3 ctonbuos  (f(X(k), u(k), k), i=1,M , KkoTopble
onpegensioTcs (yHKUMAMM g BbIXOLOB COOTBETCTBYIOLIMX CMOEB HEMPOHHOW CETW B COOTBETCTBUM C

COOTHOLLIEHUAMM:

(fX (), u(k), K))=g(w(k+1)'x" k)t 1), k=0,...N~1, (6)
rae x“(k),i=1, M - Bbixon cros ¢ Homepom k: k=1, M | kak peakuus Ha i-Tblil 3neMeHT y4ebHON
BbIOOPKY;

- dyHkumonan I(uo,...,un-1) conapaet ¢ J(w(1),...,w(N)).

[okasamenscmeo. [lokasaTenbCTBO NPOBOAUTCA Tak Xe, Kak W Ans nNpepLwecTBylLero pesynbtata #
npueeaeHo [2].

CrepncTaueM TeopeMbl 2 SBRSETCS BO3MOXHOCTb MCMONb30BaTh TEOPEMY O BUAE rpafneHToB Ans 0606LLeHHON

CUCTEMbI YMPABIEHUS C MYYKOM TPAEKTOPWUIA, ANs NoAcyeTa rpagneHToB (PYHKUMOHANa kayectsa 00yyeHus B
3afaye 0by4eHns HeMpoHHo ceTu. [2] 310, COBCTBEHHO, pesynbTaT CrieaytoLei TEOPEMbI.

Teopema 3. rpaﬂVIeHTbI (byHKU'VIOHaJ'Ia KayecTBa o6yquM;| HeI7IpOHHOI7I CeTn onpeaenaTca COOTHOLWEHNAMN:



608 6.2. Neural Network Models

M
grad . J(W(1),...w(N)) = —grad ., > H (x (k),w(k +1), p” (k +1),k) k=1,...N. (7)
i=1

Teopema 3. cnyxut ocHoBoi anroputma Error Back Propagation ans obyyenus HeiipoceTei.

BbiBoAbI

B cratbe onucaH MeTog HaxokAeHUs BECOB HEMPOHHON CETU HAa OCHOBE TEOPUM ONTUMANLHOTO YNpPaBREHUs U
NpeaCTaBNeHNs HEMPOHHOI CeTW B BIUOE AMHAMUYECKON CUCTEMbI. Micnonb3oBaHne NpeacTaBeHns HEMPOHHOM
CeT B BUAE AMHAMMYECKOW CUCTEMbl NO3BONSET 3H(PEKTUBHO ONpeaensaTb Beca HEMPOHHOM CETW W TakuM
obpa3om peLuatb 3agady o0byveHuns.
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GENERALIZATION BY COMPUTATION THROUGH MEMORY
Petro Gopych

Abstract: Usually, generalization is considered as a function of learning from a set of examples. In present work
on the basis of recent neural network assembly memory model (NNAMM) a biologically plausible ‘grandmother’
model for vision has been proposed within which each separate memory unit itself can generalize. For such a
generalization by computation through memory analytical formulae and numerical procedure are found to
calculate exactly the perfectly learned memory unit's generalization ability. The model's memory has complex
hierarchical structure and can be learned by one-step process from one example. A simple binary neural network
for bell-shaped tuning is described.

Keywords: generalization, ‘grandmother' model for vision, neural network assembly memory model, one-step
learning, learning from one example, neuron receptive field, bell-shaped tuning.

1. Introduction

We know from our everyday experience that even under difficult observation conditions the recognition of
complex visual objects occurs in practice immediately, in an on-line regime. The ability to recognize visual objects
regardless of the side of view, their illumination, occlusion or particular distortion is called generalization ability; up
to present its brain mechanisms remain unclear.
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In real life any two successive images cannot coincide literally, point-by-point, although they correspond to the
same object. To overcome this difficult computational problem it is supposed that it is enough to remember labels
of only some typical images (examples) and to learn the common memory/generalization system to predict to a
huge amount of unknown, do not storing in memory, images. Such a statement of the problem implies that
particular image can continuously be transformed, possibly not too sharp, into any other image of the same object
through an infinite continuous series of intermediate images.

The learning theory gives a definition of generalization and rules to ensure it. So, generalization provides the best
possible functional relationship between an input image, x, and its label, y, by learning from a set of examples, x;,
yi. This problem is similar to the problem of fitting a continuous smooth function of some arguments to
measurement data x;, y; or, in other words, the ability of estimating correctly the values of this function in points
where data are not available. For this purpose standard interpolating methods are usually used [1].

Above approach is not the only possible. It is naturally to assume that the real world is actually represented in
human visual system as a series of 'frames,' discrete and only perceived continuously, as in a movie. If so then
the amount of information needed to be maintained reduces crucially and for this reason memory system, sub-
serving vision and dealing with a finite set of discrete images, may become simpler. This work follows such an
alternative approach.

2. Generalization by Interpolating from Examples

Within the classic learning theory generalization by interpolating among examples supports a popular neural
network (NN) architecture which combines the activity of some hidden broadly tuned 'units' (local NN circuits)
learned to respond to one of presented training examples and to a variety of other images but at sub-maximal
firing rates. This idea is consistent with the fact that bell-shaped tuning is common among neurons in visual
cortex and that in infero-temporal cortex, IT, there exist neurons tuned to different complex objects or their parts.

Mathematically, using the method of regularization, the learning from examples may be formulated as
measurement data approximation by a smooth function f(x) = Y wik(x,x;) which minimizes the error of training; it is
a weighted sum (weights w;) of basis functions k(x,x;) depending on a new (unknown) image x. Function k(x,x;)
may be, for example, a radial Gaussian centered on x; representing the ith neuron's receptive field and
responding optimally to (memorizing) x;. The width of k(x,x;) defines also the unit's selectivity as a memory device:
for broadly tuned k its selectivity is poor but a linear combination of such functions provides good generalization
ability, for sharply tuned k (e.g., a delta function or very narrow Gaussian) its selectivity is perfect but such a k
cannot be used for generalization. In f(x) functions k(x,x) may be learned from their inputs, x; in a passive
(without the feedback) regime while weights, w;, depend also on outputs, y, and demand more complicate
iterative learning from examples, x;, yi. That is learning splits into two parts: leaning the basis functions (memory
units and simultaneously neuron receptive fields) and learning the weights of the whole network (learning to
generalize using already learned memory units). The algorithm described can implement a feed forward NN with
one hidden layer containing as many units as training examples; parameters w; are interpreted as synaptic
weights between corresponding units and the output, f{x); for further references see [1].

3. A 'Grandmother' Model for Vision

In the classic 'grandmother' theory for vision, an image recognition happens when the combination of all its
features precisely coincides with such a combination associated to particular grandmother neuron, i.e. in this
case between the input image and different memory records a direct literally comparison is needed. The lack of
generalization is the basic problem of such a model. To solve it the model was essentially extended: it is
supposed that 'generalization emerges from linear combinations of neurons tuned to an optimal stimulus' [1] (see
also Section 2). We propose another extension solving the generalization problem under assumption that each
memory unit itself can generalize.
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Figure 1. An oversimplified scheme of a
'grandmother’ model for vision based on the
‘ ‘ NNAMM. At the bottom, in V1, cells have small

Categorization Recognition

receptive fields and respond preferably to
oriented bars, along the ventral visual stream
K | they increase gradually their receptive fields and
f complexity of their preferable images and at the
top, in AIT, neurons respond optimally already to
rather complex objects. AIT neurons 1,....N
(open circles) code the image of current interest,

ﬁ{ }R #‘{ m e.g. a face, as a binary (1) vector xn; other

similar neurons (filled circles) can code (respond
optimally to) other complex objects. Boxes M and
F correspond to assembly memory units, AMUs
(Figure 2), storing reference codes of the 'ideal’
male, xom, and female, xor, faces; boxes 1,...,K
denote AMUs storing the codes Xo1,...,Xox Which
A v represent known (previously encountered) faces
1,...,K, regardless of their categorization. The
case is presented where a current face code X
% e extracted from current visual input is recognized
T as the face number 2 and categorized as a male
face (xi initiates the correct retrieval of memory
traces xow and xo2 signified as output arrows from
boxes M and 2, respectively). In the insertion a
feed forward NN (box 2 in Figure 2) related to particular AMU; and storing the code Xqi is shown (AIT neurons
1,...,N may be exit-layer neurons of such an NN). If xi, is absent among the codes Xo1,...,Xok but recognized as
Xom Or Xor then it can be remembered in the (K + 1)th empty AMU, AMUk -+ 1, which is not shown. V1, primary
visual cortex; V2 and V4, extra striate visual areas; IT, infero-temporal cortex; AIT, anterior IT; PIT, posterior IT;
PFC, prefrontal cortex; SCA, sub-cortical areas (e.g., hippocampus, see Section 4.2).

V4/PIT N-bits

NN memory
unit
4

Sensory-specific stages

V2

< || =
EIIIH H

Visual input

As Figure 1 demonstrates, in our model all sensory-specific stages of input visual data processing completely
coincide with those that Poggio & Bizzi [1] discussed and, consequently, in this part both models are biologically
equally plausible. In particular, in AIT neurons (open circles) tuned to respond to complex images are used
although our local circuits employed for tuning are quite different (Section 5). The main distinction between our
Figure 1 and Figure 2 in [1] consists in the structure of their sensory-independent parts: in Figure 1 it is
implemented on the basis of the neural network assembly memory model, NNAMM, discussed in Section 4 [2].

Visual memory is constructed as a set of the NNAMM's assembly memory units, AMUs (Figure 2 in Section 4.2),
interconnected between each other and storing one memory trace per one AMU. Memory traces are N-
dimensional binary (£1) vectors represented particular images (e.g., known faces, Xo1,...,Xok) or categories of
such images (e.g., the 'ideal' male, xom, and female, xor, faces). Tuned neurons 1,...,N (open circles) convey the
code xin, extracted from current visual input at sensory-specific stages of data processing and representing a
current face, to all AMUs. Similar codes of other images presented in current visual input are also extracted and
other tuned neurons (filled circles) convey them to all AMUs. But by means of a spatio-temporal synchrony
mechanism, the AMUs shown select only the code of their interest, xin; other similar codes may be the codes of
interest for other AMUs which are not shown.

With the probability defined by Equations 5 and/or 6, for example, AMU; can perfectly recognize current xi, as o2
(can interpret xi, as a damaged xo2) even in the case xin # Xo2 and thanks to this fact the ability to generalize
occurs (i.e. in contrast to Section 2, an AMU per se provides as perfect memory selectivity as well a
generalization by computation through memory). Because particular AMU contains a 'grandmother' neuron (see
also Section 4), we can consider our model for vision as a 'grandmother' one.

4. The NNAMM as a Memory Model Used
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P.M.Gopych has proposed [3] a ternary/binary 0,+1/+1 data coding and demonstrated [3] that corresponding NN
decoding algorithm (inspired by J.J.Hopfield [4]) is simultaneously the retrieval mechanism for an NN memory. As
NNs used for data decoding and memory storing/retrieval are the same (see insertion in Figure 1), they have also
common data-decoding/memory-retrieval performance (Section 4.3). Later this data coding/decoding approach
was developed into the binary signal detection theory (BSDT) [5] and neural network assembly memory model
(NNAMM) [2] closely interrelated in their roots and providing the best quality performance. The price paid for the
NNAMM optimality is the fact that it places each memory trace in its own AMU (an estimation of human memory
capacity, though it is possibly too optimistic — 108432 bits [6], supports this assumption).

4.1 Formal Background

Let us denote a vector with components x' (i = 1,...,N), whose magnitudes are %1, as x. It can carry N bits of
information and its dimension N is the size of a local receptive field for the NN/convolutional feature discrimination
algorithm [7] or the size of an NN memory unit discussed below. If x represents information stored or that should
be stored in the NN then we term it reference vector xo. If the signs of all components of x are randomly chosen
with uniform probability, %, then that is random vector x; or binary noise. We define also a damaged reference
vector x(d) with damage degree of xo dand components

P0G SN, i (1)
Xi(d)_{x;',ifUI-:'l z ,/ y o I=T0 N,

Marks u; take magnitudes 0 or 1 which may randomly be chosen with uniform probability, %. If the number of
marks u;= 1 is m then the fraction of noise components of x(d) is d = m/N; 0 < d < 1, x(0) = X, and x(1) = x.. The
fraction of intact components of X in x(d), g = 1 - d, is intensity of cue or cue index; 0 <g<1,q9+d=1,dand q
are discrete. For a given d = m/N the number of different vectors x(d) is 2"C"m, CNy= NI/(N — m)!/ml; for d ranged
0 = d <1, complete finite set of all vectors x(d) consists of > 2mCN,, = 3N elements (m = 0,1,...,N).

For decoding the data coded as described, we use a two-layer NN with N McCalloch-Pitts model neurons in its
entrance and exit layers; these neurons are linked ‘all-inputs-to-all-outputs' as the insertion in Figure 1
demonstrates. For learned NN, synapse matrix elements w; are

W, =EXoX} (2)

where ¢ > 0 (below ¢ = 1), i and X are the ith and the jth components of xo, respectively. Hence, vector x, and
Equation 2 define the matrix w unambiguously. We refer to w as a perfectly learned NN and stress the crucial
importance of the fact that it remembers only one pattern x (the available possibility of storing other memories in
the same NN was intentionally disregarded). It is also assumed that the NN's input vector xi, is decoded
(reference or state vector xois extracted) successfully if learned NN transforms an x;, into the output vector Xout =
Xo (an additional 'grandmother’ neuron mentioned in Section 3 checks this fact).

The transformation algorithm is the following. For the jth exit-layer neuron, its input signal h; is
h=>wy, i=1..N 3)

where v; is an output signal of the ith entrance-layer neuron. The jth exit-layer neuron's output, Xy, is calculated
by a rectangular response function with the neuron’s triggering threshold 6 = 0:

o - +1, I:f h >@o (4)
M1, f h <6

where for hj= 6 the value v; = -1 was arbitrary assigned.

Since entrance-layer neurons of the NN used play only the role of input fan-outs which convey their inputs to all
exit-layer neurons, in Equation 4 v; = xi,. Of this fact and Equations 3 and 4 for the jth exit layer neuron we have:
hi = Y wiXin = X XoXin = ¥0Q where Q = 3 XioXis is a convolution of Xo and xi». The substitution of h; = XoQ into
Equation 4 gives that Xoit = Xo and an input vector xi, is decoded (reference vector xg is extracted) successfully if
Q > 6. Since for each xi, exists such a vector x(d) that xi, = x(d), inequality Q > 8 can also be written as a function
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of d = mIN: Q(d) = Y xiox{(d) > 6 (i = 1,2,...,N) where 6 is the threshold of Q and, simultaneously, the neuron’s
triggering threshold. Hence, for perfectly learned intact NNs above NN and convolutional decoding algorithms
are equivalent.

Since D = (N - Q)/2 where D is Hamming distance between Xo and specific x(d), the inequality D < (N — 6)/2 is
also valid and NN, convolutional, and Hamming distance decoding algorithms mentioned are equivalent. As
Hamming decoding algorithm is the best (optimal) in the sense of statistical pattern recognition quality (that is no
other algorithm can outperform it), NN and convolutional algorithms described are also optimal (the best) in that
sense. Moreover, similar decoding algorithms based on locally damaged NNs may also be optimal [2,8] (see also
Table 1 in Section 6).

4.2 The AMU Architecture

We saw that a two-layer NN (as in the insertion in Figure 1) can be used for optimal one-trace memory
storing/retrieval although randomly chosen xn = x(d) initiates successful retrieval only randomly. Thus, to
implement the model's possibilities completely, the retrieval should be initiated by a series of different vectors xi
and it will be successful if one of the next xi, leads suddenly to Xout = Xo emergence. Figure 2 exhibits the minimal
architecture needed to provide optimal memory trace retrieval from the learned NN (box 2). As retrieval is initiated
by 2mCN,, different vectors x(d) (they are labels of images or 'frames' from their finite set mentioned in Section 1),
it gives also optimal generalization by computation through memory. The internal loop 1-2-3-4-1 ensures the
generation of different (e.g., random) vectors xi» = x(d) with a given value of d while the external loop 1-2-3-4-5-6-
1 maintains the internal one.

Successful Reference Explicit ~ Recall ~ Figure 2. The flow chart (the architecture) of
recall memory information failure an assemb|y memory unit, AMU, and its
short-distance environment adapted from
[2]. The structure of the NN memory unit
(box 2) specifies the insertion in Figure 1.
Pathways and connections are shown in
Explicit thick and thin arrows, respectively.

feedback

loop Within the NNAMM, the whole memory is a
very large set of interconnected AMUs of
t=0 rather small capacity (N ~ 100 or less)
organized hierarchically. An AMU (Figure 2)
consists of boxes 1,2 and 6, diamonds 3,4
and 5, and their internal and external
pathways and connections designed for propagation of synchronized groups of signals [vectors x(d)] and
asynchronous control information, respectively; it implements the BSDT decoding algorithm for solving the
problem of optimal memory storing/retrieval directly.

Box 1 (a kind of N-channel time gate) transforms initial ternary (0,%1) sparsely coded very-high-dimensional
vectors into binary (£1) densely coded rather low-dimensional ones. Here from the flood of asynchronous input
spikes, synchronized pattern of signals in the form of N-dimensional feature vector xi, = x(d) is prepared by a
dynamical spatiotemporal synchrony mechanism. Box 2 is an NN learned according to Equation 2 (or Equation 7
from Section 4.4) where each input, xi, is transformed into its corresponding output, xout. Diamond 3 performs the
comparison of xot just now emerged with reference vector (trace) xo from reference memory (RM, see below). If
Xout = Xo then the retrieval is successful and it is finished. In the opposite case, if current time of retrieval t is less
than its maximal value f, (this fact is checked in diamond 4) then the loop 1-2-3-4-1 is activated, retrieval starts
again from box 1, and so forth. If t, a parameter of time dependent neurons, was found as insufficient to retrieve
Xo then diamond 5 examines whether an external reason exists to continue retrieval. If it is then the loop 1-2-3-4-
5-6-1 is activated, the count of time begins anew (box 6), and internal cycle 1-2-3-4-1 is repeated again with a
given frequency f, or time period 1/f, while £ < .

The trace xo is held simultaneously in a particular NN memory (box 2) and in its auxiliary RM that may be
interpreted as a tag of corresponding NN memory or as a card in a long-term memory catalog and performs two

Implicit
feedback
loop

Time gate

] I ] ] IBottom-up or/and top-down flow of signals
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interconnected functions: verification of current memory retrieval results (diamond 3) and validation of the fact
that a particular memory record actually exists in the long-term memory store. Thus, specific RM is a part of
memory about memory or ‘metamemory’. In contrast to the NN memory which is a kind of computer register and
is conventionally associated with real biological networks, particular RM is a kind of slot devoted to the
comparison of a current vector Xou with the reference pattern xo and may be associated with a coincidence
integrate-and-fire ‘grandmother' neuron (cf. Section 3).

All elements of the internal feedback (reentry) loop 1-2-3-4-1 run routinely in an automatic regime and for this
reason they may be interpreted as respected to implicit (unconscious) memory. That means that under the
NNAMM all operations at synaptic and NN memory levels are unconscious. External feedback (reentry) loop 1-2-
3-4-5-6-1 is activated in an unpredictable manner because it relies on external (environmental and, consequently,
unpredictable) information and in this way provides unlimited diversity of possible memory retrieval modes. For
this reason an AMU can be viewed as a particular explicit (conscious) memory unit. An external information in
diamond 5 used can be thought of as an explicit or conscious one.

Recent evidences demonstrate that learning induces molecular changes in neocortex and hippocampus and this
finding, along with based on it physiological theory assuming that long-term memory is stored in parallel in the
neocortex and hippocampus [9], supports the NNAMM's idea of storing each memory record simultaneously in an
NN (a counterpart to a neocortex network) and in a 'grandmother' neuron (probably, a cell in hippocampal
structures). For other arguments in favor of the NNAMM's biological plausibility see ref. [2].

4.3 The AMU Basic Performance

For the best data-decoding/memory-retrieval algorithms considered their quality performance function is P(d,6),
the probability of correct decoding/retrieval conditioned under the presence or absence of X in the data analyzed
against d (or ) and 6 (all notations are as in Section 4.1).

The finiteness of the set of vectors x(d) makes possible to find P(d,8) by multiple computations [3]:
P(d,6) = n(d,6)/n(d) ()

where n(d) is a given number of different inputs xi» = x(d) with a given value of d; n(d,0) is a number of x(d) from
n(d) leading to the NN's response Xout = Xo if the NN decoding/retrieval algorithm with triggering threshold 0 is
applied. For small N, P(d,6) can be calculated exactly because n(d) = 2mCNp,, complete set of x(d), is small and all
possible inputs can be taken into account. For large N, P(d,6) can be estimated by multiple computations ap-
proximately but, using a sufficiently large set n(d) of randomly chosen inputs x(d), with any given accuracy.

For intact perfectly learned NNs, convolutional (Hamming) version of the BSDT/NNAMM formalism allows to
derive analytical expression for P(d,6) [8]:

kmax

P(d.8)=3""Cr 2", kmaxoz{(N—e—n/z, if N is odd 6

(N-6)12—-1, if N is even.

Here if kmax < m then kmax = m else kmax = kmaxo and C™ denotes binomial coefficient.

Since 6, F (false-alarm probability), Q, and D, d and q are related, P(d,6) can, for example, be written as ROC
curves, P,(F), or as basic memory performance functions, P#(q) [2].

4.4 The AMU Learning

Equation 2 defines perfect one-step learning from one example as for the NN considered its input and its output
(the label, 'teacher,' or 'supervisor') are exactly known, xo. But it is often necessary to have unsupervised learning.

Let us use the traditional delta learning rule in the form

= ij”) +7n vj.”)hf”) (7)

(n+1)

Wi
where n and n > 0 are an iteration number and a learning parameter, respectively; v;= Xin; hi= 3 Wivi, k= 1,...,N;
the training set consists of only one sample, xi» = Xo (such an iteration process does not feedback the NN's output

Xout 0 the NN's input, it estimates w; using the previous value of w; and the values of  and components of x).
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If nis small (n < 1) then the learning rate achieved is low and asymptotic values of w; are not reached. This case
has no essential practical significance. If n is large (n > 100) then the iteration process leads to a fast, one-trial,
without the 'catastrophic forgetting' learning because already the first iteration gives the result which is close to
the asymptote and next iterations do not lead to the essential advance.

Let us consider the NN with N = 40, continuous wj, v, h;, Xin, Xioit and all initial values of wj chosen randomly with
uniform probability from the range [-1,1]. If the initial learning pattern is xin = Xo then after each next iteration an
NN with the next version of its weight matrix w; provides the emergence of the next version of Xou (the next
approximation of xo). For n = 400 already the first iteration gives the approximation's quality estimation > [Xiout —
Xo| <10-% (j=1,...,N). The NN's specific RM related to the same AMU should also be learned simultaneously.

5 Neuron RFs and NNs for the Tuning

Figure 3 illustrates visual data processing using the NN of Section 4.1 together with its ‘grandmother' neuron
checking whether xout = xo. Binarization of y gives xi (e.g., if yi > bd; then xin = 1 else xi, = —1) with no loss of
information important for the following feature discrimination [7]. Binarization of components of y or h means spike
generation; h may be interpreted as a simplified 1D profile of a 'grandmother' neuron's receptive field (RF), it
results in an internal weighted network process (Equation 3). Such RFs can be typical for on-cells (panels a, ¢, d)
or off-cells (panel b) and, as a) and b) demonstrate, noise X can initiate the reverse of RF polarity (these
predictions are consistent with current physiological results [10]). The set of outputs of ‘grandmothers’ of different
NNs (the top raw in Figure 3) reduces the redundancy of initial data and can constitute xi, for NNs at the next
level of data processing hierarchy and etc; in particular, in AIT xi, could already represent a face (Section 3).

Figure 3. Computer simulated samples of initial

gfjtizfmomer — — — -+ visual data (y, an electric output of light-

NN layer 2 sensitive retina cells) and their processing

output, x - results (X, h, Xout) in four N-channel windows:
* Tout

) a) and b), y is a background, bd = 100,
damaged by Poisson-like noise; ¢) and d), y is
NN layer 2
inpuf yﬁr HWWU HM-H a Gaussian peak (a = 20, fwhm = 5) on bd
damaged by noise (crosses, values of y in
each channel). Vectors y, xo (boxed), Xin, h, and
L

NN layer 1 T N - Xout are N-dimensional ones (N = 9); positive

input/output, X, . and negative components of Xo, Xn, h, Xou
+ * i correspond to upward and downward bars,

- S SRSSITRLRRIE +++ .......... s +++ +sd respectlvely, Intact NN and |tS lgrandmother|
Rl data, y e L T b hold xo= (1,1, 1,1, 1,1, 1, -1, 1), a kel
a) L; o d) 9 for the convolutional decoding/retrieval (Q(d) >

0, 6 = 4); peak is identified in panel d. sd =
bd'2, standard deviation of bd; a, amplitude;
fwhm, full width at half maximum.

The learned NN [Equations 2-4, Figures 1 (the insertion) and 3] provides a bell-shaped tuning to a 'grandmother’
neuron's specific set of its input activities, xo, as it is a tool for computing the convolution, Q, or Hamming
distance, D, between xo and current set of the neuron's input activities, xi» = x(d); i.e. it performs simply a given
(Inequality 6) normalization of a current input and threshold the result (see [7] for numerical examples).

6 Generalization by Computation through Memory Performance

Since P(q,0) defines (Equation 5) the fraction of vectors xin # xo leading, along with Xo, to successful retrieval of
the trace xo from the learned NN (the insertion in Figure 1 and box 2 in Figure 2), the probability of memory
retrieval, P(q,6), and generalization ability by computation through memory, g(q,6), are numerically equal, g(q,6) =
P(q,6). In Table 1 generalization abilities for AMUs containing intact and damaged NNs mentioned are compared.

Usually, generalization is considered as a function of the relative size a = kIN of the training set of k examples

and the learning strategy. It was found that for very large networks (N — <) and a >> 1 the error of
generalization decreases as ~ o' [11] but the problem of generalization by learning from very few examples



KDS 2005 Section 6: Neural and Growing Networks 615

remains unsolved in theory [1]. In the approach proposed learning even from one example is easily possible
(Section 4.4). Values of g(q,6) in Table 1 provide optimal (the best in the sense of pattern recall/recognition
quality) generalization abilities by computation through memory; g(0,6) = g(0,0) ~ 1% was for example chosen as
that is typical for professionals [7].

Table 1

Generalization ability, g(q,6) = n(q,6)/n(q), for an AMU storing the trace xo = (-1,-1,1,1,1, 1,1, -1, -1)".

9 | Intact NN, g(q.6),%2 | Damaged NN, 9(9,0),%3 q Intact NN, 9(q,6),% | Damaged NN, g(q,0),%
1 2 3 4 5 6

0/9 10/512 = 1.953 10/512=1.953 | 5/9 516 = 31.250 630/2016 = 31.250
119 9/256 = 3.516 81/2304 =3.516 | 6/9 4/8 = 50.000 336/672 = 50.000
2/9 8/128 = 6.250 288/4608 =6.250 | 7/9 3/4 =75.000 108/144 = 75.000
3/9 7/64 =10.938 588/5376 = 10.938 | 8/9 2/2 =100.000 18/18 = 100.000
4/9 6/32=18.750 756/4032 =18.750 | 9/9 1/1 =100.000 1/1 =100.000

Tq=1-d=1-mIN(0=<m=<N, N =9), intensity of cue (g = 0, free recall; 0 < q < 1, cued recall; g = 1,
recognition); 6, the neuron's triggering threshold; for definitions of n(q,6) and n(q) see Section 4.3.

2 Values of g(q,6) were calculated by Equation 5 or 6, results are equal.

3 Values of g(g,0) were calculated by Equation 5; 30 disrupted interneuron connections (entrance-layer neuron,
exit-layer neuron) are the follows: (2,1), (4,1), (5,1), (6,1), (8,1), (3,2), (5,2), (7,2), (1,3), (4,3), (5,3), (2,4), (4.,4),
(2,5), (3,5), (7,5), (9,5), (3,6), (7,6), (8,6), (9,6), (1,7), (2,7), (4,7), (8,7), (1,8), (5,8), (3,9), (6,9), (7,9); this set was
chosen to illustrate the fact that similar to intact NNs damaged NNs can also provide the best decoding/retrievall
generalization performance (in columns 2(5) and 3(6) generalization abilities coincide completely).

7 Conclusion

A solution of the problem of generalization by computation through memory has been illustrated by a
‘grandmother’ theory for vision introduced using the recent NNAMM [2]. Exact optimal calculations of such a
generalization as a function of the cue index ¢ and neuron's triggering threshold 6 are performed; the approach
considered provides generalization ability by learning from one example. A binary NN discussed could also be a
universal circuit underlying the bell-shaped tuning of neurons in different brain areas.
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NEURAL NETWORK BASED APPROACH FOR DEVELOPING THE ENTERPRISE
STRATEGY

Todorka Kovacheva, Daniela Toshkova

Abstract: Modern enterprises work in highly dynamic environment. Thus, the developing of company strategy is
of crucial importance. It determines the surviving of the enterprise and its evolution. Adapting the desired
management goal in accordance with the environment changes is a complex problem. In the present paper, an
approach for solving this problem is suggested. It is based on predictive control philosophy. The enterprise is
modelled as a cybernetic system and the future plant response is predicted by a neural network model. The
predictions are passed to an optimization routine, which attempts to minimize the quadratic performance criterion.

Keywords: enterprise strategy, model predictive control, neural network, black-box modelling, business trends.

Introduction

In the present paper, a Generalized Strategy Development (GSD) approach is suggested. Designing of the
enterprise strategy is a very complicated process. It depends on many factors, which require a lot of variables to
be taken into account. The relationships between them are complex and non-linear.

In the decision making process the managers need to know the environment characteristics in order to adapt the
developed strategy. Therefore, the predictions of the environment changes are needed. They enable businesses
make better strategic decisions and manage their activity more efficiently. It can also identify new opportunities
for increased revenues and entering new markets. The prediction of the environment changes is a very difficult
task. Price, advertising, goods seasonality, customers and competitors behaviour, global economic trends etc.
are all factors that influence the overall performance of the enterprise.

Traditional forecasting methods such as regression and data reduction models are limited in their effectiveness
as they make assumptions about the distribution of the underlying data, and often fail to recognize the inter-
relatedness of variables. Now, a new forecasting tool is available — artificial neural networks (ANN). They are a
form of artificial intelligence, which provide significant potential in economic applications by increasing the
flexibility and effectiveness of the process of economic forecasting [Tal, Nazareth, 1995]. They are successfully
used in various economic studies including investment, economic and financial forecast [Hsieh, 1993; Swales and
Yoon, 1992; Hutchinson, Lo, and Poggio, 1994; Shaaf, 2000].

The enterprise strategy development requires not only predictions but also have to be optimized and adapted
according to the environment changes. A suitable control design algorithm is needed. During the last years a
number of methods for automatic control synthesis are applied for managing business processes. Many authors
suggest the Model-Based Predictive Control (MBPC) algorithm to be used as a decision-making tool for handling
complex integrated production planning problems [Tzafestas, Kapsiotis, Kyriannakis, 1997] and supply chain
management [Braun et al., 2003]. MBPC is a very popular controller design method in the system engineering. It
is a suitable technique for prediction of future behaviour of a plant.

Both, ANN and MBPC, are tools for solving complex problems under uncertainty by providing the ability to learn
from the past experience and use information from various sources to control the enterprise performance.
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Generalized Strategy Development approach combines the advantages of artificial neural networks and Model-
Based Predictive Control algorithm to increase the effectiveness of the enterprise management in the entire
decision making process and development of all functional strategies (incl. production-, marketing-, financial-,
sales-, innovation strategy etc.).

Business Trends and Management Theory

The contemporary business is accomplished in highly dynamic environment. The continuous changes in the
internal and external environment of the enterprise force it to apply a number of adaptation mechanisms, which
contribute to its surviving and competitive power. These adaptation mechanisms are based on the degree of
information availability. This makes providing the information a necessary condition for adaptation process and
the adaptation itself — the most important characteristic of each system. In this regard the developing and the
implementing of tools, which enables the corporate adaptation according to the environment changes becomes a
strategic need.

Globalization [Kupes, 2001; NongwenH 2002, 2003; MaHyes, 2004; Ctounosa, 2004; CtosHos, 2003; Kpaesa,
2003), virtualization [Mentyc, 2004; BakcaHckuin, 2000; MaHiowmnc, CmonbsiHnHOB, Tapacos, 2003; Brotpux,
Oununn, 1999], Internet and the developing of the Information Technologies [Xpuctosa, 1997; BbpbaHos,
2000; Wrnues, 2003; Cennak, 2001] have a deep impact on the economic and social life of the society. These
global trends determine the transition from the traditional industrial society to the information age society. A new
economic based on knowledge [Applegate et al., 1996] appears and as a result the traditional managerial
hierarchy seize to exist and a horizontal relationships are formed. Enterprises of a new type appear, which
accomplish their activity on the global market from their founding. They overcome the spatial and time
boundaries. The common name for such structures is “globally born” [AHgepccoH, Buktop, 2004]. These
enterprises have their own mechanisms for developing, which substantially differ from those of the traditional
industrial enterprises. Thus, the small national companies become multinational very fast.

The adaptation to environment changes requires new knowledge for its elements, the relationships between
them, and characteristics of their functioning. Thus the concept of “Learning enterprise” [Senge, 1990] comes
into being. It is based on the continuous acquiring new knowledge regarding the environment, using it for
innovation strategies and this process applies to the enterprise as a whole.

The global trends in business development mentioned above cannot be considered partially. There are mutual
relationships and dependencies between them. The existing of certain trend is a prerequisite for appearing and
developing of another one and vice versa. Therefore, they influence the contemporary enterprise activities by
forming an integrated set of strategies.

Now let us consider the modern business trends in a management theory point of view. Many authors [KameHos,
1984; KamwuoHckuit, 1998; Pybuos, 2001] state that an unified management theory does not exist. There are
different managerial concepts. Some of them claim to be universal, other are a tool for solving particular
problems, some are not developed enough, other are just catchwords, some contribute and expand each other,
and other contradict each other [AliBa3sH, bankuHa, BacHuna, 1998]. This causes difficulties for the development
the enterprise strategy, which strongly depends on the environment changes.

The experience shows that there is time delay between the problems, which arise in the practice and the
developing of methods for their solving, which constitute the theory. In this regard, the new structures mentioned
above — “globally born” and “learning enterprise” are not considered in the general management theory.
Therefore, there is a lack of methodologically developed and scientifically based management approaches.
These enterprises do not respond to the traditional rules and concepts as they arise and perform in strongly
uncertain and highly dynamic environment. They need new management, approaches, which have to correspond
to their characteristics and meet their requirements. These enterprises can be presented as complex nonlinear
cybernetic systems. Thus, the laws of system and control theory can be applied to their management.

Model-Based Predictive Control

Model-Based Predictive Control has established itself in industry as an important form of advanced control
[Townsend, Irwin, 2001]. An overview of industrial applications of advanced control methods in general can be
found in Takatsu et al. [Takatsu et al, 1998] and in Qin and Badgwell [1998].
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The main advantage of MBPC algorithm is the simplicity of the basic scheme, forming a feedback, which
combines with adaptation capabilities. This determines its successful applying in the practice of designing control
systems.

MBPC is an efficient methodology to solve complex constrained multivariable control problems in the absence, as
well as in the presence of uncertainties [Mayne et al., 2000]. It makes possible the uncertainty of the plant and
disturbances to be taken into account and enables the on-line optimization and control synthesis.

In general, it is used to predict the future plant behaviour. According to this prediction in the chosen period
(prediction horizon), the MBPC optimizes the manipulated variables to obtain an optimal future plant response.
The input of chosen length (also known as control horizon) is sent into the plant and then the entire sequence is
repeated again in the next period. An important advantage of MBPC is that it allows the inclusion of constraints
on the inputs and outputs.

The prediction plant model is realized with neural network. It provides predictions of the future plant response
over a specified time horizon. The predictions are passed to an optimization routine to determine the control
signal that minimizes the following performance criterion over the specified time horizon:

J = 2( (r+/) y,,,t+J)+pZ( (c+j-1)-u(e+ j-2)f

J=N, J=N,

subject to the constraints, which are imposed on the state and control variables. The constants N1, N2, N, define
the horizons over which the tracking error and control increments are evaluated. The u’ variable is the tentative
control signal, y: is the desired response and yn is the network model response. The p value is weight coefficient.

Generalized Strategy Development approach will be introduced in Model-Based Predictive Control framework.

Generalized Strategy Development Approach

The purpose of the Generalized Strategy Development Approach is to transform the incomplete information about
the environment and the processes inside the enterprise into complete strategy for its adaptation and evolution.
From cybernetic point of view, this can be considered as a control system. The functional structure is given in
Fig.1

nh I Enterprise vih 1 Accounting
vit)
A 4
P 7(H ]
Enterprise | Analysist
Model
| wi(t)
- Marketing
A
\ 4
Optimization re(t), ru(t
P < .l Management
Goals

Fig.1 Global Strategy Development functional structure

Enterprise

The enterprise is a dynamic system with a high complexity. In order, the management and control [u(t)] to be
effective we need to know its physical structure, the relationships between the constituting elements, their
dynamic behaviour and the characteristics of the environment. We have to compare the current state of the
enterprise to the desired state. In case they coincide entirely the management goals are achieved. In order to
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register the difference we need to measure the state of the enterprise. This could be realized by performance
measurement system.

Performance management is the prerequisite to performance improvement. For the enterprises to improve their
performance, they must be able to measure how they are performing at present, and how they are performing
after any changes. So, the companies will have the possibility to monitor if a chosen strategic direction is
appropriate.
Traditional performance management systems are frequently based on cost and management accounting. There
are five main difficulties with traditional management accounting techniques for performance measurement
[Maskell, 1991]:

1. Management accounting reports are not relevant to strategy development;
Some of the data which are used for decision-making process can be distorted by cost accounting;
Traditional accounting reports are inflexible and are usually received too late to be of value;
The information about the pay-back on capital projects comes late;
To be of value, management accounting systems must be based on different methods and assumptions
than on the financial accounts.

As traditional performance measurement systems are based on management accounting, they are primarily
concerned with cost. But in today’s manufacturing environment, cost based measures are no longer the only
basis for decision making in enterprises. The new performance measurement systems should have some
additional characteristics [Maskell, 1991].

ok wdd

Accounting

In Fig.1 the Accounting is the traditional performance measurement system. Therefore, the current state of the
enterprise [y(t)] is represented by the measured one from the accounting and measurement error. The reports,
which are formed by the accounting, need to be interpreted in order to be useful for the management. This task is
performed by analyst.

Analyst

The accounting information is now manipulated for giving proper estimate for the current enterprise state [z(t)].
The manipulations include: recapitulation, generalization, estimation, recalculation etc. in order to analyze the
entire enterprise activity. The results are used by managers to make decisions about the future behaviour of the
enterprise.

The analysis is performed on the basis of incomplete information about the environment changes. Another error
is formed. The obtained information is passed to the prediction model of the enterprise in order to minimize the
tracking error.

Enterprise model

The model is used to determine the direction in which changes in the manipulated variables will improve
performance. The plant operating conditions are then changed by a small amount in this direction, and a new,
updated model is evaluated. The enterprise is a complex, dynamic and non-linear plant. Also different
disturbances affect the its performance. Because of that, there is a lack of knowledge on the function or
construction of the system.

The process output can be predicted by using a model of the process to be controlled. Any model that describes
the relationship between the input and the output of the process can be used and a disturbance or noise model
can be added to the process model [Duwaish, Naeem, 2001]. We can build a model using the observations of the
enterprise activities.

Therefore the enterprise can be viewed as a black-box [Sjoberg et al., 1995] which aims to describe the
relationships between input/output data. The non-linearities and the disturbances are taken into consideration.

During the past few years, several authors [Narendra and Parthasarathy, 1990; Nerrand et al. 1994] have
suggested neural networks for nonlinear dynamical black-box modelling. To date, most of the work in neural
black-box modelling has been performed making the assumption that the process to be modeled can be
described accurately by neural models, and using the corresponding input-output neural predictors [Rivals,
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Personnaz, 1996]. Therefore, artificial neural networks are used as effective black-box function approximators
with learning and adaptation capabilities.

Marketing

We could receive information [w(t)] about the environment changes from the Marketing Information System (MIS)
which is used in the enterprise. It is passed to the enterprise model by taking into account the forming of a new
error. This error is due to impossibility of MIS to register all trends in global economy and social life of the society.

Optimization and Management Goals

Using the enterprise model, we predict the future plant response and taking into consideration the management
goals [rx(t), ru(t)] we optimize it and develop a new management strategy. This is an iterative process, which
provides the continuous enterprise adaptation to the environment changes.

Conclusion

Strategy development is a complex task in the continuously changing environment. The enterprise management
must combine internal and external information in order to survive and evaluate. Therefore, the company needs
an efficient control and strategy development and evaluation system to work in rapidly changing business
conditions.

The Generalized Strategy Development approach suggested here is very suitable for this problem, namely for
optimization and adaptation of the strategy development process. Thus, the effectiveness of management is
increased.
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NEURO-FUZZY KOLMOGOROV'S NETWORK WITH A HYBRID LEARNING
ALGORITHM

Yevgeniy Bodyanskiy, Yevgen Gorshkov, Vitaliy Kolodyazhniy

Abstract. In the paper, a novel Neuro-Fuzzy Kolmogorov's Network (NFKN) is considered. The NFKN is based
on and is the development of the previously proposed neural and fuzzy systems using the famous Kolmogorov’s
superposition theorem (KST). The network consists of two layers of neo-fuzzy neurons (NFNs) and is linear in
both the hidden and output layer parameters, so it can be trained with very fast and simple procedures: the
gradient-descent based learning rule for the hidden layer, and the recursive least squares algorithm for the output
layer. The validity of theoretical results and the advantages of the NFKN in comparison with other techniques are
confirmed by experiments.

1. Introduction

According to the Kolmogorov's superposition theorem (KST) [1], any continuous function of d variables can be
exactly represented by superposition of continuous functions of one variable and addition:

2d+1 d
S Xg) = Y, g{zl//l,i(xi)} ) (1

=1 i=l1
where g;(s) and y, ,(e) are some continuous univariate functions, and v, ,(e) are independent of . Aside from

the exact representation, the KST can be used as the basis for the construction of parsimonious universal
approximators, and has thus attracted the attention of many researchers in the field of soft computing.
Hecht-Nielsen was the first to propose a neural network implementation of KST [2], but did not consider how such
a network can be constructed. Computational aspects of approximate version of KST were studied by Sprecher
[3], [4] and Kurkova [5]. Igelnik and Parikh [6] proposed the use of spline functions for the construction of
Kolmogorov's approximation. Yam et al [7] proposed the multi-resolution approach to fuzzy control, based on the
KST, and proved that the KST representation can be realized by a two-stage rule base, but did not demonstrate
how such a rule base could be created from data. Lopez-Gomez and Hirota developed the Fuzzy Functional Link
Network (FFLN) [8] based on the fuzzy extension of the Kolmogorov's theorem. The FFLN is trained via fuzzy
delta rule, whose convergence can be quite slow. The authors proposed a novel KST-based universal
approximator called Fuzzy Kolmogorov's Network (FKN) with simple structure and training procedure with high
rate of convergence [9-11]. However, this training algorithm may require a large number of computations in the
problems of high dimensionality. In this paper we propose an efficient and computationally simple learning
algorithm, whose complexity depends linearly on the dimensionality of the input space.

2. Network Architecture

The NFKN is comprised of two layers of neo-fuzzy neurons (NFNs) [12] and is described by the following
equations:

n d
FOrseesxg) =Y By, oM =Y (M), 1=1,.m, 2)
=1 i=1

where n is the number of hidden layer neurons, f2(o""1) is the I-th nonlinear synapse in the output layer, o]
is the output of the -th NFN in the hidden layer, f[!(x,) and is the ith nonlinear synapse of the -th NFN in the

hidden layer.
The equations for the hidden and output layer synapses are
S =S et 0y = 3 P I = L, i=Led (3)
h=1 j=1

where m, and m, is the number of membership functions (MFs) per input in the hidden and output layers
respectively, 4!} (x;)and uf>/(o™""') are the MFs, w!) and wj?] are tunable weights.
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Nonlinear synapse is a single input-single output fuzzy inference system with crisp consequents, and is thus a
universal approximator [13] of univariate functions. It can provide a piecewise-linear approximation of any
functions g,(e) and v, ;(e) in (1). So the NFKN, in turn, can approximate any function f(x;,...,x,) .

The output of the NFKN is computed as the result of two-stage fuzzy inference:

e R L | 12
= ZZ#[E{ZZ#E,A(%)WH ]}wh} : (4)
=1 j=1 i=1 h=1
The description (4) corresponds to the following two-level fuzzy rule base:
IFx; IS X,, THEN ol = witlld AND...AND ol =wii"d | i=1,...d, h=1,..m, (5)
IFo™ IS O ; THEN p=w’ln, I=1...n, j=1...m,), (6)

where X;, and O, ; are the antecedent fuzzy sets in the first and second level rules, respectively. Each first

level rule contains n consequent terms wii!ld,..., wit"ld | corresponding to n hidden layer neurons.

Total number of rules is

NYN =d-m+n-m,, (7)
i.e., it depends linearly on the number of inputs d.
The rule base is complete, as the fuzzy sets X,, in (5) completely cover the input hyperbox with m,

membership functions per input variable. Due to the linear dependence (7), this approach is feasible for input
spaces with high dimensionality d without the need for clustering techniques for the construction of the rule base.

Straightforward grid-partitioning approach with =, membership functions per input requires (m,)* fuzzy rules,
which results in combinatorial explosion and is practically not feasible for d > 4 .

3. Learning Algorithm

The weights of the NNFKN are determined by means of a batch-training algorithm as described below. A training
set containing N samples is used. The minimized error function is

N 5 T
E@®) = Y[ -p@.0) =[y - 20" [r - 7)), (8)
k=1

where Y =[y(1)....,y(N)]" is the vector of target values, and Y(r)=[p(z.))...., p(t, N)]" is the vector of

network outputs at epoch {.
Since the nonlinear synapses (3) are linear in parameters, we can employ recursive least squares (RLS)
procedure for the estimation of the output layer weights. Re-write (4) as

T T
5=V H21 0y W[2]:[W1[’21]’W1[’22]’_”’W[2] ] ,

n,my

©)

p(oly = [ﬂl[ﬁ] ("), uf?) (0[1’1]),---,ﬂ,[f,],,2 (0“’”])]T :
Then the RLS procedure will be
W, k) = WP (e, k=1)+ P(t,k)p (¢, k) (v (k) = (2, k),
P(t, k- Do (6, k)™ (t,k)P(t,k 1) (10)
1+ (6, k) P(t, k= 1) (1, k)
where k=1,..., N, P(1,0)=10000- 7, and / is the identity matrix of corresponding dimension.

P(t,k) = P(t,k—1)—

Introducing after that the regressor matrix of the hidden layer @ = [go“](x(l)),...,go[”(x(N))]T, we can obtain
the expression for the gradient of the error function with respect to the hidden layer weights at the epoch t:

V,uE@) =—<1>“]T[Y —?(t)], (11)
and then use the well-known gradient-based technique to update these weights:
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VW E(@)
W) = (0= ro) 12
¥, 5] 12
where y(y) is the adjustable learning rate, and
1 L] JLl L1 L] |7
wil = [wl[’1 ]’W{,Z]""’W[d,nl""’Wz[i,m3] ,
T

o0 = 0. 010l (o )] (13)

ol (x)=a ("N (x,)
and 4!?(o!"") is determined as in [9-11]
2]

2]
"

"

21—,
R G (14)
Lp+1 ~ “lp

where wi?l and c/*l are the weight and center of the p-th MF in the Ith synapse of the output layer,

5 5

respectively. The MFs in an NFN are chosen such that only two adjacent MFs p and p+1 fire at a time [12].

Thus, the NFKN s trained via a two-stage optimization procedure without any nonlinear operations, similar to the
ANFIS learning rule for the Sugeno-type fuzzy inference systems [14]. In the forward pass, the output layer
weights are adjusted. In the backward pass, adjusted are the hidden layer weights. An epoch of training is
considered ‘successful’ when root mean squared error (RMSE) on the training set is reduced in comparison with
the previous epoch. Only successful epochs are counted. If RMSE is not reduced, the training cycle (forward and
backward passes) is repeated until RMSE is reduced or the maximum number of cycles per epoch is reached.
Once it is reached, the algorithm is considered to converge, and the parameters from the last successful epoch
are saved as the result of training. Otherwise the algorithm is stopped when the maximum number of epochs is
reached.

The number of tuned parameters in the hidden layer is S, =d-m, -n, in the output layer S, =n-m,, and total

Hidden layer weights are initialized deterministically using the formula [9-11]
ilm(I-1)+h—-1 .
WEII’}I] :exp{—l[mld((ml,z_l)]} vh=1....m,i=1,...,d,l=1..n, (15)

broadly similar to the parameter initialization technique proposed in [6] for the Kolmogorov's spline network based
on rationally independent random numbers.

Further improvement of the learning algorithm can be achieved through the adaptive choice of the learning rate
(t) as was proposed for the ANFIS.

4. Experimental Results

To verify the theoretical results and compare the performance of the proposed network to the known approaches,
we have carried experiments with prediction and emulation of the Mackey-Glass time series [15].

The Mackey-Glass time series is generated by the following equation:

dy(t) _ 0.2 y(t—7)
dt 1+ ym(t -7)

(16)

—0.1 (),

where 7 is time delay. In our experiments, we used r=17.
In the first experiment, the values y(z—18), y(r—12), (t—-6), and y(r) were used to predict y(z+85). The

NFKN used for prediction had 4 inputs, 9 neurons in the hidden layer with 3 MFs per input, and 1 neuron in the
output layer with 9 MFs per synapse (189 adjustable parameters altogether). The training algorithm converged
after 43 epochs.

The NFKN demonstrated similar performance as multilayer perceptron (MLP) with 2 hidden layers each
containing 10 neurons. The MLP was trained for 50 epochs with the Levenberg-Marquardt algorithm. Because
the MLP weights are initialized randomly, the training and prediction were repeated 10 times.
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Root mean squared error on the training and checking sets (trnRMSE and chkRMSE) was used to estimate the
accuracy of predictions. For the MLP, median values of 10 runs for the training and checking errors were
calculated. The results are shown in Table 1 and Fig.1.

Table 1. Results of Mackey-Glass time series prediction

Network Parameters Epochs trnRMSE chkRMSE
MLP 10-10-1 171 50 0.022 0.0197
NFKN 9-1 189 43 0.018455 0.017263

MackeynGlass time series and prediction: trnRMSE=0.018455 chkRMSE=0.017263
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Fig. 1. Mackey-Glass time series prediction

With a performance better than that of the MLP, the NFKN with the hybrid learning algorithm requires much less
computations as it does not require matrix inversions for the tuning of the synaptic weights.

The second experiment consisted in the emulation of the Mackey-Glass time series by the FKN. The values of
the time series were fed into the NFKN only during the training stage. 3000 values for 1 =118,...,3117 were used

as the training set. The FKN had 17 inputs corresponding to the delays from 1 to 17, 5 neurons in the hidden
layer with 5 MFs per input, and 1 neuron in the output layer with 7 MFs per synapse (total 460 adjustable
parameters). The NFKN was trained to predict the value of the time series one step ahead.

The training procedure converged after 28 epochs with the final value of RMSEry=0.0027 and the last 17 values
of the time series from the training set were fed to the inputs of the FKN. Then the output of the network was
connected to its inputs through the delay lines, and subsequent 1000 values of the NFKN output were computed.
As can be seen from Fig.2, the NFKN captured the dynamics of the real time series very well. The difference
between the real and emulated time series becomes visible only after about 500 time steps. The emulated
chaotic oscillations remain stable, and neither fades out nor diverge. In such a way, the FKN can be used for
long-term chaotic time series predictions.

Two-level structure of the rule base helps the FKN avoid the combinatorial explosion in the number of rules even
with a large number of inputs (17 in the second experiment).
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Actual and emulated MackeynGlass time series
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Fig. 2. Mackey-Glass time series emulation
5. Conclusion

In the paper, a new simple and efficient training algorithm for the NFKN was proposed. The NFKN contains the
neo-fuzzy neurons in both the hidden and output layer and is not affected by the curse of dimensionality because
of its two-level structure. The use of the neo-fuzzy neurons enabled us to develop fast training procedures for all
the parameters in the NFKN.
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HEMPOCETEBAS KNACCU®UKALINA 3EMHOIO MOKPOBA HA OCHOBAHUU
CNEKTPANbHbLIX U3MEPEHUU

Anna JlaBpeHtok, Jlunusa M'nbepa, EkatepuHa fAposas
AHHOMauus: paspabomka Mmemoda Knaccugukayuu HasemHbIX 06beKkmos

Knroueenle cnoea: HelipoHHble cemu, cnekmparibHble Kpugble, Knaccugukayus

Bctynnenue

lMpn AMCTAHLMOHHOM MCCrefoBaHUM OOBEKTOB CreKTpanbHble XapakTepUCTUKM OTPaKEHHOrO CBETa MOryT
Oka3aTbCst YAOOHLIM W BbICOKOMH(OPMATMBHLIM WCTOYHMKOM AaHHbIX. Hanpumep, ¢ WX MOMOLLb MOXHO
OLEHUTb COCTOSIHWE PacTUTENbHOCTU ANS ONpedeneHns CTENeHU 3apaxeHHOCTU W 3arpsisHeHHoCTM [Kyccynb,
2003]. Tak e OHM NPefCTaBMAKT 3HAUMTENbHLIN WHTEPEC AN 3afay WU3yyeHus rpyHToB. KMcnonbsoBaHue
CNeKTparnbHbIX KPUBbIX MNOMOXET KnacCUMUMpOBaTb 3eMHOM MOKPOB W CO37aTb SMEKTPOHHYK  KapTy
NOBEPXHOCTW 3eMni, YTO SBMSETCA aKTyarbHbIM Ha CEroAHsWHUA AeHb. JTa 3agada cnabocopmanusyema,
noaToMy Ans ee peLLeHus npeanaraeTcs Mcnonb3oBaTh HepocTeTeomn nogxog [Kussul, 2003].

MocTtaHoBKa 3agaum

WccnenoBaHms MpoBOAMMACL MO [AaHHLIM BUBRNOTEKM
cnekTpaneHblXx Kpueblx USGS (USGS Digital spectral
library). VIMeeTcs MHOXECTBO  3KCMEpUMEHTambHbIX 0.9 1

a
[1@HHbIX O CMEKTParbHbIX XapaKkTepucTUKax oTpaxeHHoro | £
N3NYYEHNS  HEKOTOPbIX  HaseMHblx  obbektoB, | &% 7

Sop -

npeacTaBneHHbIX HabopoM KpWBbLIX, UNMKOCTPUPYHOLLMX
3aBUCUMOCTb  MHTEHCUBHOCTU  W3MYYeHWUst OT  AMMHbI 03 7 /F%
04 -

BOHbI. ECnu aHanuamnpoBaTh 06LLMiA BUA CrieKTpanbHbIX :

14

KPUBBIX, TO WX YCTOBHO MOXHO pasdenuTb Ha 03
Criedylolye Knacchl: BOJA, CHEr, PacTUTENbHOCTb. 021
KpuBble Kaoro knacca MMEIOT OAUHaKOBbIi 06pas3, ¢ 017
TOM MAWb pPasHULEN, YTO Pas3nnuMs B XMMUYECKOM L
cocTaBe OOBLEKTOB MPUBOAST K CMELLEHUSM KPUBbIX o503 B 03 03 303 1003 1103 1203

Wavelength

OTHOCUTENBHO OCEN KOOPAMHAT.
V3 rpacpukoB pacTUTENbHOCTU BUAHO, YTO OHU MMEIOT  PycyHok 1. CrieKTparbHble XapaKTepuUCTUKM Tpasbl
o0yt 4epTy — XxapaKTepHbll [ANns BCEil 3eNeHOoi

pacTUTENBHOCTY CKa4yoK B 0BnacTv BUAMMOrO KpacHoro cBeTa. Ho npu 3TOM MX MOXHO pasfenuTh elle Ha Tpu
Knacca: TpaBa, XBOWHas pPaCTUTENbHOCTb W NIUCTBEHHAS, T.K. OHU MMEIOT 3aMeTHble pasnuuns, ecnu
aHanuauposaTb 06pa3 KpuBoii B Lenom (puc. 1-3).

CneKTpanbHble KpUBbIE CHEra 4eNnsTcs Ha ABa TUMa — OOHWU HUCMAZaloT, ApYre UMEIOT ckavok B obnactu 690-
750 HM (puc. 4). 370 0DObSACHAETCS NPO3PAYHOCTBIO CHera. B Tex crnyyasx, korda CkBO3b CHEr mpocBeynBaeT
3eMeHast pacTUTENbHOCTL HA KPUBBIX NMOSIBNSIETCS CKA4YOK B 0OMacT KpacHOW COCTaBNSHOLLEA BUOMMON YacTu




628 6.2. Neural Network Models

CreKkTpa, KOTOPbIA XapaKTEPEH TOMbKO AN PACTEHMIA. I'IoaTomy Heobxoaumo pasgenntb cnekTpanbHble KpUBbIE
CHera Ha [Ba Knacca — CHer 1 T&IOLLWIVI CHer ¢ BMAHON pacTuTenbHOCTbIO.
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PucyHok 4. CnekTparnbHble XapakTepucTukK CHera

B uTOre nonyymnu WeCTb KNaccoBs: BOAA, CHEr, TaloWuii CHer ¢ BUOHOW pacTUTENbHOCTLI0, TpaBa, XBOWHbIE,
nucTBeHHble. Ha kaxapln knacc umeeTcs nopsigka 10 cnekTpanbHbIX KPUBBIX.

3apaya uoeHTUUKaLMM Ha3eMHbIX 0OGBEKTOB CBOAMTCS K Pacno3HaBaHWI0 00pa3oB CMeKTpanbHbIX KPUBbIX W
pasgeneHnio nx Ha knaccol. Tpebyetcs paspaboTtatb acheKTMBHBIN METOS Knaccudukaumm kpuebix. Moatomy
LienecoobpasHo pelaTh 3Ty 3agayy Ha OCHOBE WHTENMeKTyanbHbIX METOAOB, B YAaCTHOCTY HEMPOHHbIX CETEN.

PeweHue 3agaun knaccudmkaumum ¢ NOMOLLLI0 HEMPOHHOW CEeTH

OcHoBy HeiipoHHOM cetn (HC) cocTaBnsioT OTHOCWTENBHO MPOCTble, SMEMEHTbI, UMUTMpYoLMe paboTy
HEMPOHOB Mo3ra. Kaxabl HEMPOH XapaKTepu3yeTcs CBOMM TEKYLYMM COCTOSHUEM NO aHanoruu ¢ HepBHbIMY
KneTkamn TONIOBHOTO MO3ra, KOTOpble MOryT ObiTb BO30YXOEHbI MnM 3aTopMoxeHbl. OH obnagaeT rpynnon
CMHanCcoB — OAHOHANPaBNEHHbIX BXOAHbBIX CBA3EH, COEAMHEHHbIX C BbIXOLaMW ApYriX HEMPOHOB, a TaKkke UMeeT
aKCOH — BbIXOZHYI0 CBSI3b JAHHOTO HEPOHa, C KOTOPOM CurHan (BO3BYKAEHWS N TOPMOXEHIUS) NOCTynaeT Ha
CUHaNCLl CNeayoLWwmMX HEMPOHOB. Kaxablid CMHANC XapakTepuayeTcs BEMMYMHOM CUHANTUYECKOW CBSA3N MK ee
BECOM Wi, KOTOPbIN MO (hU3NYECKOMY CMbICITY SKBMBANEHTEH SneKTpuyeckon nposogumocTy [Kannau, 2001].
TekyLLee COCTOsIHME HellpoHa onpeaenseTcs Kak B3BeLLeHHas CyMMa ero BXo4oB:

n
s = in W,
i=1

AKTUBaUMOHHAA PYHKLUA

Bbixog HelipoHa ecTb (yHKUMS ero coctosHus: Yy = f(s)
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HenuHenHas (yHKuma f Ha3blBaeTCs akTUBALMOHHOM U MOXET UMETb pa3nuuHblid Bua. OpHon 3 Hambonee
pacnpoCTpaHeHHbIX ABNSETCS HENMHENHas PYHKLMSA C HACbILLEHWEM, TaK HasbiBaeMast Nloructuyeckas yHKLmUs
unn curmong (T.e. yHKUMs S-0bpasHoro Buaa):

f(x)zl;_w
+e

[Mpu yMEHbLLIEHUM oL CUTMOUA CTaHOBUTCA Bonee nonorum, B npegene npu o=0 BbIPOXAasACh B FOPU3OHTANbHYHO
nuHMIo Ha ypoBHe 0.5, npu yBeNUYeHUn o, curmoug npubnmkaercs no BHeWHeMy BUAY K (YHKLMM €AMHUYHOMO
Cckayka. M3 BblpaxeHust Ans curMouaa OY4eBMAHO, YTO BLIXOOHOE 3HAYeHWe HelpoHa nexut B auanasoHe [0,1].
Kpome Toro, curmoug obnagaeT CBOWCTBOM YyCwWnuBaTb crabble CurHanbl Nydwe, Yem Gonblive, W
NpeaoTBpallaeT HacbleHne OT GonblMX CUTHAMOB, TakK Kak OHW COOTBETCTBYIOT 0BrnacTsaM aprymeHTOB, rae
CUrMOUA UMEET MONOTMIA HAKIIOH.

LleHTpanbHas Touka CUrMOMAHOM 3aBMUCHMOCTM MOXKET CABUraTbCsl BNPaBO WK BNEBO Mo oci X. TO CMeLLeHne
MOXeT NPUHUMAaTb NPOW3BOSIbHOE 3HAYeHWe, KOTOpoe NOAOMpaeTCs Ha cTagumu 0byveHus BMeCTe C BECOBLIMMU
koagpdmumeHTamm. Takoe cmelleHne 0OblYHO BBOAMTCS nyTeM A00aBnEHWs K CNoW HEMpOHOB elye OZHOro
BX0fa, BO30YKAal0LEro JOMOMHATENbHbIA CYHAMNC KaXAO0ro U3 HEMPOHOB, 3HAYEHME KOTOPOro BCErAa PaBHSETCA
1. Mpucaoum atomy Bxogy Homep 0. Torga TekyLlee CoCTOsHUE HENpPOHOB OyaeT onpeaensTbCs No creaytoLen

copmyne:
s = ixi -w, taew0=-T,x0=1.

i=0
MapameTpbl 06y4eHus
[Ona obyyeHns ceTel NpSMOro pacnpoCTPaHEHUs NMPUMEHAKTCH MTepaTWBHblE METOAbl, OCHOBaHHble Ha
NOCTENEHHON KOPPEKLUMM BECA MEXHEMPOHHbIX CBS3EN B HaNpaBneHUM YMeHbLUeHUs OWMOKW peakuun CeTw.
Kaxpas utepauns obyyeHns, HasbiBaeMast anoxon, COCTOUT B MOBTOPEHMM BCETO 3anoMUHAEMOro MaTtepuana.
[OCKOMbKY YMCAO 3MOX MOXET WUCYACNATbCA ThiCsyamu, oByyeHUe ceTel 3TOrO Kracca 3aHMMaeT MHOro
BpemeHn. CeTu NpsMOro pacnpoCTPaHEHWst MMEKT MHOTOCMOMHYI0 OpraHW3aumio, NpUYeM BbIXOL KaXooro
HerpoHa npeablayLUero Cos UMeeT CBA3M C BXOLaMW BCEX HEMPOHOB NOCIEAYHOLEro Cros.
B npouecce 00y4eHWst MOXET BO3HUKHYTb CUTyauUusi, korga Gonblume MOMOXWUTENbHbIE WK OTPULATENbHbIE
3HaYeHNs1 BECOBbIX KOI(MULUMEHTOB CMECTAT pabouyylo TOYKY Ha CUrMOMAax MHOTUX HEMPOHOB B 06nacTb
HacbleHns. Marble BENUYNHBI NPOM3BOAHON OT NOMUCTUYECKON PYHKLMM NPUBELYT K OCTAHOBKE 0DYyYeHUs, YTO
napanuayet HC. 31a npobnema cesi3aHa elle C 0AHOM, a8 UMEHHO — C BbIGOPOM BENMYMHBI CKOPOCTU 0BYYeHMs.
[lokasaTenbcTBO CX0AMMOCTM 06y4YeHus B npoLecce 0bpaTHOro pacnpoCTPaHEHUs! OCHOBAHO Ha MPOU3BOAHDIX,
TO eCTb NPUPALLEHNS BECOB U, CNefoBaTeNbHO, KOIPPULMEHTbI CKOPOCTY 06y4eHNs AOMKHbI ObiTb BECKOHEYHO
ManbIMK1, OQHaKO B 3TOM criyyae obyyeHne byget npoucxoauTb Henpuemnemo MeaneHHo. C apyro CTOpOHbI,
CMULLKOM 60MnbLUME KOPPEKLMM BECOB MOMYT MPUBECTM K MOCTOSHHOM HEYCTOMYMBOCTM MpoLuecca 0by4veHms.
[MosToMy B KauecTBe KO3(hdULMEHTA CKOPOCTH 00Yy4YEHNS OObIMHO BbIGMPAETCS YNCNO MeHbLE 1, HO HE OYEHb
maneHbkoe, Hanpumep, 0.1, u OH, BoOOLLE rOBOPS, MOXET MOCTEMNEHHO YMEHbLIATLCA B mpolecce 0by4veHus.
Kpome TOro, AN MCKMIOYEHUS CMyvailHbIX NomafaHWid B MoKanbHble MUHUMYMbl MHOMOA, MOCRe TOro Kak
3HauYeHMsl BECOBbIX KOIGh(MLMEHTOB 3acTabummanpyotes, koaduLmMeHT CKopocT 0By4YeHNs KpaTKOBPEMEHHO
CUNBHO YBENWYMBALKOT, Y4TODbLI Ha4YaTb rPAgMEHTHBIN CMYCK U3 HOBOW TOUKW. ECnn noBTOpeHue aTon npoueaypsl
HECKOMbKO pa3 NpuBeSET anroputM B OAHO W TO e cocTosiHne HC, MoxHO Bonee nnn MeHee yBepeHHO cka3aTb,
4TO HailgeH rnobanbHbIn MaKCUMYM, @ He KaKoW-TO ApYrou.
daKTop MOMEHTa AN KaXOO0ro U3 CKPbITbIX CMOEB W BbIXOAHOMO COs ONpefenseT CTeneHb yyeta U3MEHEHWN
BECOBbIX KO3(PULMEHTOB Ha npenplayllem ware obyveHus. Yem Bbilwe 3TOT KOIGULMEHT, Tem Bonbluee
BNWSIHWE Ha N3MEHEHME BECOBbIX KOAPPULMEHTOB OKa3bIBalOT U3MEHEHUS Ha NpeablayLLeM Luare.

OpraHusauus cetu

TeopeTnyeckn YUCNo CMoeB MOXET ObiTb MPOWU3BOMBHBIM, OAHAKO (DAKTUYECKM OHO OrpaHN4EHO pecypcamu
KOMMblOTEPA UMK CreuUanuanpoBaHHON MUKPOCXEMbI, HA KOTOPbIX 00blMHO peanuayeTcst HC. Yem Gonblue
KONMYECTBO HEAPOHOB W CIOEB, TEM LUMPE BO3MOXHOCTM CETU, TEM MEANEeHHee oHa obyyaetcs u paboTaer.
Ecnun HelpoHOB 1 COEB CIULWKOM MHOTO, BbICTpoaeiCTBIME ByAeT HU3KUM, @ NamsaT NOTPebyeTcs MHOTO; CETb
OyneT HecnocobHa k 06obLieHnto: B 0bnacTu, rae HET N Masno TOYEK aKTMBALMOHHON (PYHKLMM BbIXOAHOM
BekTop Oyger cnyyaeH M HempefckasyemM M He OydeT apjekBaTeH pellaemoi 3agade. [loatomy 6bino
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MCNONMb30BaHO HEBOMbLLIOE KOMMYECTBO CroeB — 3 (OAMH CKPbITbI), 4TOBbI CeTb obobliana BXOAHYH
WHEOpMaLWIO, He 3anOMUHas Kaxayto CriekTpanbHYH KpUBYIO, @ Co3gaBasi 0bpa3 KpuBO ANs Kaxgoro knacca.
KonnyecTBo HEMPOHOB BXOAHOTO M BbIXOAHOMO CNOS BbIYMCMISETCH aBTOMATUYECKU HA OCHOBE WHhopMauun o
BXOAHbIX M BbIXOAHbIX AaHHbIX OOyuatolen BbIOOPKM, a ANS KaXZoro CKPbITOrO Crosi YMCNO HEPOHOB
onpegenseTcs B NpoLecce KCnepuMeHTOB.

PasMepHOCTb BXOAHOTO CMOSi HEMPOHHOW CEeTW — 3TO KOMMYECTBO TOYEK, KOTOPble COOEPXMT CrekTparnbHas
kpueas. Kaxpas kpusas coctosna m3 850 Toyek. MMpu CTOMb BbICOKOWM Pa3MEPHOCTM BXOAHbIX AaHHbIX Ans
0By4eHns HelpoHHOM ceTu Ha Gornblon BbIOGOpKe TpeboBanoch WCMONb30BATh CMOXHYIO HEMpoceTeByio
apxuTekTypy, 1 npouecc o0byyeHus Bbin anuTenbHbIM. [03TOMy Mbl COKPATUIM KONMYECTBO BXOAHBIX AAHHBIX B
ABe wutepauun. Bo-nepsbix, otbpocunu obnactb KpwBblX, FAe HE OYeHb 3aMeTHa pasHWLa Mexgy HUMK
(omnanasoH anuHbl BonHb! 0T 350 10 410 HM) 1, BO-BTOPbIX, YCPEAHWAM KPUBYIO, 3aMEHWB KaXable YEThIPE TOUKM
WX CPEAHWUM 3HA4YEHMEM MO ocu X 1 Y.

B pesynbTtate npoBefdeHWs CepuM IKCMEPUMEHTOB ObINM HalAeHbl ONTUManbHbIe MapaMeTpbl CEeTU
NPAMOro pacnpocTpaHeHUsi ¢ 00paTHLIM pacnpoCTPaHEHUEM OLUNOKK:

—  pa3MepHOCTb BXOAHOIO CMosi HEMPOHHON CETK - 222

—  pa3mep ckpbIToro cnosi — 20 HeMPOHOB

—  pa3mep BbIXOAHOTO Cos — 6 HENPOHOB (B COOTBETCTBUW C KONUYECTBOM KIaccoB)

—  (pyHKUMS aKTUBaLMM — cUrMomnaa

—  Beca 1 NoporoBble YPOBHU MHULMANUNPYIOTCS CAYYaNHbIMU 3HAYEHUSMM

—  CMelLLeH1e aKTUBALMOHHON (PYHKLMK OTHOCUTENBHO ocu X — 0,001

3HayeHunsa Ko3aphULMEHTOB:

KoadhchmumeHT ckopocti 0byueHns

—  Ckpbitbincnon  0,1;

—  Bbixogron cnoit 0,05;

dakTop MOMeHTa

—  Ckpbitbincnon 0,15

— BebixogHown cnoin 0,0025;

UToBbl 4OCTWYL CTOMPOLIEHTHOrO PasAeneHus KPMBbIX HAa KMacchl MPU TakMX 3HAYeHMsX KOo3(hULMEHTOB
konnyectBo anox obyyenns coctasuno 1000. Pasmep kaxgoi anoxu 00yy4eHus 3aBUCUT OT KONKUYecTBa
CneKTparbHbIX KpUBLIX NpefHasHauyeHHblx Ans obyyeHns w coctasnset 44. B TecToBoi Bbibopke 6
cneKkTpanbHbIX KPUBbIX.

BbiBoabl

OKCnepUMEHTbI MPOBOAMINCH NSt PA3NUYHBIX HaYambHbIX 3HAYEHW BECOBbIX KO3(ULIMEHTOB M Pa3NNYHbIX
MeToa0B 06yyeHus. Mo pesynbTaTam IKCMEPUMEHTOB MOXHO CYAMUTb, YTO MPUMEHEHUE HEPOHHBIX CeTel Ans
KnaccucukaumMu  3eMHOrO  MOKPOBAa MO CMEKTpanbHbIM — XapaKTepuUCTMkaMm  SIBNSeTCs  3(dEKTUBHBIM.
Llenecoobpa3sHo NpogomkiNTL UCCNea0BaHus!, YBENNYNB KOMMYECTBO SKCMEPUMEHTAMbHBIX aHHbIX, YTO NMOMOXET
Bonee TOYHO KraccuuLUMpoBaTh 3€MHYHO MOBEPXHOCTb.
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