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STABILITY OF FUZZY DIFFERENTIAL EQUATIONS 

Alexey Bychkov, Mikhail Merkuryev 

Abstract: While modeling process of thinking and other types of subjective perception, mathematical methods 
are extremely important. This paper proposes a mathematical apparatus for such a formalization based on 
Pytyev’s theory of possibilities. For describing and investigation of fuzzy undefined processes a new class of 
differential equations is constructed. An important task of fuzzy differential equation investigation is obtaining of 
sufficient conditions of stability 
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Introduction 

The paper is devoted to classical problems of description of event space and construction of abstract axiomatic of 
theory of possibilities. The questions of constructing theory of possibilities were investigated by authors of [Zadeh, 
1978, Dubois, 1988, Pytyev, 2000]. But it appeared that within these models it wasn’t anticipated that for 
description of event, besides possibility measure, necessity measure is also needed. 
Event, in possibility-theoretic formulation, is a combination of states of reality that we consider as a whole. After it 
happens, we can say for sure which elements it consists of. That’s why an event is a combination of states of 
reality that doesn’t depend on our perception. Going on to mathematical specification, we’ll consider crisp events, 

i.e., events whose characteristic functions look like 
⎩
⎨
⎧

∉
∈

=
A,0
A,1

)(
x
x

xAχ . 

The most essential difference between theory of probabilities and theory of possibilities is that treatment of 
physical sense of events described within theory of possibilities fundamentally differs from rate interpretation in 
terms of theory of probabilities. 

Elements of theory of possibilities 

Let’s consider some definition from [Pytyev, 2000]. 
 
Definition 1. Let’s call subjective scale ),,],1,0([ o+≤=L  segment ]1,0[  with classical order ≤ , operation of 
sum “+” and operation of multiplication “ o ”. 
Definition 2. Let’s denote as sum of two elements Lba ∈,  maximum of these elements, i.e., 

),(max baba
Δ
=+ . 

Definition 3. Let’s denote as product of two elements Lba ∈,  minimum of these elements, i.e., 

),(min baba
Δ
=o . 

It’s easy to make sure that operations introduced in such a way satisfy all classical properties, i.e., they are 
commutative, associative and mutually distributive: 
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- abba +=+ , abba oo = ; 

- )()( cbacba ++=++ , )()( cbacba oooo = ; 

- )()()),(min),,(min(max)),(max,(min)( cabacabacbacba ooo +===+ ; 

- )()()),(max),,((maxmin)),(min,(max)( cabacabacbacba ++===+ oo . 

Let’s define neutral elements 0~ and 1~ as 00~
Δ
=  and 11~

Δ
= . For these elements the following equalities hold: 

0~0),0(min0 === aao , aaa == ),1(min1o , aaa ==+ ),0(max0~ , 1~)1,(max1~ ==+ aa , where 
]1,0[∈a . 

Order on L is matched with operations of addition and multiplication, i.e. 

.1~0~;,,
,

,
<∈
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⎧

+≤+
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oo
 

Let’s consider an abstract space X . The physical sense of elements of this space is inessential for us on this 
stage of constructing a model. Let’s call an arbitrary subset XA ⊆  an event.  

The question of qualitative description of events is naturally raised. Let’s introduce an evaluation of an event — 
possibility. 
Let’s denote as A  an algebra of sets on X . 
Definition 4 [Pytyev, 2000]. Let’s call function AP :  possibility, if: 

1. 0)( ≥AP  for A∈∀A ; 

2. )(AP  is countable-additive, i.e., for Α∈∀ }{ iA : UU
∞

=

∞

= ∞=

∞

=
∑ ==⇒Α∈

1 1 ,11
)(sup)()(

i i
i

i
ii

i
i APAPAPA . 

Note that unlike classical theory of measure, condition of countable additivity doesn’t put limits on sets 
A∈∞

=1}{ iiA  — in theory of possibilities condition jiAA ji ≠∅= ,I  isn’t required.  

Lemma 1 (monotonousness of measure). If A∈BA, , BA⊆ , then )()( BPAP ≤ . 

Lemma 2 (continuity in regard to monotonously increasing sequence). Let A∈∞
=1}{ iiA , 1+⊂ ii AA , and 

U
∞

=

∈
1i

iA A . Then )(lim)lim( nnnn
APAP

∞→∞→
= . 

Lemma 3 (lower semicontinuity in regard to monotonously decreasing sequence). Let A∈∞
=1}{ iiA , ii AA ⊂+1 , 

and I
∞

=

∈
1i

iA A . Then )(inflim)lim( mnmnnn
APAP

>∞→∞→
≤ . 

Lemma 3 implies interesting consequences that aren’t properties of measure in classical functional analysis. It 
worth saying that Lemma 3 itself characterizes exactly possibility and subjective scale. 

Property of semicontinuity of possibility means that for arbitrary sequence  A∈∞
=1}{ iiA  such as AAnn

=
∞→

lim  we 

cannot say for sure that )()(lim APAP ii
=

∞→
. In practice for a decreasing sequence we cannot define the 

possibility of its limit set, given possibilities of its elements. In particular, we cannot define value of )(∅P  by 

continuity, because )(AP  isn’t continuous in ∅=A . Indeed, let’s consider a sequence A∈∞
=1}{ iiA  such as 
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∅=
∞→ nn

Alim , nn AA ⊂+1  (absolutely decreasing sequence). Then )(inflim)lim()( nnnn
APAPP

∞→∞→
≤=∅ . 

Therefore, let’s define )(∅P  as an arbitrary number form segment )](inf,0[ AP
A A∈

. With these assumptions 

)()( APAP =∅U , ∅=∅)( IAP  A∈∀ A . Henceforward we’ll define 0)( =∅P , unless stated otherwise. 

Let X  be an arbitrary space, A  is an algebra of sets defined on X , and )(⋅P  is a possibility on A . A question 
of extension the possibility measure onto wider class of sets arises naturally. Let’s use a classic approach from 
functional analysis. For this let’s introduce a concept of outer measure. 

Definition 5. Let’s denote the set of subsets of X as )(Xβ . Function LP →Χ⋅ )(:)(* β , defined as 

)(supinf)(
}{

*
j

jjE
EPBP

Α∈
= ,    (1) 

where A∈}{ jE  are such as U
∞

=

⊂
1j

jEB , we shall call an outer possibility measure. 

This definition is sensible, because always such sets A∈}{ jE , that for U
∞

=

⊂Χ⊂∀
1

,
j

jEAA , always exist.  

Indeed, having XE =1 , ∅=== ...32 EE , we obtain that any set XA ⊆  is covered by sets XE
j

j =
∞

=
U

1
. 

Lemma 4. For arbitrary set A∈A  outer possibility measure is equal to possibility measure, i.e., )()(* APAP = . 

Proof. Let’s choose a sequence A∈}{ jE  such as AE =1 , ∅=== ...32 EE . We obtain that U
∞

=

⊂
1j

jEA , 

and, accordingly, )()(supinf
}{

APEP j
jjE

≤ . So, )()(* APAP ≤  holds.  

By definition of greatest lower bound for arbitrary 0>ε  there exists a sequence of sets Α∈∃ }{ jE  such as 

ε+<=
∞

=

)()()(sup *

1
APEPEP

j
jj

j
U . 

Because UU II
∞

=

∞

=

==
11

)()(
j

j
j

j EAEAA , for arbitrary A∈A  the following holds: 

)(sup)(sup)())(()(
,1,11j1

j
j

j
j
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j

EPEAPEAPEAPAP
∞=∞=

∞

=

∞

=

≤=== ∑ IIIU . 

It implies that ε+< )()( * APAP . But when 0→ε , we’ll have unstrict inequality, i.e. )()( * APAP ≤ . We 

obtain that )()( * APAP = . 

Lemma 5. Outer possibility measure is a non-negative function of a set, i.e., 0)(* ≥AP  for arbitrary XA ⊂ . 

The proof  follows from non-negativity of possibility measure. 

Lemma 6. Outer possibility measure )(* ⋅P  is monotonous, i.e., for  XBA ⊂∀ ,  such as BA⊂ , 

)()( ** BPAP ≤  holds. 

Proof. )(supinf)(
}{

*
j

jjE
EPBP

Α∈
= )()(supinf

}{
APEP j

jjE
≤  
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Let A∈∞
=1}{ jjE  be a sequence of sets that covers B , i.e.,  U

∞

=

⊂⊂
1j

jEBA . But this sequence also covers 

A , i.e., U
∞

=

⊂
1j

jEA .  That’s why )(supinf)(supinf
}{}{ j

j

j
EjB

jEj
j

j
EjA

jE
EPEP

UU ⊆⊆

≤ , or )()( ** BPAP ≤ . 

Theorem 1 (extension of possibility measure). Outer measure *P  defined on all subsets of X , is a possibility 
measure. 
Extending the measure, we obtain just upper bound, that formally satisfies definition of measure. 
Properties of measures clearly state that this kind of measure is not enough for adequate description of models. 
So, the lower bound of measure is also needed. 
Like measure of possibility, measure of “sureness” is also bounded above. Naturally, the new measure can be 
introduced on the same scale ),,],1,0[( o+≤=L  as possibility. When we try to describe an event with two 
values, these values must be connected somehow. 
Definition 6. Necessity measure is a function LN →A:  that satisfies the following requirements: 

- 0)( ≥AN  for Α∈∀ A ; 

- )(AN  is countable-multiplicative, i.e., for arbitrary sequence of sets A∈}{ iA  such as A∈
∞

=
I

1i
iA , 

)(inf)(
,111

i
ii

i
i

i ANAAN
∞=

∞

=

∞

=

==∏I  holds. 

Necessity satisfies all conditions and has all the features possibility doesn’t have. That’s why necessity and 
possibility should be considered together, because their advantages perfectly match. That allows describing 
correctly, besides events themselves, all countable operations on them. 
So, we shall consider ),,,( NPX A  model with two measures, which we’ll call (PN)-model, treating at adequate 
for description of questions put in the beginning of the paper. 
Having introduced possibility and necessity measures, we obtained an apparatus that allows to find values of 
these measures and describe an experiment adequately. 

Fuzzy differential equations 

Definition 7. Given a possibility space ),,,( NPX A  and measurable space  ),( BY , let’s call fuzzy perceptive 
variable any ),( BA -measurable function YX →:ξ . 

Definition 8. Fuzzy perceptive variables ξ  and η  are called independent, if 
( )}{},{min},{ vPuPvuP ===== ηξηξ . 

Definition 9. Fuzzy perceptive variable ξ  scalar or vector is called normal, if its distribution looks like 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Ξ==
−

2

0
2

1
)(}{ uuuP ϕξ , where )(xϕ  is a decreasing function that specified for 0≥x  such as 

0)( ⎯⎯ →⎯
→∞xxϕ , 1)0( =ϕ . 

Definition 10. Fuzzy perceptive process is a function YRXtx →×:),(ξ . 
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Definition 11. Normal fuzzy perceptive process is a process of fuzzy roaming, if it is: 
- A process with independent increments, i.e., for any four moments of time 4321 tttt <≤<  fuzzy 

perceptive variables )()( 12 tt ξξ −  and )()( 34 tt ξξ −  are independent. 

- Its transient possibility is  { }
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−Ξ
===

−

0

2
0

2/1

00

)(
)(|)(

tt

xx
xtxtP ϕξξ . 

- 0)0( =ξ . 

Definition 12. Given a piecewise-constant function f : }:{)( 1+<≤= kkk tttytf , 1...0 −= Nk , 00 =t , 
TtN = , and a scalar process of fuzzy roaming )(tw , define  

∫ ∑
−

=
+ −=

T N

k
kkk twtwytdwtf

0

1

0
1 ))()(()()( . 

This fuzzy perceptive variable is called integral of a piecewise-constant function by a process of fuzzy roaming. 
Theorem 2. A piecewise-continuous function )(tf , and two sequences of piecewise-constant functions )(tfn  

and )(tfn  that converge to )(tf  in average, are given. If ∫∞→
=

T

nn
tdwtfQ

0

)()(limP  exists, limit 

∫∞→
=

T

nn
tdwtfQ

0

)()(limP  also exists, and QQ = . 

Definition 13. A sequence of fuzzy perceptive variables )(xnξ  converges to )(xξ  in possibility ( ξξ =
∞→ nn

limP ), 

if 0}{ ⎯⎯ →⎯>− ∞→nn cP ξξ . 

Definition 14. Given a piecewise-continuous function )(tf  and a sequence )(tf n , converging to it in average, 
let’s denote  

∫∫ ∞→
=

T

n

T

n
tdwtfPtdwtf

00

)()(lim)()( . 

This limit is called integral of piecewise-continuous function by a process of fuzzy roaming. 
Let’s consider a process of fuzzy roaming ),( xtw  and a fuzzy perceptive variable )(0 xy . Let’s construct the 
integral equation 

 ∫∫ ++=
t

t

t

t

xsdwssybdsssyaxyxty
00

0 ),()),(()),(()(),( , (2) 

where the last integral is an integral of fuzzy roaming. 
Theorem 3. Let crisp functions ),( tya  and ),( tyb  be continuous by t  and satisfy Lipschitz condition on 

],[ 00 tttID Δ+×= , i.e., 

zyLtzatya −≤− ),(),( ,  zyLtzbtyb −≤− ),(),(  for any Ryx ∈, . 

If for arbitrary fuzzy 0y  and any fixed Xx ∈0 , for which 0})({ 0 >≥αxP , holds 
Iyxyyxy ⊆Δ+Δ− ])(,)([ 0000 , then for this 0x  the problem (2) has a unique solution on segment 

];[ 00 httt +∈ , where  
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⎥
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⎢
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⎪⎭
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2
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14 1 αϕαϕ
, )1,0(∈k . 

Stability of fuzzy differential equations 

Like in theory of probabilities, in theory of possibilities several types of stability are possible. 
Let’s consider a system of fuzzy differential equations: 

∫∫ ++=
t

t

t

t

xsdwxybdsyatyty
00

0 ),(),()()()( ,   (3) 

where 0)( =ya , and ),( xyb  has 0=y  as the only modal value. 

Definition 15. If for any Xx∈ , for which 1})({ =xP , )(),( tyxty = , then function )(ty  is called a modal 
path of the differential equation. 
System (3) has a modal path 0=y . 

Definition 16. Modal path )(ty  is called weakly stable, if for any 0>ε  0)( >εδ , 1)( <εα  exist such as when 

δ<− )0(0 yy  and α>})({xP , ε<− )(),,( 0 tyxtyy  holds. 

Let’s call trajectory derivative of function )(yV with regard to system the following expression: 

∑
=

⋅+⋅
∂

∂
=

n

i
iii

i
ab xxybya

y
yVxyV

1
))(),()(()(),(| ξ& , 

where )(xξ  is a normal fuzzy perceptive variable that corresponds to process of fuzzy roaming )(⋅w  and 
independent from b . 
Let’s call crisp analogue of (3) equation  

∫+=
t

t

dsyatyty
0

0 )()()( . 

Its trajectory derivative is  

∑
=

⋅
∂

∂
=

n

i
i

i
a ya

y
yVyV

1
)()()(|& . 

Definition 17. α -cut of a fuzzy perceptive variable )(xξ  is the expression })(:{)]([ αξ α ≥= yPyx  for 
]1,0(∈α . 

Lemma 7.  For any Xx∈ , when V  is continuous and g  and h  are piecewise-continuous, the following 
asymptotic inequality holds: 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⋅−+⋅∈− ∫∫ )()]),((|sup[),()]),((|inf[))(())(( 12

2

1
12

2

1
12 ttodttyVttodttyVtyVtyV

t

t
ab

t

t
ab ααα

&& . 

Theorem 4. If for system (3) a Lyapunov-like function )(yV  exists such as the following condition holds: 

- for all  rc ≤<0  such )1,0()( ∈cα  exists that on cyV =)(  curve 0)],(|[ )( <⋅ cab yV α
& , 
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then system (3) has a weakly stable modal path 0=y . 

In many cases investigation of weak stability of (3) is possible via investigation of its crisp analogue. 
Definition 18. System (3) is called regular if for any 0>ε  there exists )1,0[)( ∈εα  such as 

εα <⋅ })0{,)](([bH  ( ),( BAH  is Hausdorff distance between sets). 

Theorem 5. Assume that for a regular system (3) such a condition holds: in a neighbourhood of zero a Lyapunov-
like function )(yV  exists such as for any solution ),( 0 tyy  of system (3) ))(()(| yVyV a ψ≤& , where )(zψ  is 
a decreasing function, for which 0)0( =ψ . Then system (3) has a weakly stable modal path 0=y . 

Conclusion 

We have created a new type of differential equation, and coined a new definition of fuzzy stability that differs from 
all other types of stability under uncertainties. For this type of stability a necessary condition is proven. 
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