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MULTIALGEBRAIC STRUCTURES EXISTENCE FOR GRANULAR COMPUTING 

Alexander Kagramanyan, Vladimir Mashtalir, Vladislav Shlyakhov 

Abstract: In different fields a conception of granules is applied both as a group of elements defined by internal 
properties and as something inseparable whole reflecting external properties. Granular computing may be 
interpreted in terms of abstraction, generalization, clustering, levels of abstraction, levels of detail, and so on. We 
have proposed to use multialgebraic systems as a mathematical tool for synthesis and analysis of granules and 
granule structures. The theorem of necessary and sufficient conditions for multialgebraic systems existence has 
been proved.  
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Introduction  

Granular computing explores knowledge from different standpoints to reveal various types of structures and 
information embedded in the data [Zadeh, 1997, Bargiela, Pedrycz, 2002]. A paradigm of granular computing 
consists in grouping elements together (in a granule) by indistinguishability, similarity, proximity or functionality in 
arbitrary feature or signal spaces. Taking into account a semantic interpretation of why two objects are put into 
the same granule and how two objects are related with each other it provides one of a general methodology for 
intelligent data analysis on different levels of roughening or detailing [Pal et al., 2005, Yao, Yao, 2002].  
Internal, external and contextual properties of granules, collective structure of a family of granules and 
hierarchical structure of granules represent a possible foundation for qualitative/quantitative characterization of 
levels of abstraction, detail, control, explanation, difficulty, organization and so on. Focusing on high conceptual 
level issues by ignoring much irrelevant details, granular computing are actively used in computational 
intelligence [Doherty et al., 2003], information granulation based on rough sets [Yao, 2001, Pal et al., 2005], data 
mining [Yao, 2006], interval analysis, cluster analysis, machine learning and many others [Yager, 2002, Lin, 2003, 
etc.] . The integration of multiple views on different types of granulation and granular structure may provide more 
useful data analysis tools [Lin, 2003, Yao, 2005]. One of a number of possible approaches is to use 
multialgebraic systems [Mashtalir, Shlyakhov, 2003] as mathematical apparatus for synthesis and analysis of 
granules and granule structures. 
Thus, we need tools providing a granular linkage, i.e. formal operations and relations determined on granules. 
Furthermore, this linkage has to be induced either by information embedded in the data or by given close 
coupling with field of application. These questions are at present far from being solved. But the important point to 
note here is the search of necessary and sufficient conditions for existence of multialgebraic systems as enough 
general tool of granular computing.  

Motivation of granular computing modeling by multialgebraic systems 

If we choose any natural number p∈�  then we can consider a ternary relation 

{ 1 2 31 2 3 1 2 3
1, ( ) ;E( , , ) 0, ( )

n n mod p n mod pn n n n n mod p n mod p
+ == + ≠  (1)

where a mod b  defines a  as modulo b  residue, i.e. /a mod b a a b b⎣ ⎦− ×�  and ⎣ ⎦o  is a floor function. It is 

easily seen, if we hold fixed {1,2,3}k∈  then we get an equivalence relation EPk , e.g. for 1k =  
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E
1 1 1 1 2 3 1 2 3P ( , ) 1 E( , , ) E( , , )n n n n n n n n′ ′= ⇔ ≡ . 

This equivalence partitions set of natural numbers into residue classes modulo p . Indeed, if remainders in 
division 1n  and 1n′  by p  are the same then for arbitrary 2n  and 3n  continued equality is  

1 2 1 1 2 2 1 2
1 1 2 2 1 2

( ) ( ) ( )
( ) ( ) .
n n mod p ps r ps r mod p r r mod p
ps r ps r mod p n n mod p
+ = + + + = + =
′ ′= + + + = +

 
(2)

Here it is implied that 1 1 1 1 1 1 2 2 2, , ,n ps r n ps r n ps r′ ′= + = + = +  and 1 1 2, ,s s s′ ∈� . From (2) it follows that 

1 2 3 1 2 3E( , , ) E( , , )n n n n n n′≡ . The converse proposition is the valid one also. If 1 2 3 1 2 3E( , , ) E( , , )n n n n n n′≡  
then remainders in division 1n  and 1n′  by p  have to be equal, if not when 1 1 1n ps r= + , 1 1 1n ps r′ ′= +  and 

1 1r r′≠  under 2 0n = , 3 1n r=  we obtain,  on the one hand, 

1 2 1 1 1 3( ) ( )n n mod p ps r mod p r mod p n mod p+ = + = = , 

i.e. 1 1E( ,0, ) 1n r = . On the other hand,  

1 2 1 1 1 3( ) ( )n n mod p ps r mod p r mod p n mod p′ ′ ′+ = + = ≠ . 

Since 1 1,r r p′ ≤  и 1 1r r′ ≠  then 1 1E( ,0, ) 0n r′ = , which contradicts the original assumption. Notice, from (1) we 

get E E E
1 2 3P P P= = .  

Let us sum up. The carrier of original relation is the set of natural numbers �  but the induced equivalence 
demonstrates the significant carrier change: we have got a finite set {0,1, , 1}pΠ = −K . 

New relation, which will be named a multirelation and denoted by ME  in the sequel, is generated on new carrier. 
As before it is ternary relation but the domain is 3Π  instead of 3�  and multirelation ME  acquires the new 
property that can be expressed as an operation 

1 2 3 1 2 3 1 2 3E ( , , ) 1 E( , , ) 1mr r r r r r n n n⊕ = ⇔ = ⇔ =  

where sign “⊕ ” denotes p  congruence addition and ,i i in ps r= + 1,2,3, {0,1, , 1}ii r p= ∈ −K . Operations 

on equivalence classes here and subsequently will be denoted by MF . 
If they follow terminology of algebraic system a triplet A, R, Q  (here A  is arbitrary set (carrier), R is a relation 
suite, Q  is a set of operations) is called a model on conditions that Q =∅  and it is said to be an algebra if 
R =∅ . Consequently, from the model , E, ∅�  we pass on to the algebra , ,Π ∅ ⊕  whose carrier is well-
known algebraic structure viz a cyclic Abelian group of p -th order.  

It is necessary to understand that original carrier can represent a set and carrier of induced relation on 
equivalence classes can be Cartesian product of different sets. Let us consider one more example 

{ 1 2 1 3 21 2 3 1 2 1 3 2
1, ( ) ;E( , , ) 0, ( )

n n mod p n mod pn n n n n mod p n mod p
+ == + ≠  (3)

where 1 2p p≠ . It should be noted that E E E
1 2 3P P P= ≠ , i.e. Em  is Cartesian product A B×  where 

1A {0,1,…, 1},p= − 2B {0,1,…, 1}p= − . As may be seen from (3) the multirelation ME  as a ternary relation 

is defined on 2A B×  and represents an operation from 2A  into B . There is no difficulty in understanding that 
under certain 1p  and 2p  not only an equivalence inequality appears but a level of partition detail and 

equivalence nesting are changed. For instance, if 1 4p = , 2 2p =  then E E E
1 2 3P P P= ⊆  as �  is partitioned 

into 4 classes corresponding to residues of division A {0,1,2,3}=  at the expense of E E
1 2P P= . Equivalence 
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E
3P  partitions original set �  into 2 classes from even and odd numbers, i.e. B {0,1}= . In this connection 

classes {0,2}  belong to the set of even numbers, classes {1,3}  form part of odd numbers set respectively.  

In analyzed examples the original relation E  induces the multirelation (more precisely the multioperation), i.e. an 
operation with ranges of definition as equivalence classes. It may seem that a similar situation is observed all the 
time, however this is by no means always the case. Consider the binary relation E  (tab. 1) which is defined on 
the Cartesian product 1 2 1 1 2 3 4 5 6{1,2,3,4,5} { , , , , , , , , }a a b c c c c c c× . 

Table 1 
A B C  

1a  2a  1b  1c  2c  3c  4c  5c  6c  
1 0 0 1 1 1 1 1 1 1 

IΠ  
2 0 0 1 1 1 1 1 1 1 
3 1 1 1 0 0 0 0 0 0 
4 1 1 1 0 0 0 0 0 0 IIΠ  
5 1 1 1 0 0 0 0 0 0 

It should be clear that the induced equivalences E
1P  and E

2P  dissect the first set 1A {1,2,3,4,5}=  into 2 
classes: I {1,2}Π = , II {3,4,5}Π = and the second one 2 1 2 1 1 2 3 4 5 6A { , , , , , , , , }a a b c c c c c c=  into 3 classes: 

1 2A { , }a a= , 1B { }b= , 1 2 3 4 5 6C { , , , , , }c c c c c c= . Thus, the multirelation Em  is defined on the Cartesian 
product of induced equivalence classes, i.e. I II{ , } {A,B,C}Π Π × (tab. 2). 

Table 2 
 A B C 

IΠ  0 1 1 

IIΠ  1 1 0 

This multirelation can be represented as two explicit mappings associating I II{ , }Π Π  with {A,B,C} . Denote 

induced mappings as MEF  and ME 1(F )−  in both directions then M ME E
I IIF ( ) {B,C}, F ( ) {A,B}Π = Π =  and 

ME 1
II(F ) (A) { }− = Π  , ME 1

I II(F ) (B) { , }− = Π Π , ME 1
I(F ) (C) { }− = Π . Single-valuedness is lacking in both 

cases therefore we are not able to indicate multioperation.  
Thus, algebraic model can lead either to multimodels or to multialgebra and there arises an important question: 
when do two relations with different arities generate one carrier?  

Necessary and sufficient conditions for multirelations carriers equality 

Let 1 2A ,A , ,AnK  be any given sets. Consider n -arity relation 1E( , , )nx xK  on Cartesian product of arbitrary 
carriers 1A An× ×K . A trivial verification shows that  

E
1 1P ( , ) 1 E( , , , , ) E( , , , , )k k k k n k nx x' x x x x x' x= ⇔ ≡K K K K  (4)

constitutes an equivalence relation and partitions may be regarded on each Ak . The understanding of the 

appearance mechanism of EPk  awaits further investigation. 

If A Ak l=  then relations EPk  and EPl  can be compared. For instance,  
E E E E[P ( , ) 1 P ( , ) 1] P Pk k k l k k k lx x' x x'= ⇒ = ⇔ ⊆ , 

i.e. EPk  fulfills more detail partition than EPl  and information can be analyzed with greater exactness. Using 
terminology of relation 1E( , , )nx xK  we get in that case 
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1 1 1 1 1 1
1 1 1 1 1 1

E( , , , , , , ) E( , , , , , , )
E( , , , , , , ) E( , , , , , , ).

k k k n k k k n
l k l n l k l n

x x x x x x x x' x x
x x x x x x x x' x x

− + − +
− + − +

≡ ⇒
⇒ ≡

K K K K
K K K K

 

Generally, on {1,2, , }nK  the relation 1E( , , )nx xK  produces the four-valued indicator function  

E E

E
1, A A , P P ;
0, A A , P

( , )

k l k l

k l kf k l
||

− = ⊆

≠
=

E

E E

E E

P ;

1, A A , P P ;
2, A A , P P

l

k l k l

k l l k

⎧
⎪
⎪
⎨

= =⎪
⎪ = ⊆⎩

 

where symbol ” || ” denotes relation incomparability. Let us introduce notations 

1 1 1 1 1 1
1 1 1 1 1 1

X E( , , , , , , ) E( , , , , , , ),
Y E( , , , , , , ) E( , , , , , , )

k k k n k k k n
l k l n l k l n

x x x x x x x x' x x
x x x x x x x x' x x

− + − +
− + − +

= ≡
= ≡

K K K K
K K K K

 

then it leds to the following sufficiently clear statement. 
Proposition 1. For arbitrary n -arity relation 1E( , , )nx xK  values of the indicator function ( , )f k l  are specified 
by conditions 

if X Y⇔  then ( , ) 1f k l = , 
if X Y⇒  then ( , ) 1f k l = − , 
if X Y⇐  then ( , ) 2f k l = , 
if  X ||Y   then ( , ) 0f k l = . 

Definition 1. Arbitrary n -arity relation 1E( , , )nx xK  is said to be internally (k,l)-coherent if and only if A Ak l=  

and E EP Pk l= . 

It is reasonable to mention that equivalence relation  

E E
EV ( , ) 1 A A , P P ( ( , ) 1)k l k lk l f k l= ⇔ = = =  

is induced on {1,2, , }nK . This relation can be expressed as matrix of internal coherence E(E) (V ( , ))k lΦ = . 

Proposition 2. Under corresponding renumbering of n -arity relation 1E( , , )nx xK  arguments, the matrix of 
internal coherence (E)Φ  can be represented as block-diagonal matrix  

1
1 1 0 0

1 1
0(E)

1 1

0 1 1
s

r

r

⎛ ⎞ ⎫⎪
⎜ ⎟ ⎬

⎪⎜ ⎟ ⎭
⎜ ⎟

Φ = ⎜ ⎟
⎜ ⎟

⎫⎜ ⎟ ⎪
⎬⎜ ⎟⎜ ⎟ ⎪⎭⎝ ⎠

K K K K
M O M M
K M

O M M
M O M
M K
M M O M
K K K K K

 (5)

where 1 2 sr r r n+ + + =K , 
11 1

1

A A B ,

A A B ,s

r

n r n n− +

= = =⎧
⎪
⎨
⎪ = = =⎩

K

LLLLLLLL

K

 
1

E E E
1 1

E E E
1

P P L ,

P P L .s

r

n r n s− +

⎧ = = =
⎪⎪
⎨
⎪

= = =⎪⎩

K

LLLLLLLL

K

 

Proposition 2 yields information that 1E( , , )nx xK  has the carrier 1
1B B sr r

s× ×K  and establishes s  different 

equivalences ELi  on B Bi i× . From now on, EB /Li i stands for cosets and E[B /L ] ir
i i  denotes the direct product 
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of equal cosets, i.e. we can conclude that desired relation forms on 1E E
1 1[B /L ] [B /L ] srr

s s× ×K  or actually on 
E EB /L B /Li i i i× ×K . 

Definition 2. Arbitrary n -arity relation 1E( , , )nx xK  induces on E EB /L B /Li i i i× ×K  a relation ME  which will 
be referred to as a multirelation. 
As it has already been stated above, it is important to understand that significance should be assigned to the 
simultaneous application of relations. 
Definition 3. Two arbitrary relations n -arity 1 1E ( , , )nx xK  on 1A An× ×K  and m -arity 2 1E ( , , )mx xK  on 

1C Cm× ×K  are externally ( , )i j -coherent if and only if  A Ai j=  and 1 2E EP Pi j= . 

Obviously, on {1,2, , } {1,2, , }n m×K K  an equivalence relation 1E ,E2V  and ( )n m×  matrix of external 

coherence 1 2(E ,E )Φ  are introduced similarly to the one relation case. More precisely, elements 

, 1, , 1,ijl i n i m= =  of matrix 1 2(E , E )Φ  are specified by expression 

1 2E E1, A A , P P ,

0, .
i j i j

ijl
otherwise

⎧ = =⎪= ⎨
⎪⎩

 

Proposition 3. Two arbitrary relations 1 1E ( , , )nx xK  on 1A An× ×K  and 2 1E ( , , )mx xK  on 1C Cm× ×K  

induce two multirelations M M
1 2E , E  with the same carrier if and only if by rows (column) transpositions the matrix 

of external coherence 1 2(E ,E )Φ  is reduced to the block-diagonal form 

}} } }

}
}
}
}

1 2

1

2

1 2

1 …1 0 …0 …………………0
1 …1 0 …0 …………………0
0 …0 1 …1 0 ………………0

0 1 …1 0 ………………0
0 0*(E ,E ) 0 1 …1 0 ……0

0 1 …1 0 ……0
0 1 …1

0 …0 0 …0 0 ………0 1 …1

i s

i

s

β ββ β

⎛ ⎞ α⎜ ⎟
⎜ ⎟
⎜ ⎟ α
⎜ ⎟
⎜ ⎟Φ =⎜ ⎟ α⎜ ⎟
⎜ ⎟
⎜ ⎟

α⎜ ⎟⎜ ⎟
⎝ ⎠

M OM M M M

M M M OM M
M
M M O M
M M M M
M M M M M M O M M
M M M M
M M M M M O
M M M M M
M M M M M M M OM

. 

It should be emphasized that proposition 3 can be reformulated in terms of difunctional relations. Let us recall that 
a binary relation is difunctional if for all , , , {1,2,..., ( , )}i i' j j' max n m∈  the implication  

1 2 1 2 1 2 1 2E ,E E ,E E ,E E ,EV ( , ) 1, V ( , ) 1, V ( , ) 1  V ( , ) 1. i j' i' j' i' j i j= = = ⇒ =  

holds.  
Proposition 3*. Two arbitrary relations 1 1E ( , , )nx xK  on 1A An× ×K  and 2 1E ( , , )mx xK  on 1C Cm× ×K  

induce two multirelations M M
1 2E , E  with the same carrier if and only if 

21E ,EV  is a difunctional relation. 

Now it is seems quite logical to assert that interpretation of multirelations may have two-valued nature. On the 
one hand, we have seen that a multirelation is induced by embedded properties of original information. On the 
other hand, data of arbitrary nature can be analyzed jointly with given equivalence relation associated with an 
object-oriented problems. 
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Necessary and sufficient conditions of multialgebraic systems existence 

We have seen necessary and sufficient properties for multirelations carrier equality, however, we have not yet 
argued general existence conditions of multialgebraic systems. At this point it will be useful to introduce some 
terminology.  
Let 1A , ,A ,nK K  be arbitrary sets and let 1P , ,P , ( P A )n i idom =K K  be corresponding equivalence 

relations then if 1 αA { , , , }i i
i x x= K K  we have 

1

1

1
1
1

α( ) α α

A( ) A ,
P( ) P ,
α( ) {α , ,α },

{ , , } A( )n

n
ii

n
ii

n
n

n

n
n
n

x x x n

=

=

=∏
=∏
=

= ∈

K

K

  

and P( )n  is the equivalence on A( )n  in the sense that 

α( ) α ( ) α αP( )[ , ] 1 P ( , ), 1,i i
i i

n ' n in x x x x i n= ⇔ = .  

Definition 4. An equivalence relation P( )n  on A( )n  will be referred to as partial factor with the notation 
P( ) Sn h fac= −  if and only if 

α( ) α ( ) α( ) α ( ) α( ) α ( ), A( ) : P( )[ , ] 1, S( ) 1 S( ) 1n ' n n ' n n ' nx x n n x x x x∀ ∈ = = ⇒ = . 

It is obvious that the equivalence induces cosets A( )/P( )n n . If α( ) P( )[ ] A( )/P( )n nx n n∈  is certain coset then 
pair P( )n  and S  defines n -arity multirelation  

M
α( ) α( )P( )S ([ ] ) 1 S( ) 1n nnx x= ⇔ = . (6)

Under condition (6) a multirelation MS  is congruent dependent on P( )n  and S  what we denote by 
MS (P( ),S)con n=  for brevity. 

Remark 1. It is easy enough to understand that the definition of congruent dependence is correct if and only if 
P( ) Sn h fac= − . 

Remark 2. It is a simple matter to show that P( ) Sn h fac= −  if and only if P( )n  is induced by n -arity relation 
S  satisfying (4). 
Definition 5. Partial factor P( )n  will be named factor (full factor) with notation P( ) Sn fac=  if and only if  

α( 1) α α α( ) α ( ) α αA( 1), , A( ) : S( ) S( ) 1 P [ , ] 1n n n n
n n n n

n ' n ' n n 'x n x x n x x x x−∀ ∈ − ∀ ∈ = = ⇒ =  

where α( ) α( 1) α( , )n
n

n nx x x−= , α ( ) α( 1) α( , )n
n

' n n 'x x x−= . 

Consequently, we get a multioperation MF  
M

α( ) P( ) α P α( )F ([ ] ) [ ] S( ) 1n
n

n n nnx x x= ⇔ =  

where α P[ ]n
n nx  is the coset of the set An  in regard to the equivalence Pn  and the element αn

nx  belongs to this 
coset. 

Remark 3. It is easy enough to see that α P[ ]n
n nx  is unique coset. In this connection MF (P( ),S)con n=  and 

P( ) Sn fac=  if and only if P( )n  is induced by n -arity relation S  satisfying (4). 

The theorem of a multialgebraic system existence under given external equivalence and the same carrier had 
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been proved [Mashtalir et al., 2003] and with mentioned notations it can be represented as follows. 

Theorem 1. Suppose that Α  is arbitrary carrier, P is given equivalence on 2Α  and S 1 β{P,S , ,S , }Σ = K K  is a 

family of n -arity relations then a model S〈Α,Σ 〉  generates multialgebraic system ηξP F SΜ Μ〈Α/ ,{ },{ }〉  where 

ξξF (P ,S )nconΜ = , η ηS (P ,S )nconΜ=  and  

1S 2S S 1S 2S 1S 2S S ξ 1S η 2S, : , \ P, S , S∃Σ Σ ⊂Σ Σ Σ =∅ Σ Σ = Σ ∈Σ ∈ΣI U  

if and only if  

β β 1S
β S

β β 2S

S , S \ P,
S \ P P

S , S \ P.
n

h fac

fac

− ∈Σ⎧⎪∀ ∈Σ ⇒ = ⎨ ∈Σ⎪⎩
 

It should be emphasized that any n -arity relation E  forms its equivalence E E
1L Ls

ii== ∏  on the carrier 

1B Bs× ×K  (see the explication of expression (5)) which is determined by the matrix of internal coherence. 
Further, the carrier structure is direct product of matrix blocks. Hence, the consideration of relations and matrices 
of external coherence by pairs gives possibilities to establish conditions that due to proposition 3* all pairs 

β β(S ,S )' ''  from this collection represent difunctional relations β βS ,SV ' '' . Granting remarks 1–3, we can restate 

theorem 1 and give more strong assertion of necessary and sufficient conditions for multialgebraic systems 
existence. 
Theorem 2. Let 1 β{S , ,S , }K K  be a family of arbitrary arity relations whose carriers may be different then 
multialgebraic system is induced if and only if 

i)   E
S 1 β{L ,S , ,S , }Σ = K K , EL  is an equivalence induced by 1 βS , ,S ,K K , 

ii)  E
1S 2S S 1S 2S 1S 2S S, : , \ L∃Σ Σ ⊂ Σ Σ Σ =∅ Σ Σ = ΣI U , 

iii) 
E

β β 1SE E E
β S E

β β 2S

S , S \ L ,
S \ L L L

S , S \ L ,n

h fac

fac

⎧ − ∈Σ⎪∀ ∈Σ ⇒ × × = ⎨
∈Σ⎪⎩

K14243  

iv) β βS ,S' ''∀ ∈ E
S \ LΣ  and  β βS ,SV ' ''  is difunctional relation. 

Thus, a factorization of information in any feature space conceptually is one of the basic methods providing an 
interpretation of data. On the one hand, identification can be required up to given or explored equivalence 
relations set. With another, construction of equivalence classes often represents an essence and a purpose of 
data processing. We have introduced and proved conditions describing interdependence of different levels 
information representations. 

Conclusion 

Different types of granulation represent different aspects of data and provide different types of knowledge 
embedded in data. An intelligent data analysis based on granular computing deals with theories, methodologies, 
techniques and tools that provide consideration what is relevant and permit to ignore irrelevant details. Granular 
computing involves two-way communications upward and downward in a hierarchy of different abstraction levels 
that represent different granulated views of problems understanding. It is reasonable to assume that granules 
relations satisfying various axiomatics and operations with operands corresponding to granules offer advantages 
for formalization of transformations and interpretations in multilevel processing of arbitrary nature data. 
There exist two distinct varieties of relations concerning data to be analyzed. First of all, we should emphasized 
internal (embedded) interrelationships of original data. Thus, latent information that induces relationships between 
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granules has to be explored. In the second place, a relation concerned with applications can be introduced on the 
original data. In both cases joint analysis has to be carried into effect. 
Usually there are possibilities of empirical verification of the properties only at the lower level of abstractions, i.e. 
with the use of original data. Partitions and coverings can be normally valid models of granulation, and properties 
of relations along with operations in conformity with equivalence or tolerance classes generate a basic interest. In 
other words, the problem consists in an examination of original data to know properties of granule families. In our 
opinion multialgebraic systems can be sufficiently adequate tools in order to formalize elements of detailing or 
roughening such as granule, granulated view, granularity and hierarchy in the framework at least formal 
mathematical structures. We have established necessary and sufficient conditions of producing relations (with the 
same carrier) on granules induced by relations associated with original data. Furthermore, we have found 
conditions of multialgebraic systems existence. As development of these results it should be indicated the 
investigation of specific algebraic structures on original data such as semigroup, group, ring, different vector 
spaces etc. There arise several problems (it seems that peculiar but, vice versa, very important). Among them it 
should be noted comparisons of granule families for which there are no two ways about an introduction of an 
admissible metric on granule structures, e.g. on set partitions [Bobrowsky et al., 2006, Mashtalir et al., 2006] 
since it is often necessary to have dealings with a whole family of partitions and we have to be able to compare 
these partitions.  
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