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A MODEL OF RULE-BASED LOGICAL INFERENCE 

Xenia Naidenova 

Abstract: We proposed a unified model for combining inductive reasoning with deductive reasoning in the 
framework of inferring and using implicative logical rules. The key concept of our approach is the concept of a 
good diagnostic test. We define a good diagnostic test as the best approximation of a given classification on a 
given set of examples. The analysis of the good tests construction allows demonstrating that this inference 
engages both inductive and deductive reasoning rules. 
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Introduction 

Here we describe a model of common reasoning that has been acquired from our numerous investigations on the 
human reasoning modes used by experts for solving diagnostic problems in diverse areas such as pattern 
recognition of natural objects (rocks, ore deposits, types of trees, types of clouds e.t.c.), analysis of multi-spectral 
information, image processing, interpretation of psychological testing data, medicine diagnosis and so on. The 
principal aspects of this model coincide with the rule-based inference mechanism that is embodied in the KADS 
system (Ericson, et al., 1992), (Gappa and Poeck, 1992). More details related to our model of reasoning and its 
implementation can be found in (Naidenova and Syrbu, 1984), (Naidenova and Polegaeva, 1985a), (Naidenova 
and Polegaeva, 1985b), and (Naidenova, 2006). 
We need the following three types of rules in order to realize logical inference: 
INSTANCES or relationships between objects or facts really observed. Instance can be considered as a logical 
rule with the least degree of generalization. On the one hand, instances serve as a source of an expert’s 
knowledge. On the other hand, instances can serve as a source of a training set of positive and negative 
examples for inductive inference of generalized rules. 
RULES OF THE FIRST TYPE. These rules describe regular relationships between objects and their properties 
and between properties of different objects. The rules of the first type can be given explicitly by an expert or 
derived automatically from examples with the help of some learning process. These rules are represented in the 
form “if-then” assertions. They accumulate generalized knowledge in a problem domain. 
RULES OF THE SECOND TYPE or inference rules with the help of which rules of the first type are used, updated 
and inferred from data (instances). The rules of the second type are reasoning rules. 
Using the rules of the first type is artificially separated from the learning process. But it is clear that there is no 
reason to separate the process of learning rules from the process of using these rules for class identification or 
pattern recognition problems: both processes are interdependent and interconnected. Anyone of these processes 
can require executing the other. Anyone of these processes can be built into the other. 
Any model of reasoning must also include STRATEGIES or the sequences of applying rules of all types in 
reasoning. The application of rules is conditioned by different situations occurring in the reasoning process and it 
is necessary to identify these situations. Strategies have a certain freedom as so it is possible to apply different 
rules in one and the same situation and the same rule in different situations. The choice of a strategy determines 
the speed, completeness, deepness and quality of reasoning. 
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Rules Acquired from Experts or Rules of the First Type 

An expert’s rules are logical assertions that describe the knowledge of specialists about a problem domain. Our 
experience in knowledge elicitation from experts allows us to analyze the typical forms of assertions used by 
experts. As an example, we give the rules of an expert’s interpretation of data obtained with the use of 
Pathological Character Accentuation Inventory for Adolescents. This psycho-diagnostic method was elaborated 
by Lichko (1983) and is a classical example of an expert system. 
Some examples of the expert’s rules are: 
“If (D - F) ≥ 4, then DISSIMULATION decreases the possibility to reveal any character accentuation and 
completely excludes the CYCLOID and CONFORM types of character”. 
“If the index Е > 4, then the CYCLOID and PSYCHASTENOID types are impossible”. 
“If the type of character is HYPERTHYMIA, then ACCENTUATION with psychopathies is observed in 75%, with 
transit disturbances – in 5%, and with stable adaptation – in 5% of all cases”. 
“If the index А > 6 and the index S > 7 and the index Con = 0 and the index D > 6, then the LABILE type is 
observed”. 
“If the index Е ≥ 6, then the SCHISOID and HYSTEROID types are observed frequently”. 
“If after the application of rules with the numbers x, y, z the values of at least two indices are greater than or equal 
to the minimal diagnostic threshold, then the mixed types are possible with the following consistent combinations 
of characters: Hyp - C,  Hyp - N,  Hyp - Hyst,  C - L,  L - А, L - S, and L - Hyst”. 
We used the following abbreviations:   Hyp - hyperthymia,   C - cycloid,   L - labile,  А – asthenia,  N – neurotic,   
S - schizoid,  Con - conformable, Hyst - hysteroid,     Sens   -  sensitive,     D - dissimulation,    F - frankness, Е - 
emancipation, and P - psychasthenia. 
It is clear that an expert’s assertions can be represented with the use of only one class of logical rules, namely, 
the rules based on implicative dependencies between names. 
Implication: a, b, c → d. This rule means that if the values standing in the left side of the rule are simultaneously 
true, then the value in the right side of the rule is always true. 
An implication x → d is satisfied if and only if the set of situations in which x appears is included in the set of 
situations in which d appears. 
Interdiction or forbidden rule (a  special   case   of  implication) a, b, c → false (never). This rule interdicts a 
combination of values enumerated in the left side of the rule. The rule of interdiction can be transformed into 
several implications such as a, b → not c;  a, c → not b; and b, c → not a. 

Compatibility: a, b, c → rarely;  a, b, c → frequently. This rule says that the values enumerated in the left side of 
the rule can simultaneously occur rarely (frequently). The rule of compatibility presents the most frequently 
observed combination of values that is different from a law or regularity with only one or two exceptions. 
Compatibility is equivalent to a collection of assertions as follows: 
a, b, c → rarely       a, b, c → frequently, 

a, b → c rarely         a, b → c frequently, 

a, c → b rarely        a, c → b frequently, 

b, c → a rarely      b, c → a frequently. 
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Diagnostic rule: x, d → a;  x, b → not a;  d, b → false. For example, d and b can be two values of the same 
attribute. This rule works when the truth of ‘x’ has been proven and it is necessary to determine whether ‘a’ is true 
or not. If ‘x & d’ is true, then ‘a’ is true, but if ‘x & b’ is true, then ‘a’ is false. 
Rule of alternatives: a or b → true (always);  a, b → false. This rule says that ‘a’ and ‘b’ cannot be 
simultaneously true, either ‘a’ or ‘b’ can be true but not both. 

Structure of the Knowledge Base 

We describe a very simple structure of a knowledge base that is sufficient for our illustrative goal. The knowledge 
base (KB) consists of two parts: the Attribute Base (AtB), containing the relations between problem domain 
concepts, and the Assertion Base (AsB), containing the expert’s assertions formulated in terms of the concepts. 
The domain concepts are represented by the use of names. With respect to its role in the KB, a name can be one 
of two kinds: name of attribute and name of attribute value. However, with respect to its role in the problem 
domain, a name can be the name of an object, the name of a class of objects and the name of a classification or 
collection of classes. A class of objects can contain only one object hence the name of an object is a particular 
case of the name of a class. In the KB, names of objects and of classes of objects become names of attribute 
values, and names of classifications become names of attributes. 
For example, let objects be a collection of trees such as asp, oak, fir-tree, cedar, pine-tree, and birch. Each name 
calls the class or the kind of trees (in a particular case, only one tree). Any set of trees can be partitioned into the 
separate groups depending on their properties. ‘Kind of trees’ will be the name of a classification, in which ‘asp’, 
‘oak’, ‘fir-tree’, ‘cedar’, ‘pine-tree’, and ‘birch’ are the names of classes. Then, in the KB, ‘kind of trees’ will be 
used as the name of an attribute the values of which are ‘asp’, ‘oak’, ‘fir-tree’, ‘cedar’, ‘pine-tree’, and ‘birch’. The 
link between the name of an attribute and the names of its values is implicative. It can be expressed by the 
following way: 

(<name of value1>, <name of value2>, ... , <name of value k >) → <name of attribute>, 

where the sign “→” denotes the relation “is a”. 

In our example (asp, oak, fir-tree, cedar, pine-tree, birch) → kind of trees, and, for each value of ‘kind of trees’, 
the assertion of the following type can be created: “asp is a kind of trees”. 
The set of all attributes’ names and the set of all values’ names must not intersect. This means that the name of a 
classification cannot simultaneously be the name of a class. However, this is not the case in natural languages: 
the name of a class can be used for some classification and vice versa. For example, one can say that ‘pine-tree’, 
‘fir-tree’, ‘cedar’ are ‘conifers’. But one may also say that ‘conifers’, ‘leaf-bearing’ are ‘kinds of trees’. Here the 
word ‘conifers’ serves both as the name of a classification and as the name of a class. In this setting, class is a 
particular case of classification like object is a particular case of class. 
By using names in the way we do in real life we permit the introduction of auxiliary names for the subsets of the 
set of an attribute’s values. Let A be an attribute. The name of a subset of values of A will be used as the name of 
a new attribute which, in its turn, will serve as the name of a value with respect to A. 
The AsB (Assertion Base) contains the expert’s assertions. Each assertion links a collection of values of different 
attributes with a certain value of a special attribute (SA) that evaluates how often this collection of values appears 
in practice. The values of a special attribute are: always, never, rarely, and frequently. Assertions have the 
following form: 

(<name of value>, <name of value>, … , <value of SA>) = true. 
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For simplicity, we omit the word ‘true’, because it appears in any assertion. For example, the assertion “pine-tree 
and cedar can be found frequently in the meadow type of forest” will be expressed in the following way: (meadow, 
pine-tree, cedar, frequently). We also omit the sign of conjunction between values of different attributes and the 
sign of disjunction (separating disjunction) between values of the same attribute. For example, the assertion in 
the form (meadow, pine-tree, cedar, frequently) is equivalent to the following expression of formal logic: Р((type of 
forest = meadow) & ((kind of trees = pine-tree) V (kind of trees = cedar)) & (SA = frequently)) = true. 
Only one kind of requests to the KB is used: SEARCHING VALUE OF <name of attribute> [ ,<name of 
attribute>,...] IF (<name of value>, <name of value>, ...), where “name of value” is the known value of an attribute, 
“name of attribute” means that the value of this attribute is unknown. For example, the request “to find the type of 
forest for a region with plateau, without watercourse, with the prevalence of pine-tree” will be represented as 
follows: SEARCHING VALUE OF the type of forest IF (plateau, without watercourse, pine-tree). 

Deductive Reasoning Rules of the Second Type 

The following rules of the second type lie in the basis of the reasoning process for solving diagnostic or pattern 
recognition tasks. Let х be a collection of true values observed simultaneously. 
Using implication. Let r be an implication, left(r) be the left part of r and right(r) be the right part of r. If left(r) ⊆ x, 
then x can be extended by right(r): х ← х ∪ right(r). 

For example, х = ‘a, b, c, d  ’, r = ‘a, d → k ’, x ← x ∪ k. 
Using implication is based on modus ponens: if A, then B; A; hence B. 
Using interdiction. Let r be an implication y → not k. If left(r) ⊆ x, then k is a forbidden value for all the 
extensions of x. 
Using interdiction is based on modus ponendo tollens: 
either A or B (A, B – alternatives); A; hence not B; 
either A or B; B; hence not A. 
Using compatibility. Let r = ‘a, b, c → k, rarely (frequently)’. 

If left(r) ⊆ x, then k can be used for an extension of x with the value of SA equal to ‘rarely’ (‘frequently’). The 
application of several rules of compatibility leads to the appearance of several values ‘rarely’ and/or ‘frequently’ in 
the extension of x. Computing the value of SA for the extension of x requires special consideration. In any case, 
the appearance of at least one value ‘rarely’ means that the total result of the extension will have the value of SA 
equal to ‘rarely’. Two values equal to ‘frequently’ lead to the result ‘less frequently’, three values equal to 
‘frequently’ lead to the result ‘less less frequently’ and hence the values ‘rarely’ and ‘frequently’ must have the 
ordering scale of measuring. 
Using compatibility is based on modus ponens. 
Using diagnostic rules. Let  r  be a diagnostic rule  such  as  ‘x, d → a; x, b → not a’, where ‘х’ is true, and ‘a’, 
‘not a’ are hypotheses or possible values of some attribute. There are several ways for refuting one of the 
hypotheses: to infer either d or b with the use of knowledge base (AtB, AsB); to involve new instances from the 
database and/or new assertions from the knowledge base for inferring new diagnostic rules distinguishing the 
hypotheses ‘a’ and ‘not a’; or, eventually, ask an expert which of the values d or b is true. 
Our experience shows that generally the experts have in their disposal many diagnostic rules corresponding to 
the most difficult diagnostic situations in their problem domain. 
Using a diagnostic rule is based on modus ponens and modus ponendo tollens. 
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Using rule of alternatives. Let ‘a’, ‘b’ be two alternative hypotheses about the values of some attribute. If one of 
these hypotheses is inferred with the help of reasoning operations, then the other one is rejected. 
Using a rule of alternatives is based on modus tollendo ponens: either A or B (A, B – alternatives); not A; hence 
B; either A or B; not B; hence A. 
The operations enumerated above can be named as “forward reasoning” rules. Experts also use implicative 
assertions in a different way. This way can be named as “backward reasoning”. 
Generating hypothesis. Let r be an implication y → k. Then the following hypothesis is generated “if k is true, 
then it is possible that y is true”. 
Using modus tollence. Let r be an implication y → k. If ‘not k ’ is inferred, then ‘not y’ is also inferred. 
Natural diagnostic reasoning is not any method of proving the truth. It has another goal: to infer all possible 
hypotheses about the value of some target attribute. These hypotheses must not contradict with the expert’s 
knowledge and the situation under consideration. The process of inferring hypotheses is reduced to extending 
maximally a collection x of attribute values such that none of the forbidden pairs of values would belong to the 
extension of x. 

Inductive Reasoning Rules of the Second Type 

Inductive steps of reasoning consist of using already known facts and statements, observations and experience 
for inferring new logical rules of the first type or correcting those that turn out to be false. 
For this goal, inductive rules of reasoning are applied. The main forms of induction are the canons of induction 
that have been formulated by English logician Mill (1900). These canons are known as the five induction methods 
of reasoning: method of only similarity, method of only distinction, joint method of similarity-distinction, method of 
concomitant changes, and method of residuum. 
The method of only similarity: This rule means that if the previous events (values) A, B, C lead to the events 
(values) a, b, c and  the events (values) A, D, E lead to the events (values) a, d, e, then A is a reason of a. 
The method of only distinction: This rule means that if the previous events (values) A, B, C give rise to the 
events (values) a, b, c and the events (values) B, C lead to the events (values) b, c, then A is a reason of a. 
The joint method of similarity-distinction: This method consists of applying two previous methods 
simultaneously. 
The method of concomitant changes: This rule means that if the change of a previous event (value) A is 
accompanied by the change of an event (value) a, and all the other previous events (values) do not change, then 
A is a reason of a. 
The method of residuum: Let abcd be a complex phenomenon, A be the reason of a, B be the reason of b, and 
C be the reason of c. Then it is possible to suppose that there is an event D which is a reason of d. 

An Example of the Reasoning Process 

Let the content of the Knowledge Base be the following collection of assertions: 
AtB: 
1. (meadow, bilberry wood, red bilberry wood ....) → types of woodland; 
2. (pine-tree, spruce, cypress, cedars, birch, larch, asp, fir-tree) → dominating kinds of trees; 
3. (plateau, without plateau) → presence of plateau; 
4. (top of slope, middle part of slope, ….) → parts of slope; 
5. (peak of hill, foot of hill) → parts of hill; 
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6. (height on plateau, without height on plateau) → presence of a height on plateau; 
7. (head of watercourse, low part of watercourse, ….) → parts of water course; 
8. (steepness ≥ 4°, steepness ≤ 3°, steepness < 3°, …) → features of slope; 
9. (north, south, west, east) → the four cardinal points; 
10. (watercourse, without watercourse) → presence of a watercourse. 
AsB: 
11. (meadow, pine-tree, larch, frequently); 
12. (meadow, pine-tree, steepness ≤ 4°, never); 
13. (meadow, larch, steepness ≥ 4°, never); 
14. (meadow, north, west, south, frequently); 
15. (meadow, east, rarely); 
16. (meadow, fir-tree, birch, asp, rarely); 
17. (meadow, plateau, middle part of slope, frequently); 
18. (meadow, peak of hill, watercourse heads, rarely); 
19. (plateau, steepness ≤ 3°, always); 
20. (plateau, watercourse, rarely); 
21. (red bilberry wood, pine-tree, frequently); 
22. (red bilberry wood, larch, rarely); 
23. (red bilberry wood, peak of hill, frequently); 
24. (red bilberry wood, height on plateau, rarely); 
25. (meadow, steepness < 3°, frequently). 

Let x be a request to the KB equal to: 
SEARCHING VALUE OF type of woodland IF (plateau, without watercourse, pine-tree). 
The process of reasoning evolves according to the following sequence of steps: 
Step 1. Take out all the assertions t in AsB containing at least one value from the request, i.e. t ∈ AsB, t ∩ x ≠ 
∅, where x is the request. These are assertions 11, 12, 17, 19, 20, 21, and 24. 
Step 2. Delete (from the set of selected assertions) all the assertions that contradict the request. Assertion 20 
contradicts the request because it contains the value of attribute ‘presence of water course’ which is different from 
the value of this attribute in the request. The remaining assertions are 11, 12, 17, 19, 21, and 24. This step uses 
the rule of alternatives. 
Step 3. Take out the values of attribute ‘type of woodland ’ appearing in assertions 11, 12, 17, 19, 21, and 24. We 
have two hypotheses: ‘meadow ’ and ‘red bilberry ’. This step uses implications for generating hypotheses. It 
is a step of “forward reasoning”. As a result, we have two extensions of the request: 
SEARCHING VALUE OF the type of woodland IF (plateau, without watercourse, pine-tree, meadow?). 
SEARCHING VALUE OF the type of woodland IF (plateau, without watercourse, pine-tree, red bilberry?). 
The sign ‘ ? ’means that the values of type of woodland are hypotheses. 
Step 4. An attempt is made to refute one of the hypotheses (the application of a diagnostic rule). For this goal, it 
is necessary to find an assertion that has the value of SA equal to ‘never ’ and contains one of the hypotheses, 
some subset of values from the request and does not contain any other value. There is only one assertion with 
the value of SA equal to ‘never ’. This is assertion 12: (meadow, pine-tree, steepness ≤ 4°, never). However, we 
cannot use this assertion because it contains the value ‘steepness ≤ 4°’ which is not in the request. 
Step 5. An attempt is made to find a value of some attribute that is not in the request (in order to extend the 
request). For this goal, it is necessary to find an assertion with the value of SA equal to ‘always’ that contains a 
subset of values from the request and one and only one value of some new attribute the values of which are not 
in the request. Only one assertion satisfies this condition. This is assertion 19: (plateau, steepness ≤ 3°, always). 
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Step 6. Forming the extended requests: 
SEARCHING VALUE OF the type of woodland IF (plateau, without watercourse, pine-tree, steepness ≤ 3°, 
meadow?). 
SEARCHING VALUE OF the type of woodland IF (plateau, without watercourse, pine-tree, steepness ≤ 3°, red 
bilberry?). 
It is easy to see that Step 5 and Step 6 involve the rule of using implication in order to extend the requests. 
Steps 1, 2, and 3 are repeated. Assertion 25 is involved in the reasoning. 
Step 4 is repeated. Now assertion 12 can be used because the value ‘steepness ≤ 4° is in accordance with the 
values of ‘feature of slope’ in the request. We conclude now that the type of woodland cannot be ‘meadow’. The 
non-refuted hypothesis is “the type of woodland = red bilberry”. This step uses the interdiction rule in order to 
delete one of the hypotheses. 
The process of pattern recognition can require inferring new rules of the first type from data, when it is 
impossible to distinguish inferred hypotheses. In general, there exist two main cases to learn rules of the first type 
from examples in the process of pattern recognition: i) the result of reasoning contains several hypotheses and it 
is impossible to choose one and only one of them (uncertainty), and ii) there does not exist any hypothesis. 

An approach to Inferring Rules of the First type 

Our approach to learning implicative rules from data is based on the concept of a good diagnostic (classification) 
test. A good classification test can be understood as an approximation of a given classification on a given set of 
examples (Naidenova and Polegaeva, 1986; Naidenova, 1996). 
A good diagnostic test is defined as follows. Let R be a set of examples and S = {1, 2, …i, …, n} be the set of 
indices of examples, where n is the number of example of R. Let R(+) and S(+) be the set of positive examples 
and the set of indices of positive examples, respectively. By R(-) = R/R(+) denote the set of negative examples. 
Let U be the set of attributes and Т be the set of attributes values (values, for short) each of which appears at 
least in one of the examples of R.  
Denote by s(A), A ∈ T the subset {i ∈ S: A appears in ti, ti ∈ R}, where S = {1, 2, .., n}. 

Following (Cosmadakis, et al., 1986), we call s(A) the interpretation of A ∈ T in R. The definition of s(A) can be 
extended to the definition of s(t) for any collection t, t ⊆ T of values as follows: 

 if t = A1 A2 ... Am, then s(t) = s(A1) ∩ s(A2) ∩ ... ∩ s(Am). 

Definition 1. A collection t ⊆ T (s(t) ≠ ∅) of values is a diagnostic test for the set R(+) of examples if and  only  if 
the following condition  is  satisfied: t ⊄ t*,  ∀ t*,   t*∈ R(-)  (the  equivalent  condition is s(t) ⊆ S(+)). 
Let k be the name of a set R(k) of examples. To say that a collection t of values is a diagnostic test for R(k) is 
equivalent to say that it does not cover any example t*, t* ∉ R(k). At the same time, the condition s(t) ⊆ S(k) 
implies that the following implicative dependency is true: ‘if t, then k’. Thus a diagnostic test, as a collection of 
values, makes up the left side of a rule of the first type. 
It is clear that the set of all diagnostic tests for a given set R(+) of examples (call it ‘DT(+)’) is the set of all the 
collections t of values for which the condition s(t) ⊆ S(+) is true. For any pair of diagnostic tests ti, tj from DT(+), 
only one of the following relations is true: s(ti,) ⊆ s(tj), s(ti,) ⊇ s(tj), s(ti,) ≈ s(tj), where the last relation means that 
s(ti) and s(tj) are incomparable, i.e. s(ti,) ⊄ s(tj) and s(tj) ⊄ s(ti,). This consideration leads to the concept of a good 
diagnostic test. 
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Definition 2. A collection t ⊆ T (s(t) ≠ ∅) of values is a good test for the set R(+) of examples if and only if s(t) ⊆ 
S(+) and simultaneously the condition s(t) ⊂ s(t*) ⊆ S(+) is not satisfied for any t*, t*⊆ T, such that t* ≠  t. 
Now we shall give the following definitions. 
Definition 3. A collection t of values is irredundant if for any value v ∈ t the following condition is satisfied: s(t) ⊂ 
s(t/v). 
If a collection t of values is a good test for R(+) and, simultaneously, it is an irredundant collection of values, then 
any proper subset of t is not a test for R(+). 
Definition 4. A collection t ⊆  T of values is maximally redundant if for any implicative dependency X → v, which 
is satisfied in R, the fact that t contains X implies that t also contains v. 
If  t  is a maximally  redundant  collection  of values,  then for any value v ∉ t, v ∈ T the following condition is 
satisfied: s(t) ⊃ s(t ∪ v). In other words, a maximally redundant collection t of values covers the number of 
examples greater than any collection (t ∪ v) of values, where v ∉ t. 
If a diagnostic test t for a given set R(+) of examples is a good one and it is a maximally redundant collection of 
values, then for any value v ∉ t, v ∈ T the following condition is satisfied: (t ∪ v) is not a good test for R(+). 

Any example t in R is a maximally redundant collection of values because for any value v ∉ t, v ∈ T s(t ∪ v) is 
equal to ∅. 
For example, in Table 1 the collection ‘Blond Bleu’ is a good irredundant test for class 1 and simultaneously it is 
maximally redundant collection of values. The collection ‘Blond Embrown’ is a test for class 2 but it is not good 
and simultaneously it is maximally redundant collection of values. 
The collection ‘Embrown’ is a good irredundant test for class 2. The collection ‘Red’ is a good irredundant test for 
class 1. The collection ‘Tall Red Bleu’ is a good maximally redundant test for class 1. 
It is clear that the best tests for pattern recognition problems must be good irredundant tests. These tests allow 
constructing the shortest rules of the first type with the highest degree of generalization. 
 

Table 1. Example 1of Data Classification (This example is adopted from (Ganascia, 1989)) 
Index of example Height  Color of hair Color of eyes Class 
1 Low Blond Blue 1 
2 Low Brown Blue 2 
3 Tall Brown Embrown 2 
4 Tall Blond Embrown 2 
5 Tall Brown Blue 2 
6 Low Blond Embrown 2 
7 Tall Red Blue 1 
8 Tall Blond Blue 1 

 
One of the possible ways for searching for good irredundant tests for a given class of positive examples is the 
following: first, find all good maximally redundant tests; second, for each good maximally redundant test, find all 
good irredundant tests contained in it. This is a convenient strategy as each good irredundant test belongs to one 
and only one good maximally redundant test with the same interpretation (Naidenova, 1999). 
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Inductive Rules of the Second Type 

We use the lattice theory as the mathematical model for constructing good classification tests. We define a 
diagnostic test as a dual object (Naidenova, 2001), i. e. as an element of the concept lattice introduced in the 
Formal Concept Analysis (Wille, 1992). 
The links between dual elements of concept lattice reflect both inclusion relations between concepts (structural 
knowledge) and implicative relations between concept descriptions (deductive knowledge). 
Inferring the chains of lattice elements ordered by the inclusion relation lies in the foundation of generating all 
types of diagnostic tests. We use the following variants of inductive transition from one element of a chain to its 
nearest element in the lattice: 
(i) from sq = (i1, i2, …, iq) to sq+1 = (i1, i2, …, iq+1); 
(ii) from tq = (A1, A2, …, Aq) to tq+1 = (A1, A2, …, Aq+1); 
(iii) from sq = (i1, i2, …, iq) to sq-1 = (i1, i2, …, iq-1); 
(iv) from tq = (A1, A2, …, Aq) to tq-1 = (A1, A2, …, Aq-1). 
We have constructed the special rules for realizing these inductive transitions: the generalization rule, the 
specification rule, the inductive diagnostic rule, and the dual inductive diagnostic rule. 
T h e   G e n e r a l i z a t i o n   R u l e 
The generalization rule is used to get all the collections of indices sq+1 = {i1, i2, … iq, iq+1} from a collection sq = {i1, 
i2, … iq} such that t(sq)  and  t(sq+1)  are tests for a given class of positive examples. 
The termination condition for constructing a chain of generalizations is: for all the extension sq+1 of sq, t(sq+1) is not 
a test for a given class of positive examples. 
T h e   S p e c i f i c a t i o n   R u l e 
The specification rule is used to get all the collections of values tq+1 = {A1, A2, …, Aq+1} from a collection tq = {A1, 
A2, …, Aq} such that tq and tq+1 are irredundant collections of values and they are not tests for a given set of 
positive examples. 
The termination condition for constructing a chain of specifications is: for all the extensions tq+1 of tq,  tq+1 is either a 
redundant collection of values or a test for a given set of positive examples. 
T h e   I n d u c t i v e   D i a g n o s t i c   R u l e 
The inductive diagnostic rule is used to get a collection of values tq+1 = {A1, A2, …, Aq+1} from a  collection tq = {A1, 
A2, … Aq} such that tq is not a test but tq+1 is a test for a given set of positive examples. 
We extend tq by choosing values which appear simultaneously with it in the examples of  R(+) and do not appear 
in any example of R(-). These values are to be said essential ones. 
T h e   D u a l   I n d u c t i v e   D i a g n o s t I c   R u l e 
The dual inductive diagnostic rule is used to get a collection of indices sq-1 = (i1, i2, …, iq-1) from a collection sq = 
(i1, i2, …, iq) such that t(sq-1) is a test but t(sq) is not a test for a given set of positive examples. This rule uses a 
method for choosing indices admissible for deleting from sq. By analogy with an essential value, we define an 
essential example (Naidenova, 2005). 
The rules for constructing diagnostic tests as elements of dual lattice generate logical rules of the first type, as 
shown in Table 2. 
 
Table 2. Deductive Rules of the First Type Obtained with the Use of Inductive Rules for Inferring Diagnostic Tests 
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Inductive rules Action Inferring deductive rules  
of the first type 

Generalization rule Extending s (narrowing t) Implications  
Specification rule Extending t (narrowing s) Implications 
Inductive diagnostic rule Searching for essential values Diagnostic rules 
Dual inductive diagnostic rule Searching for essential examples Compatibility rules  

or (approximate implications) 
 
The analysis of the inference for lattice construction allows demonstrating that this inference engages both 
inductive and deductive reasoning rules of the second type. 
Both the generalization and specification rules realize the joint method of similarity-distinction. The extending of s 
results in obtaining the subsets of positive examples of more and more power with more and more generalized 
features (set of values). An algorithm NIAGaRa based on this variant of generalization rule is used in (Naidenova, 
2006), for inferring good maximal redundant tests. 
Both the inductive and dual inductive diagnostic rules are based on the inductive method of only distinction. 
For example, a variant of the generalization rule involves the following deductive and inductive reasoning rules of 
the second type: the joint method of similarity-distinction, the rule of using forbidden rules of the first type, the 
method of only similarity, the rule of using implication, lattice operations. 
It is important to note that the rules of the first type (implications, interdictions, rules of compatibility) generated 
during the lattice construction used immediately in this process. 

Conclusion 

This work is an attempt to transform a large class of machine learning tasks into a commonsense reasoning 
process based on using well-known deduction and induction reasoning rules. The key concept of our approach is 
the concept of a good diagnostic test. We have used the lattice theory as the mathematical model for constructing 
good diagnostic tests for learning implications from examples.  
We have divided commonsense reasoning rules in two classes: rules of the first type and rules of the second 
type. The rules of the first type are represented with the use of implicative logical statements. The rules of the 
second type or reasoning rules (deductive and inductive) are rules with the help of which rules of the first type 
used, updated and inferred from data. 
The analysis of the inference for lattice construction allows demonstrating that this inference engages both 
inductive and deductive reasoning rules of the second type. 
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