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FINDING AN APPROPRIATE PARTITION ON THE SET OF ARGUMENTS  
OF A PARTIAL BOOLEAN FUNCTION TO BE DECOMPOSED 

Arkadij Zakrevskij 

Abstract: A hard combinatorial problem is investigated – the two-block decomposition, generally non-disjunctive, 
of partial Boolean functions. The key task is regarded: finding such a weak partition on the set of arguments, at 
which the considered function can be decomposed. Solving that task is essentially speeded up by the way of 
preliminary discovering traces of the sought-for partition. Boolean and ternary vectors and matrices are used, with 
efficient parallel combinatorial operations over them.   

Keywords:  Partial Boolean function, non-disjunctive decomposition, appropriate partition, combinatorial search, 
traces of the solution.  

Introduction 

A task is considered concerning the problem of functional decomposition of Boolean functions, which was set 
originally in papers [Povarov, 1954], [Ashenhurst, 1959], [Curtis,1962]. Let's formulate it as follows.  
Suppose a Boolean function  f (x) = f (x1, x2, …, xn)  is given. It is required to decompose it, having presented as 
the following composition of two functions g and h of smaller number of variables: 

f (x) = g (h (u, w), w, v). 
The sets of arguments given in the vector form are connected by that with the relations  x = u ∪ w ∪ v, u ∪ w = 
= u ∪ v = w ∪ v =∅, and the couple of sets u and v determines a weak partition on set x, designated as  u/v. It 
is accepted to name such composition sequential two-block. It is illustrated by Figure 1 for the case, when 
u = (x1, x2, x3), w = (x4, x5)  and v = (x6, x7).  

 
Fig. 1. Example of composition 

 
To solve the formulated task it is necessary, first of all, to find such a weak partition u/v, at which the variables of 
set u enter in number of arguments of function h only, and variables of v − only in number of arguments of 
function g. The conditions |u| > 1 and |v| > 0 should be fulfilled also - otherwise the composition will appear trivial 
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(exists always). Let's name this partition appropriate, and the function f (x) − separable, or decomposable at the 
given partition. 
The finding of appropriate partition is a difficult task, for which solution an effective combinatorial algorithm was 
offered [Zakrevskij, 2006], in application to completely specified Boolean functions. This task becomes even more 
complicated, when the function f (x) appears to be partial, being defined not on all sets of values of variables from 
set x. Just this case is considered below. 
It] was shown [Zakrevskij, 2006], that the probability of decomposability of a random completely defined Boolean 
function fast tends to zero with growth of number of variables n, so already at n > 9 such a function, most likely, is 
not decomposable. In case of partial functions this probability arises with growth of uncertainty, however even in 
this case it remains small enough. 
Taking into account the given remark, let's assume, that it is known beforehand, that the considered function f (x) 
is separable, being obtained as a result of composition g (h (u, w), w, v) of some two Boolean functions g and h 
on a weak partition u/v on the set of arguments x. It is required to detect (to recognize) this partition, after which 
the obtaining of functions g and h is not a difficult task.  
A method of checking a partial Boolean function for decomposability at some given weak partition was offered in 
[Zakrevskij, 2007]. In the case, when this appropriate partition is not known a priori, it is possible to organize its 
search, sorting out different weak partitions and checking the function on decomposability at them. However, 
such way is rather labor-consuming, as the number of different weak partitions on the set of variables is 
approximated from above by value 3n, fast growing with increase of number of variables n.  
In the present paper the method of search for appropriate partition u/v by its traces is suggested, which 
sufficiently cuts down the number of analyzed partitions. Originally it was designed for completely specified 
Boolean functions [Zakrevskij, 2006], but here it is extended on the case of partial Boolean functions.  

Basic operations in Boolean space 

The parallelism of component-wise operations above long Boolean vectors is used in the offered method of 
search for appropriate partitions, and that essentially accelerates the fulfilled calculations.  
It is possible to consider Boolean functions f(x) = f(x1, x2, …, xn)  and  g(x) = g(x1, x2, …, xn) of n variables as 
appropriate subsets of units of Boolean space {0, 1}n. Let's represent them by Boolean  2n-vectors f and g, 
displaying such vectors below in the more convenient for visual perception matrix form. In such representation the 
two-place Boolean operations f ∨ g, f ∧ g,  f ⊕ g, f → g are easily implemented as parallel component-wise 
operations over appropriate Boolean vectors designated f ∨ g, f ∧ g (or, simpler, f g),  f ⊕ g,  f → g.   Including 
these operations in the formed basis, we shall supplement them by some operations of interaction between 
different components within the framework of one Boolean vector.    
Let's remind, that the function f(x) can be represented as Shannon disjunctive decomposition by an arbitrary 
variable xi ,  which coefficients  fi 0  and  fi 1  are Boolean functions obtained as a result of substitution of variable xi 
by values  0 or 1 :  

f(x) = ⎯xi fi 0 ∨ xi fi 1 , 
Using vector representation of the function, we shall designate these operations accordingly through f - i and f + i. 
They are easily implemented in the Boolean space on couples of elements adjacent by the variable xi. When 
executing the operation f - i both elements of the couple gain the value of the element defined by the condition 
xi = 0, at execution of the operation f + i – the value of the other element corresponding to value 1 of variable xi.  
Let's show examples of such operations, and also of their compositions. 
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          f                  f-2              f-2-5 

           --------           --------           --------    4 
       ----    ----       ----    ----       ----    ----   3 
     --  --  --  --     --  --  --  --     --  --  --  --  2 
    - - - - - - - -    - - - - - - - -    - - - - - - - - 1 
   0110110101011110   0101111101011111   0101111101011111 

 | 0010010000010110   0000010100000101   0101111101011111 

|  1100101001110001   1111101001010000   1111101001010000 

|| 0100010111010011   0101010111110000   1111101001010000 
 

   1101110111101110   1010101000010001   0000000000110011 

 | 0100010001100110   0101010100110011   0000000000110011 

|  1010101000010001   1010101000010001   1100110011111111 

|| 0101010100110011   0101010100110011   1100110011111111 

6 5        f+3               f+3+6              f+1-3+5 

 
By interaction of adjacent units there are implemented also operation Invi f of inverting the function f at the 
variable xi (adjacent elements interchange their values), and so-called operations of symmetrization  Si * f, in 
which both elements get value defined by the two-place operation * above their initial values [Zakrevskij, 1963].  
As a result of these operations the function   

f(x) = ⎯xi fi0 ∨ xi fi1 
is transformed correspondingly into functions 

⎯xi fi1 ∨ xi fi0  , ⎯xi (fi0 *  fi1) ∨ xi (fi0 *  fi1). 
Examples of these operations are shown below. 

          f                Inv4 f               S4∨ f 

     
           --------           --------           --------    4 
       ----    ----       ----    ----       ----    ----   3 
     --  --  --  --     --  --  --  --     --  --  --  --  2 
    - - - - - - - -    - - - - - - - -    - - - - - - - - 1 
   0110110101011110   0101111001101101   0111111101111111 

 | 0010010000010110   0001011000100100   0011011000110110 

|  1100101001110001   0111000111001010   1111101111111011 

|| 0100010111010011   1101001101000101   1101011111010111 
 

   0000110000001100   0011001100110011   0111111101111111 

 | 0000000000000000   0011001000110010   0111111101111111 

|  1100000000110000   1011101110111011   1111111111111111 

|| 0000000011000011   1001011010010110   1111111111111111 

6 5 
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        S1
∧ f               S4⊕ f              S4,5∨ f 

Here  S4,5
∨ f  means composition S4

∨ (S5
∨ f). 

Search by traces. Triads and fragments 

The method of decomposition suggested below is based on the following reasons which key moments are given 
in the form of assertions. They were formulated before for the case of completely specified Boolean functions  
[Zakrevskij, 2006], but became valid when partial Boolean functions are considered.  
Suppose two partitions u/v and u*/v* are given, such that  u* ⊆ u  and  v* ⊆ v. Let's speak, that partition  u*/v* 
submits to partition  u/v, and call it a trace of u/v, 
Assertion 1. If a partial Boolean function f(x) is decomposable at partition  u/v, it is decomposable as well at 
partition  u*/v*.  
Corollary. If the function f(x)  is not decomposable at partition  u*/v*, it is not decomposable also at partition  u/v. 
Let's assume |u| = k and |v| = m. Partition with k = 2 and m = 1 we shall term as a triad. It is the simplest of 
partitions, at which some nontrivial decomposition can take place. 
Assertion 2. A partial Boolean function is decomposable, if and only if it is decomposable if only at one of triads. 
Therefore in the offered method the search for partition u/v starts with the search of its traces on the set of triads, 
i.e. with looking for an appropriate triad. The needed checking of triads can be fulfilled fast enough, as their 
number is not large, being significantly less than the number of all weak partitions. 

Assertion 3. The number of triads is equal to  Cn2 (n – 2) = 
2

21 ))(( −− nnn . 

Suppose, that some appropriate triad (xp, xq)/xr. is detected. If it submits to the required partition u/v, the latter 
can be found, having put for the beginning u = (xp, xq) and  v = (xr), and then sequentially expanding these two 
sets, sorting out remaining variables and testing them on possibility of inclusion into set u or v.  
By reviewing some concrete triad u/v the Boolean space M = {0, 1}n, where the partial Boolean function f(x) is 
presented, is divided into 2|w| intervals corresponding to different values of vector w. On each of them the 
corresponding coefficient fi of disjunctive decomposition of the function on variables of set w is given. It 
represents some partial Boolean function of variables xp, xq, xr.  As a matter of convenience of subsequent 
reasoning we shall present each of these coefficients by a ternary matrix size 4×2, which rows correspond to 
values of the two-component vector u, and columns – to values of the one-component vector v. Let's designate 
this matrix Ti and name it a fragment. Thus, the 2n-element ternary matrix representing the function f(x), is 
decomposed into 2n-3 eight-element fragments specifying functions  fi (xp, xq, xr). 
A concrete example of such splitting into eight fragments for a partial Boolean function f(a, b, c, d, e, f) and triad 
(a, b)/c  is shown below.  

            -----------    f 
      -----       -----   e 
   --    --    --    --  d 
 -  -  -  -  -  -  -  - c  

     10 0- 1- 11 0- 10 -1 10   

  |  -1 00 -1 1- 00 -1 1- -0 

 |   0- 1- -0 10 10 0- 11 -1 

 ||  1- 01 11 -1 00 10 -0 11 

 b a 
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Assertion 4. The function f(x) can be decomposed at triad (xp, xq)/xr , if and only if each of the coefficients 
fi (xp, xq, xr) also is decomposable at the same triad. 
It follows from here, that the probability of decomposability of function f(x) at a concrete triad is equal to γ k, where 
k is the number of coefficients equal 2n-3 and γ − the probability of decomposability of one coefficient. In the case 
of a completely specified Boolean function the last probability is approximated by the value 1/3, and with growth 
of uncertainty decreases. Nevertheless, the probability of decomposability of the function f(x) quickly decreases 
with growth of the number of variables in it. 

Checking triads for fitness 

So, a triad is appropriate, if each of fragments of the corresponding splitting of the ternary matrix is suitable. That 
means, the partial function f(x) can be completely defined in such a way, that each fragment will contain no more 
than two types of Boolean rows (each having equal rows). In other words, a fragment is suitable, if it contains no 
more than two classes of compatible rows. Remind, that two ternary rows are compatible, i.e. they could become 
equal by changing “−“-values of some components for 1 or 0, if they are not orthogonal. It follows from here, that 
the fragment is suitable, if the graph of orthogonality of its rows is bichromatic [Harary, 1969]. 
Let's offer the following way of checking fragments with the purpose of detection of suitable ones among them. 
Any fragment contains four rows, therefore the graph of orthogonality has four vertices. It is bichromatic, if it has 
no cycle of length three. Let's select arbitrary two different vertices. If such a cycle exists, then one of the selected 
vertices will belong to it. Therefore, it is enough to test each of these two vertices on belonging to a cycle of 
length three. If such belonging will not be revealed, graph is bichromatic, and the triad is suitable. 
Necessary and sufficient condition of entering a vertex, i.e. corresponding row, in a cycle of length three could be 
formulated as follows: among rows orthogonal to the given one, there exist mutually orthogonal rows. 
For example, the first of the shown below fragments appears to be suitable, and the second − no, as there is a 
cycle of length three, composed by three last rows: each of them is orthogonal to the other two. 

 10    -1   1   
 -1    00   2   
 0-    1-   3   
 01    01   4 

The offered way is implemented by the following algorithm, which is remarkable by that it checks on fitness 
simultaneously all 2n-3 fragments generated by the given triad, and finds out by that if the triad is appropriate. The 
partial function f(x) is represented by a couple of Boolean vectors f 0 and f 1, in first of which by 1s are marked the 
values 0 of the function and in the second - values 1. The splitting of space into fragments is fulfilled by the triad 
(xp, xq) / xr. 
To begin with, first rows of fragments are checked, which form the initial coefficient f − of decomposition of the 
function f(x) on variables xp and xq. The rows orthogonal to the checked up row, are marked by value 1 in the 
computed vector g, and their values are fixed by the couple of vectors h0 and h1, checked up further for 
orthogonality. Alike the initial vectors f 0  и  f 1, they are Boolean vectors with 2n components.  

h 0 := (f 0 − p) − q   Getting the initial coefficient  f −   

h 1 := ( f 1− p) − q  

g := Sr
∨ (h 0f 1 ∨ h 1f 0)     Finding coefficients orthogonal to  f − 

h 0 := Su
∨ (f 0g)   Computing their intersection  
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h 1 := Su
∨ (f 1g) 

If it turns out that  h 0 h 1 ≠ 0, the triad is accepted as not appropriate. In case if h 0 h 1 = 0  the final rows of 
fragments are checked, which constitute the final coefficient  f +. 

h 0 := (f 0 + p) + q   Getting the final coefficient    f +   
h 1 := ( f 1+ p) + q 
g := Sr

∨ (h 0f 1 ∨ h 1f 0)     Finding coefficients orthogonal to  f + 

h 0 := Su
∨ (f 0g)   Computing their intersection 

h 1 := Su
∨ (f 1g) 

If h 0 h 1 ≠ 0, then the triad is not appropriate.  On the other hand, if h 0 h 1 = 0, the triad is accepted as 
appropriate. 
 
Example. Let’s return to regarding the partial Boolean function  f (a, b, c, d, e, f),  representing it by a couple of 
Boolean vectors (rolled up into matrices)   f 0 and  f 1: 

             -----------    f 
       -----       -----   e 
    --    --    --    --  d 
   -  -  -  -  -  -  -  - c  

      10 0- 0- 11 0- 10 -1 10   

  |   -1 10 -1 1- 00 -1 0- -0 

 |    0- -1 -0 00 10 0- 11 -1 

 ||   1- -0 11 -1 -0 10 -0 11 
b a 

  01 10 10 00 10 01 00 01   f0  

  00 01 00 00 10 00 10 01 

  10 00 01 11 00 10 00 00 

  00 01 00 00 00 01 01 00 

 

  10 00 00 11 00 10 01 00   f1 

  01 10 01 10 00 01 00 00   

  00 01 00 00 10 00 11 01 

  10 00 11 01 00 10 00 01 

 
The check of the function for decomposability at triad (a, b) / c is reduced to testing in parallel all of fragments for 
fitness. In the given example all of eight fragments are suitable, therefore the function can be decomposed at that 
triad 
We shall illustrate that operation by the case of testing one of the fragments, third at the left, demonstrating initial 
values of appropriate components of the ternary vector f and of vectors obtained sequentially by the algorithm:   

f 0,  f 1,  h 0,  h 1,  h 0 f 1,  h 1 f 0,  g,  f 0 g,  f 1 g,  h 0  and  h 1. 
The check is carried out both on initial coefficient  f −, and on finite coefficient  f +.  
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f   f0  f1   h0  h1  h0f1 h1f0 g  f0g  f1g  h0  h1   

0-  10  00  10  00  00  00  00  00  00  00  11   Initial 
-1  00  01  10  00  00  00  00  00  00  00  11   coefficient 

-0  01  00  10  00  00  00  00  00  00  00  11   f- 

11  00  11  10  00  10  00  11  00  11  00  11 

                                                 h0h1 = 0   

            00  11  00  10  11  10  00  11  00   Final 

            00  11  00  00  00  00  00  11  00   coefficient 

            00  11  00  01  11  01  00  11  00   f+ 

            00  11  00  00  00  00  00  11  00    

                                                 h0h1 = 0  

The triad is appropriate  

Search for appropriate partition  

If the considered triad  (p, q / r  had appeared suitable, it is possible to assume, that it is a trace of the sought-for 
appropriate partition. In this case the latter can be found by moving along the track generating from the found 
trace. By that the value of vector g obtained at the previous stage is used, and sets u and v are sequentially 
expanding, beginning with initial values u = (p, q) and v = (r). 
 Expanding set v. Let's begin from set v. Sorting out sequentially all elements s from set x \ (u ∪ v), we shall 
discover among them such ones, at which inclusion in set v the partition u/v remains appropriate. With this 
purpose three operations are fulfilled for each element s: 

 e := Ss
∨ g  

 h 0 := Su
∨ (f 0e) 

 h 1 := Su
∨ (f 1e) 

and if  h 0 h 1 = 0 , then s  is included into  v  by implementing operations 
 v := v ∪{s},  g := e. 

So the final value of set v is found. 
 
Expanding set u. The maximum expansion of set u is found similarly. If it is known, that the required partition is 
strict, it is possible to put u = x / v  and, probably, to test the function for decomposability, as the algorithm used is 
heuristic. Let's remark, however, that the probability of obtaining by this algorithm erroneous solution fast tends to 
zero with growth of the number of variables n.  
If the required partition could be not strict, it is necessary to test all elements from initial value of set x \ (u ∪ v) 
for the possibility of including them into set u.  
Check of the immediate element s can be fulfilled by the following heuristic algorithm, which partly implements the 
procedure circumscribed in [Zakrevskij, 2007]. The algorithm considers the initial coefficient f − of the function f 
decomposition by the current value of set u, finds orthogonal to it coefficients, checks them for compatibility and, 
in case of compatibility, includes element s in set u without further check.  
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  e := u ∪ {s} 
  h 0 := f 0 – e 
  h 1 := f 1 – e 

 g := Sv
∨ (h 0f 1 ∨ h 1f 0)  

 h 0 := Su
∨ (f 0g) 

 h 1 := Su
∨ (f 1g)  

If  h 0 h 1 = 0 , then  s  is included into  u by operation  u := e. 
In such a way the set u is found and, therefore, the whole partition u/v .  
Note, that the operation of looking for coefficient f −  is presented in this algorithm in abbreviated form, by 
expressions  h 0 := f 0 – e  and  h 1 := f 1 – e , instead of more detailed  
  h 0 := (…((f 0 − e1) − e2) – …) – et , 

    h 1 := (…((f 1 − e1) − e2) – …) – et , 
where  e = (e1, e2, …, et).  

Conclusion 

In this paper, the heuristic algorithm is offered for finding such weak two-block partition on the set of variables of a 
partial Boolean function, on which the function can be decomposed. The algorithm is effective, if there exists a 
good solution "«hidden" in vector representation of the function of many variables. In this case the search of the 
partition is reduced to recognition of the latter.  
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