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A VARIANT OF BACK-PROPAGATION ALGORITHM  
FOR MULTILAYER FEED-FORWARD NETWORK 

Anil Ahlawat, Sujata Pandey 

Abstract: In this paper, a variant of Backpropagation algorithm is proposed for feed-forward neural networks 
learning. The proposed algorithm improve the backpropagation training in terms of quick convergence of the 
solution depending on the slope of the error graph and increase the speed of convergence of the system. 
Simulations are conducted to compare and evaluate the convergence behavior and the speed factor of the 
proposed algorithm with existing Backpropagation algorithm. Simulation results of large-scale classical neural-
network benchmarks are presented which reveal the power of the proposed algorithm to obtain actual solutions. 
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Introduction 

Feed-forward neural networks (FNN) have been widely used for various tasks, such as pattern recognition, 
function approximation, dynamical modeling, data mining, and time series forecasting, [1-3]. The training of FNN 
is mainly undertaken using the back-propagation (BP) based learning. The back-propagation algorithm has been 
investigated many times with minor variations [4-7]. However, even to date, there are still a great number of 
problems that cannot be solved efficiently by the majority of the training algorithms that have been proposed over 
the years, using standard simple feed-forward network architectures. A number of different kind of BP based 
learning algorithms, such as an on-line neural-network learning algorithm for dealing with time varying inputs [8], 
fast learning algorithms based on gradient descent of neuron space [9], second derivative based non-linear 
optimization methods [10], conjugate gradient methods [11] and genetic algorithms [12,13] avoid use of any 
gradient information. Levenberg–Marquardt algorithm [14-16] is the most powerful and a popular second 
derivative based algorithm that have been proposed for the training of feed-forward networks which combines the 
excellent local convergence properties of Gauss-Newton method near a minimum with the consistent error 
decrease provided by (a suitably scaled) gradient descent faraway from the solution. In first-order methods (such 
as gradient descent), a local minimizer problem is overshooted with the inclusion of momentum term. The 
momentum term actually inserts second-order information in the training process and provides iterations whose 
form is similar to the conjugate gradient (CG) method. The major difference of Backpropagation with the 
conjugate gradient method is that the coefficients regulating the weighting between the gradient and the 
momentum term are heuristically selected in BP, whereas in the CG algorithm these coefficients are adaptively 
determined. However, these algorithms also share problems [17] present in the standard Backpropagation 
algorithm and may converge faster in some cases and slower in others. Comparison of the speeds of 
convergence of different schemes for implementing Backpropagation is not clear-cut, though a discussion on 
benchmarking of the algorithms can be found [18]. 
In this paper, a proposal for a variant of back-propagation algorithm for FNN with time-varying inputs has been 
presented which is capable of overcoming the shortcomings of the BP as discussed above. In the experimental 
section, the proposed algorithm is compared with the existing Backpropagation algorithm for training multilayer 
feed-forward networks on training tasks that are well known for their complexity. It was observed that the 
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proposed algorithm have shown to solve these tasks with exceptionally high success rates and converged much 
faster than the original BP algorithm and showed greater accuracy.      

Backpropagation Algorithm 

Overview of the Algorithm 
The Backpropagation training algorithm [1] for training feed-forward networks was developed by Paul Werbos [7], 
and later by Parker [4] and Rummelhart [5]. This type of network configuration is the most common in use, due to 
its ease of training [19]. It is estimated that over 80% of all neural network projects in development use back-
propagation. In back-propagation, there are two phases in its learning cycle, one to propagate the input pattern 
through the network and the other to adapt the output, by changing the weights in the network. It is the error 
signals that are back propagated in the network operation to the hidden layer(s). The portion of the error signal 
that a hidden-layer neuron receives in this process is an estimate of the contribution of a particular neuron to the 
output error. Adjusting on this basis the weights of the connections, the squared error, or some other metric, is 
reduced in each cycle and finally minimized, if possible. 
A Back-Propagation network consists of at least three layers of units: an input layer, at least one intermediate 
hidden layer, and an output layer. Typically, units are connected in a feed-forward fashion with input units fully 
connected to units in the hidden layer and hidden units fully connected to units in the output layer. When a Back-
Propagation network is cycled, an input pattern is propagated forward to the output units through the intervening 
input-to-hidden and hidden-to-output weights. 
Training in Backpropagation Algorithm 
The feed-forward back-propagation network undergoes supervised training [20], with a finite number of pattern 
pairs consisting of an input pattern and a desired or target output pattern. An input pattern is presented at the 
input layer. The neurons here pass the pattern activations to the next layer neurons, which are in a hidden layer. 
The outputs of the hidden layer neurons are obtained by using a bias, and also a threshold function with the 
activations determined by the weights and the inputs. These hidden layer outputs become inputs to the output 
neurons, which process the inputs using an optional bias and a threshold function. The final output of the network 
is determined by the activations from the output layer. 
The computed pattern and the input pattern are compared, a function of this error for each component of the 
pattern is determined, and adjustment to weights of connections between the hidden layer and the output layer is 
computed. A similar computation, still based on the error in the output, is made for the connection weights 
between the input and hidden layers. The procedure is repeated with each pattern pair assigned for training the 
network. Each pass through all the training patterns is called a cycle or an epoch. The process is then repeated 
as many cycles as needed until the error is within a prescribed tolerance. The adjustment for the threshold value 
of a neuron in the output layer is obtained by multiplying the calculated error in the output at the output neuron 
and the learning rate parameter used in the adjustment calculation for weights at this layer.  
After a Back-Propagation network has learned the correct classification for a set of inputs from a training set, it 
can be tested on a second set of inputs to see how well it classifies untrained patterns. Thus, an important 
consideration in applying Back-Propagation learning is how well the network generalizes. 
Mathematical Analysis of the Algorithm 
Assume a network with N inputs and M outputs. Let xi be the input to ith neuron in input layer, Bj be the output of 
the jth neuron before activation, yj be the output after activation, bj be the bias between input and hidden layer, bk 
be the bias between hidden and output layer, wij be the weight between the input and the hidden layers, and wjk 
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be the weight between the hidden and output layers. Let η be the learning rate and δ the error. Also, let i, j and k 
be the indexes of the input, hidden and output layers respectively. 
The response of each unit is computed as: 
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Weights and bias between input and hidden layer are updated as follows:  
For input to hidden layer, for i = 1 to n, 

ijijij ytwtw ηδ+=+ )()1(  (3) 

jjj tbtb ηδ+=+ )()1(  (4) 

Where, δ j is the error between the input and hidden layer and calculated as: 
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Weights and bias between hidden and output layer are updated as follows:  
For hidden to output layer, for j = 1 to h, 

jkjkjk ytwtw ηδ+=+ )()1(  (6) 

kkk tbtb ηδ+=+ )()1(  (7) 

and δ k is the error between the hidden and output layer and calculated as: 

)()1( kkkkk ydyy −−= ⋅⋅δ  (8) 

Proposed variant of Backpropagation Algorithm 

The Backpropagation algorithm described above has many shortcomings [17]. The time complexity of the 
algorithm is high and it gets trapped frequently in sub-optimal solutions. It is also difficult to get an optimum step 
size for the learning process, since a large step size would mean faster learning, which may miss an optimal 
solution altogether, and a small step size would mean a very high time complexity for the learning process. The 
proposed variant of the Backpropagation algorithm aims to overcome some of these shortcomings. 
Overview of the Proposed Algorithm 
The Backpropagation Algorithm described above is modified by following changes: 
1 Momentum: A simple change to the training law that sometimes results in much faster training is the addition 

of a momentum term [21]. With this change, the weight change continues in the direction it was heading. This 
weight change, in the absence of error, would be a constant multiple of the previous weight change. The 
momentum term is an attempt to try to keep the weight change process moving, and thereby not gets stuck in 
local minima’s. In some cases, it also makes the convergence faster and the training more stable.  

2 Dynamic control for the learning rate and the momentum: Learning parameters such as Learning rate and 
momentum serve a better purpose if they can be changed dynamically during the course of the training [21]. 
The learning rate can be high when the system is far from the goal, and can be decreased when the system 
gets nearer to the goal, so that the optimal solution cannot be missed. 
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3 Gradient Following: Gradient Following has been added to enable quick convergence of the solution 
depending on the slope of the error graph. When the system is far away from the solution, the learning rate is 
further increased by a constant parameter C1 and when the system is close to a solution, the learning rate is 
decreased by a constant parameter C2. The farness or closeness of the system from the solution was 
determined from the slope of the Error graph [22-26]. 

4 Speed Factor: To increase the speed of convergence of the system, a speed factor S has been used as 
determined by a mathematical formula derived from the study of graphs. 

 
Mathematical Analysis of the Algorithm 
1. Momentum: Let the momentum term be α. Then equation (3) and equation (4) would be modified as: 
For input to hidden layer, for i = 1 to n, 

))1()(()()1( −−++=+ ⋅ twtwytwtw ijijijijij αηδ  (9) 

))1()(()()1( −−++=+ ⋅ tbtbtbtb jjjjj αηδ  (10) 

The term δ j would be calculated as in equation (5). 
The equation (6) and equation (7) would be modified as:  
For hidden to output layer, for j = 1 to h, 
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The term δ k would be calculated as in equation (8). 
2. Dynamic Control for learning rate and momentum: If changing the weight decreases the cost function (mean 
squared error), then the learning rate is given by   

05.0+=ηη  (13) 

Else 
05.0−=ηη  (14) 

Similar conditions were placed for the momentum term α. 
3. Gradient Following: Let C1 and C2 be two constants, such that C1 > 1 and 0 < C2 < 1 and ∆max and ∆min be 

the maximum and minimum change permissible for the weight change. If 
w
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w(t+1) = w(t) + ∆w (17) 
b) Case II 



International Conference «Information Research & Applications» - i.Tech 2007 
 

5

If 0)1()( <−
∂
∂
⋅

∂
∂ t

w
Et

w
E

 

Then 
∆(t) = min(∆(t) . C2, ∆min) (18) 

0)( =
∂
∂ t
w
E

 (19) 

w(t+1) = w(t) - ∆w (20) 
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w(t+1) = w(t) + ∆w (22) 
4. Speed Factor: Let S be the speed factor. Then equation (9) and equation (10) would further be modified to: 
For input to hidden layer, for i = 1 to n, 
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Similarly, equation (11) and (12) would be modified as: 
For hidden to output layer, for j=1 to h, 
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Experimental Study 

The algorithm proposed in this paper were tested on the training of standard multilayer feed forward networks 
(FNNs) and applied to several problems. The FNN simulator was implemented in Visual Basic .NET. The 
performance of the proposed algorithm was compared to existing Backpropagation algorithm. All simulations 
were carried out on a Pentium IV 2 GHz with 128 MB RAM PC using the FNN simulator developed by our team. 
 

Number of 
cycles 

BP  
(time in 
msec) 

Speed1  
(time in msec)  

for momentum = 0.1 and 
speed = 0.1 

Speed2  
(time in msec)  

for momentum = 0.1 and 
speed = 0.2 

Speed3  
(time in msec)  

for momentum = 0.2 and 
speed = 0.1 

100 42781.52 4626.66 4927.08 5668.15 
300 123968.25 9333.43 9754.03 10094.51 
500 206146.42 15442.20 15452.21 15552.36 
800 330385.06 24204.80 25666.91 24585.36 
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1000 414546.10 30173.39 31054.64 30383.69 
1200 496964.60 35671.28 36612.64 36712.79 
1500 617187.47 44954.65 46096.28 46076.26 

 
Table 1: Comparison of training time between Backpropagation algorithm  

and proposed algorithm for different momentum 
and speed for 8-bit parity problem.  
The selection of initial weights is important in feed-forward neural network training. If the initial weights are very 
small, the backpropagated error is so small that practically no change takes place for some weights, and 
therefore more iteration are necessary to decrease the error. If the error remains constant, then the learning stops 
in an undesired local minimum. Large values of weights, results in speed up of learning, but they can lead to 
saturation and to flat regions of the error surface where training is slow. Keeping these in consideration, the 
experiments were conducted using the same initial weight vectors that have been randomly chosen from a 
uniform distribution in (-1,1). Sensitivity of the algorithm in some other intervals (-0.1,0.1) was also studied to 
investigate its convergence behavior. 
 

Number of 
cycles 

BP  
(time in 
msec) 

Speed1  
(time in msec)  

for momentum = 0.1 and 
speed = 0.1 

Speed2  
(time in msec)  

for momentum = 0.1 and 
speed = 0.2 

Speed3  
(time in msec)  

for momentum = 0.2 and 
speed = 0.1 

100 2072.9856 1482.1376 1412.0320 1442.0736 
300 4256.1152 2022.9120 1832.6400 1592.2944 
500 6399.2064 2022.9120 2563.6864 2363.3920 
800 9183.2064 2022.9120 3815.4880 3585.1648 

1000 11156.0448 2022.9120 3945.6768 3895.6032 
1200 13038.7584 2022.9120 4746.8288 5097.3184 
1500 16714.0352 2022.9120 5808.3584 5588.0320 

 
Table 2: Comparison of training time between Backpropagation algorithm and proposed algorithm for different 
momentum and speed for Hurst Motor. 
 
The initial learning rate was kept constant for both algorithms. It was chosen carefully so that the 
Backpropagation training algorithm rapidly converges without oscillating toward a global minimum. Then all the 
other learning parameters were tuned by trying different values and comparing the number of successes 
exhibited by five simulation runs that started from the same initial weights. 
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Fig. 1. Variation of time with number of cycles for 8-bit parity problem. 

 
To obtain the best possible convergence, the momentum term and the speed constant are normally adjusted by 
trial and error or even by some kind of random search. Since the optimal value is highly dependent on the 
learning task, no general strategy has been developed to deal with this problem. Thus, the optimal value of these 
two terms is experimental but depends on the learning rate chosen. In our experiments, we have tried eight 
different values for the momentum ranging from 0.1 to 0.8 and for speed constant, we have tried five different 
values ranging from 0.1 to 0.5 and we have run five simulations combining all these values with the best available 
learning rate for BP. But it was shown that some combinations give better results, which is shown in Table 1 for 8-
bit parity problem and in Table 2 for Hurst motor. On the other hand, it is well known that the “optimal” learning 
rate must be reduced when momentum is used. Thus, we also tested combinations with reduced learning rates. 
Table 1 shows the results of training on 8-8-1 network (eight inputs, one hidden layer with eight nodes and one 
output node) on the 8-bit parity problem. It can be observed that training is considered successful for the given 
dataset for speed constant and momentum in table 1. It can be seen from the table 1 that training time is 
drastically reduced in the proposed algorithm. Figure 1 shows the variation of training time with number of cycles 
(epoch) for the Backpropagation and the three different cases for the proposed algorithm for 8-bit parity problem. 
In BP for increase in number of cycles, the training time increases rapidly but in all the cases for the proposed 
speed algorithm the training time increases gradually. Also for the change in the momentum and speed term, 
there was not much difference in the training time. 

-------   for BP 
-◊-◊-◊- present (momentum = 0.1 and speed = 0.2) 

-×-×-×-present (momentum = 0.2 and speed = 0.1) 
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Fig. 2. Variation of time with number of cycles for Hurst Motor. 

 
Table 2 shows the results of training on 5-8-2 network (five inputs, one hidden layer with eight nodes and two 
output node) for the Hurst motor. It was observed that training is also considered successful for the given dataset 
for speed constant and momentum in table 2. It can also be seen from the table 2 that training time is drastically 
reduced in the proposed algorithm. Figure 2 shows the variation of training time with number of cycles (epoch) for 
the Backpropagation and the three different cases for the proposed algorithm for Hurst motor. In BP for increase 
in number of cycles, the training time increases rapidly but in all the cases for the proposed speed algorithm the 
training time increases gradually. Also for the change in the momentum and speed term, there was not much 
difference in the training time. 

Conclusion 

The variant in BP has been proposed for the training of feed forward neural networks. The convergence 
properties of both algorithm have been studied and the conclusion was reached that new algorithm is globally 
convergent. The proposed algorithm was tested on available training tasks. These results point to the conclusion 
that the proposed methods stand as very promising new tools for the efficient training of neural networks in terms 
of time. It also proves to be much more accurate than the existing Backpropagation algorithm. In addition the 
error correction rate achieved is much faster and training time is also much faster as shown in the results. 
The proposed variant has a lower slope signifying a faster training compared to the Backpropagation algorithm 
and it converges to a more stable solution thereby ending the learning process. The Backpropagation algorithm 
on the other hand, may not converge at all throughout the learning process.  

-------   for BP 
-◊-◊-◊- present (momentum = 0.1 and speed = 0.2) 

-×-×-×- present (momentum = 0.2 and speed = 0.1) 
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