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Abstract: Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming 
from n-cube geometry, hypergraph theory, inverse tomography problems, or directly from different models of 
application problems. Basically these problems are NP-complete. The paper considers a set of such problems 
and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of 
techniques.  
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1. Introduction 

A set of diverse combinatorial problems are defined and investigated in terms of discrete structures; in the 
simplest case these are ),( 10 -matrices. Considered optimization problems come from specific subject areas – 
astronomy, medical diagnostics, seismology, etc. and are effectively modeled in terms of n-cube geometry, 
hypergraph degree sequences, image restoration, and other mathematical means. The common to these 
problems is that they look for inverses of some direct simple tasks. Most of these and related problems are NP-
hard therefore approximate and heuristic algorithms are of interest. The area is studied intensively and we will 
brief in references [2-4].    
Approximation algorithms introduced in this paper are based on Lagrangean relaxation and on variable splitting 
technique. These are well known widely implemented techniques of getting approximations. But in each particular 
case it is yet a question if the Lagrangean approach is effective. The problem under consideration is to be 
transformed into a form of Integer Linear Optimization with several groups of constraints. For each group of 
constraints it is necessary to have developed algorithms of their solutions. Finally it is yet a question whether the 
integration into Lagrangean framework will approach the optimal solution. To learn these possibilities a software 
environment is created for experimentations, which in addition provides solutions of Problems 1-3 considered 
below. As a demonstration example the Problem 2 is considered taking into account that differences between 
these problems are not critical. 
Section 2 contains the necessary initial information and problem definitions. )1,0( -matrix interpretations are 
given in Section 3. In Section 4 Lagrangean relaxation method is applied to solve these problems. The splitting 
problems are given in Section 5 where Algorithms to solve the fragmental problems are constructed. 

2. Problem descripion 

We start with listing of minimal set of source problems.  
P1.  n-dimensional unit cube subsets with given partition (projection) sizes [4].  
Vertices of n -dimensional unit cube is given by { }nixxxE in

n ,1},1,0{/),,( 1 =∈= . Consider partition of 
nE  into the two subcubes 1

1
−
=

n
xi

E  and 1
0

−
=

n
xi

E  in accord to values of an arbitrary variable ix . Similarly, each 

vertex subset nEM ⊂  can be partitioned into the 1=ixM  and 0=ixM . 
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Let M  be an m -vertex subset of nE . The vector ),,( 1 nssS =  is called associated (characteristic) 

vector of partitions for the set M  if 1==
ixi Ms  for nii ≤≤1, . The existence problem in this regard is to 

find out the existence of an m -vertex subset of nE  with given associated vector of partitions and a Boolean 
function by the given associated vector of activities. I 
P2. Uniform hypergraphs with given Subsumed graphs’ Degree Sequences 

2≥k  is an integer and )(GV  is the vertex set with kGV ≥)( . Edges )(GE  of G  are defined as members 

of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
GV )(

 which is the set of all k -subsets of )(GV . If G  is k -hypergraph, 3≥k  and )(GVu∈ , then a 

)1( −k -hypergraph uG  is defines as follows. The vertex set uGVGV u −= )()( , and for each edge 
)(GEB∈  with )(GVu∈ , uB −  is included as an edge of )( uGE . We say that G  subsumes the 

collection of hypergraphs { })(/ GVuGu ∈ .  

If G  is a hypergraph and )(GVu∈ , then )deg(u  (degree of u ), the number of edges containing u , is the 
number of edges of the subsumed graph uG . The degree sequence of G  is the multiset 

{ })(/)deg()( GVuuGDegSeq ∈= . 
Problem (Subsumed graphs’ Degree Sequences). [3] 
Given nigDegSeq i ,,1),( =  of n  graphs ngg ,,1 , is there an n  vertex hypergraph G  such that the 
subsumed graphs nGG ,,1  satisfy )()( ii gDegSeqGDegSeq =  for ni ,,1= ? 

P3. Reconstruction of weighted )1,0( -matrices [4]. 

The general image reconstruction problem is defined as follows: an image of ( nm× ) pixels of p  different 
colors, has to be reconstructed. We are given the number ),( cir  of pixels of each color c  in each row i  and 
also the number ),( cjs  of pixels of each color c  in each column j ; is it possible to reconstruct an image, for 
all cji ,, ? 

3. (0,1) matrix model of problems P1. P2. P3 

Consider a )1,0( -matrix A  of size nm× . Let ),,( 1 mrrR =  and ),,( 1 nssS =  denote the row and 
column sums of A  respectively, and let ),( SRU  be the set of all )1,0( -matrices with row sums R  and 
column sums S . A necessary and sufficient condition for the existence of a )1,0(  matrix of the class ),( SRU  
was found by Gale and Ryser [R,1966].  
We reformulate the basic problems P1, P2 and P3 in terms of )1,0( -matrices. Common to all problems are the 
given integer vectors ),,( 1 mrrR =  and ),,( 1 nssS = .  

Problem 1. Existence of a )1,0(  matrix with different rows in the class ),( SRU   

Given vectors ),,( 1 mrrR =  and ),,( 1 nssS = . Does there exist a matrix  }{ , jixX =  in the class 
),( SRU  with different rows? 

Problem 2. Existence of a )1,0(  matrix in the class ),( SRU , with given intersections of pairs of rows 

Given ),,( 1 mrrR = , ),,( 1 nssS =  and )',,'(' 21
mC

rrR =  vectors. Enumerate pairs of rows and let 

)'','( iip  indicates the number of the pair )'','( ii  for mii ≤<≤ '''1 . Then the problem is in existence of 
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a matrix }{ , jixX =  in the class ),( SRU  with the following property: rows 'i  and ''i  intersect (by 1’s) in 

)'','(' iipr  places. 

Problem 3. Existence of a )1,0(  matrix in the class ),( SRU  with given intersections of adjacent pairs of 
rows 
Given vectors ),,( 1 mrrR = , ),,( 1 nssS =  and )',,'(' 11 −= mrrR . Does there exist a matrix  

}{ , jixX =  in ),( SRU  with the given intersections of adjacent pairs of rows - rows i  and 1+i  intersect (by 
1’s) in exactly ir '  places ( 1,,1 −= mi )? 

Note . Consider rows 'i  and ''i  and let ''' ii rr ≤ .  If rows are different, then their intersection size is less than 

''ir . Assuming that mrr ≤≤1 , the requirement of different rows in Problem 1 can be replaced by the 
property: intersection size for all pairs of rows, ( 'i , ''i ), mii ≤<≤ '''1  is less than ''ir . 
While the Problem 2 is NP-complete, the complexity of Problems 1 and 3 are not known: Problem 1 is a well 
known open problem [4]. Complexity issue of the Problem 3 is not addressed yet. 

4. Integer linear programming formulations and Lagrangean relaxation formulas 

Let X  be a )1,0( -matrix of size nm× . Enumerate pairs of rows and let )'','( iip  indicates the number of the 
pair )'','( ii , for mii ≤<≤ '''1 . For each pair of rows, )'','( ii , we define n  binary variables jiipy ),'','( , such 
that. )1(&)1()1( ,'','),'','( ==⇔= jijijiip xxy . 

Obviously it can be provided by the following set of algebraic conditions:   
⎪
⎩

⎪
⎨

⎧

−+≥

≤

≤

1,'','),'','(

,''),'','(

,'),'','(

jijijiip

jijiip

jijiip

xxy

xy

xy

  

Now Problems 1-3 above can be formulated in terms of integer linear programming. We focus only on Problem 2 
giving the details for that case. Problems 1 and 3  can be reformulated as integer programming, then relaxed and 
solved, - by a similar way.  
Recall that we assume mrr ≤≤1 . 

Problem IP2 Given integer vectors ),,( 1 mrrR = , ),,( 1 nssS =  and )',,'(' 21
mC

rrR = . The problem 

is in existence of an nm×  binary matrix  }{ , jixX =  and a nCm ×)( 2  binary matrix }{ , jiyY =  such that  

(IP2)
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3. Lagrangean relaxation and variable splitting 

In a way to solve this problem we apply the Lagrangean relaxation and variable splitting technique.  
Lagrangean relaxation for integer linear programming 
Consider the following optimization problem 

(P)  },,/{ Ζ∈≤≤ xdCxbAxfxMaxx  in which some constraints are complicating (suppose bAx ≤ ), in 
the sense that one would be able to solve the same integer programming problem has these constraints not been 
present: },/{ Ζ∈≤ xdCxfxMaxx . One can take advantage of this situation by constructing a so-called 

Lagrangean relaxation in the following way. Let 0≥λ  be a vector of multipliers and let ( λLR ) be the problem  

( λLR ) Ζ∈≤−+ xdCxAxbfxMaxx ,/)({ λ . ( λLR ) is the Lagrangean relaxation of (P). Let )( λLRv  is 

the value of optimal solution of ( λLR ). The problem ( LD )  )(0 λλ LRvMin ≥  is called the Lagrangean dual of 

(P) relative to the bAx ≤ . The optimal value of LD  is a smallest upper bound on the optimal value of (P). For 
Problem 2 we will use variable splitting technique - we split our problem into separate vertical and horizontal 
subproblems, then the horizontal subproblem is further separated into subproblems for each pair of rows. Thus 
we consider Lagrangean relaxation of (IP2). We duplicate variables jix , , getting 2 independent sets of variables 

h
jix ,  and v

jix , , and then dualize the copy (duplication) constraint using Lagrangean multipliers jiλ , . 

(IP2LR) 
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Split the problem into sub problems – horizontal and vertical 

(IP2-v) 
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 (IP2-h) 
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Using similar reasons IP2-h is split into subproblems for each pair of rows: 

(IP2-h1) 
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Further we apply an iterative procedure to find the optimisation coefficients jiλ , . On each iteration we consider  
2
mC +1 separate subproblems ( 2

mC  horizontal and 1 vertical). Each horizontal subproblem is formulated as a 
parameterised set system problem.  

4. Algorithms for solving subproblems for pairs of rows 

(IP2-h1) is equivalent to the following problem. 

Problem of Weighted Threads. Given 2 sets of weighted elements },,{' ''
1 nxxX = and 

},,{'' ''''
1 nxxX = . 0' ≥iα  is the weight of '' Xxi ∈ , and 0'' ≥iα  is the weight of '''' Xxi ∈ . Given 

also positive integers ''*,'''*,,'',' rrrrrrr <≤ . The problem is in finding subsets ''
~

XX ⊆  and 

''''
~

XX ⊆ ,  such that: ''
~

rX =  and ''''
~

rX = , and  
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1. max
~

''
~

' ''

''

'

' →∑+∑
∈∈ Xx

i
Xx

i
ii

αα  

2. *
~

''
~

'''' '','/),( rXxXxxx iiii =
⎭
⎬
⎫

⎩
⎨
⎧ ∈∈    

In its short description a three stage selection algorithm is constructed.  

1. Arranging elements in 'X  and ''X  by decreasing order of their weights },,{' ''
1 nii xxX = ,  

''
1 nii xx ≥≥ , and },,{'' ''''

1 njj xxX = , ''''
1 njj xx ≥≥  and taking the first iteration for '~X  and ''~X   

as },,{ '''
' '1 riir xxX =  and },,{ ''''''

'' ''1 rjjr xxX = .  

2. If  *rY =  then '
'rX  and ''

''rX  are the required subsets. Otherwise consider cases: 

a) *
0 rrY <=  and  b) *

0 rrY >= . It is enough to consider the first case: 

 
Shift the elements of Y  to the left.  

1 2 n
0r 0' rr −

Y Z W
0'' rr −

1 2 n
0r 0* rr −

Y
0

* rrZ− W

 
Arrange elements (pairs) in WZ ∪  by decreasing order of sum of elements (weights) of the pair and denote 

by 0
* rrZ −  first 0

* rr −  elements,  and by W  - the reminder: 

Construct the sets 
~
'X  and 

~
''X  by the elements of 0

* rrZY −∪  (first element of each pair goes to 
~
'X , 

second goes to 
~

''X ). Remaining *' rr − elements of 
~
'X  and *'' rr − elements of 

~
''X are formed as follows: 

Arrange elements by decreasing order in 
'W  and 

''W , where 
'W  and  

''W  consist of respectively the first 

(belonging to 'X )  and second (belonging to ''X )  elements of pairs of W . Consider first *' rr −  subset in 

each set and denote them by *'
'

rrW −  and *'
''

rrW − . Subsets of remaining elements we denote by  remW '
 

and remW
''

. 

1. If there are no elements with the same index in *'
'

rrW −  and *'
''

rrW − , then these elements go to the 
~
'X  

and 
~

''X  respectively.   
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2. Otherwise we replace the last element in subset *'
'

rrW −  by the first element of remW '
 or replace the last 

element in *'
''

rrW −  by the first element of remW
''

 depending on the sum of corresponding weights. 

Remaining 
''' rr −  elements for  

~
''X  we take from 

''W . 
Problem of Weighted Threads is just one example of fragmental problems that arise in splitting of optimisation 
of (0,1) matrices. A series of similar problems arise when different conditions are applied as a consequence of 
application area modelling. These problems are relatively simple and a large set of them and their solutions are 
collected in a software library serving the experimentation software system created in this regard.  

5. Conclusion 

Lagragean relaxation and the related set of techniques is one of the ways of constructing approximation 
algorithms for hard and unsolved combinatorial problems. A compact class of optimisation problems are 
effectively modelled in terms of (0,1) matrices. During the Lagrangean relaxation a number of relatively simple 
optimisation problems arise as a result of splitting the problems into fragmental subproblems. The Weighted 
Threads Problem of this class is solved and the whole chain of approximation is formalised for an example 
demonstration problem. A software system created on this base provides experimentation environment for 
treatment of combinatorial NP problems.  
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