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Abstract: Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming
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and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of
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1. Introduction

A set of diverse combinatorial problems are defined and investigated in terms of discrete structures; in the
simplest case these are (0,1)-matrices. Considered optimization problems come from specific subject areas —

astronomy, medical diagnostics, seismology, etc. and are effectively modeled in terms of n-cube geometry,
hypergraph degree sequences, image restoration, and other mathematical means. The common to these
problems is that they look for inverses of some direct simple tasks. Most of these and related problems are NP-
hard therefore approximate and heuristic algorithms are of interest. The area is studied intensively and we will
brief in references [2-4].

Approximation algorithms introduced in this paper are based on Lagrangean relaxation and on variable splitting
technique. These are well known widely implemented techniques of getting approximations. But in each particular
case it is yet a question if the Lagrangean approach is effective. The problem under consideration is to be
transformed into a form of Integer Linear Optimization with several groups of constraints. For each group of
constraints it is necessary to have developed algorithms of their solutions. Finally it is yet a question whether the
integration into Lagrangean framework will approach the optimal solution. To learn these possibilities a software
environment is created for experimentations, which in addition provides solutions of Problems 1-3 considered
below. As a demonstration example the Problem 2 is considered taking into account that differences between
these problems are not critical.

Section 2 contains the necessary initial information and problem definitions. (0,1) -matrix interpretations are

given in Section 3. In Section 4 Lagrangean relaxation method is applied to solve these problems. The splitting
problems are given in Section 5 where Algorithms to solve the fragmental problems are constructed.

2. Problem descripion

We start with listing of minimal set of source problems.
P1. n-dimensional unit cube subsets with given partition (projection) sizes [4].

Vertices of n -dimensional unit cube is given by E” = {(xl, ox, ) x, {0}, i = 1_n} Consider partition of
E" into the two subcubes E ”:11 and E;’[‘jo in accord to values of an arbitrary variable x;. Similarly, each

X;=.

vertex subset M — E” can be partitioned into the M __, and M __,.
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Let M be an m -vertex subset of E". The vector S = (s,,---,s,) is called associated (characteristic)
vector of partitions for the set M if s, = ‘Mx'zl‘ for i,1<i<mn. The existence problem in this regard is to

find out the existence of an m -vertex subset of £" with given associated vector of partitions and a Boolean
function by the given associated vector of activities. |

P2. Uniform hypergraphs with given Subsumed graphs’ Degree Sequences
k > 2 isaninteger and V' (G) is the vertex set with |V(G)| > k. Edges E(G) of G are defined as members

V(G
of ( (k )j which is the set of all & -subsets of V'(G) . If G is k -hypergraph, £ >3 and u € V' (G), then a

(k—1)-hypergraph G, is defines as follows. The vertex set V(G,) =V (G)—u, and for each edge
B e E(G) with ueV(G), B—u is included as an edge of E(G,). We say that G subsumes the
collection of hypergraphs {Gu lue V(G)}.

If G is a hypergraph and u € V' (G), then deg(u) (degree of u ), the number of edges containing # , is the
number of edges of the subsumed graph G,. The degree sequence of G is the multiset
DegSeq(G) = {deg(u)/u € V(G)}.

Problem (Subsumed graphs’ Degree Sequences). [3]

Given DegSeq(g,),i=1,---,n of n graphs g,,---,g,,is there an n vertex hypergraph G such that the
subsumed graphs G, -+, G, satisfy DegSeq(G,) = DegSeq(g,) for i=1---,n?

P3. Reconstruction of weighted (0,1) -matrices [4].

The general image reconstruction problem is defined as follows: an image of (72 X n) pixels of p different
colors, has to be reconstructed. We are given the number 7 (i, ¢) of pixels of each color ¢ in each row i and
also the number s(j,c) of pixels of each color ¢ in each column j ; is it possible to reconstruct an image, for
all 7, j,c?

3. (0,1) matrix model of problems P1. P2. P3

Consider a (0,1) -matrix A4 of size mxn. Let R=(#,---,r,) and S =(s;,---,s,) denote the row and
column sums of A respectively, and let U(R,S) be the set of all (0,1) -matrices with row sums R and

column sums S . A necessary and sufficient condition for the existence of a (0,1) matrix of the class U (R, .S)
was found by Gale and Ryser [R,1966].

We reformulate the basic problems P1, P2 and P3 in terms of (0,1) -matrices. Common to all problems are the
given integer vectors R = (7;,---,7,) and S =(s;,---,s,) .

Problem 1. Existence of a (0,1) matrix with different rows in the class U(R,S)

Given vectors R =(r,---,7,,) and S =(s;,"-,s,). Does there exist a matrix X ={x; ;} in the class
U(R,S) with different rows?

Problem 2. Existence of a (0,1) matrix in the class U(R,S), with given intersections of pairs of rows

Gven R=(n,---,1,), S=(s,--,s,) and R'= (r'l,---,r'ci) vectors. Enumerate pairs of rows and let

p(i',i") indicates the number of the pair (i',i"") for 1<i <i <m. Then the problem is in existence of
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amatrix X ={x, ;} in the class U(R,S) with the following property: rows ' and i"" intersect (by 1's) in
e places.

Problem 3. Existence of a (0,1) matrix in the class U (R,S) with given intersections of adjacent pairs of
rows

Given vectors R=(x,---,r,), S=(s,---,s,) and R'=(r',---,7', ;). Does there exist a matrix
X ={x, ;} in U(R,S) with the given intersections of adjacent pairs of rows - rows i and i +1 intersect (by
I's)in exactly 7', places (i =1,---,m —1)?

Note . Consider rows i' and i'' and let 7. <r.. If rows are different, then their intersection size is less than

7. Assuming that 7; <--- <, , the requirement of different rows in Problem 1 can be replaced by the

property: intersection size for all pairs of rows, (i',i"), 1<i'<i'"'< m isless than 7,..

While the Problem 2 is NP-complete, the complexity of Problems 1 and 3 are not known: Problem 1 is a well
known open problem [4]. Complexity issue of the Problem 3 is not addressed yet.

4. Integer linear programming formulations and Lagrangean relaxation formulas

Let X be a (0,1) -matrix of size m x n . Enumerate pairs of rows and let p(i',i'") indicates the number of the
pair (i',i
that. (¥,m,; =1 < (x.; =) & (x,., =1).

), for 1<i <i <m. Foreach pair of rows, (i',i"'"), we define » binary variables Y p(iiny.j » SUCh

Yot <X
Obviously it can be provided by the following set of algebraic conditions:  § ¥, i ; < X ;

yp(lt)/—x T X, -1

Now Problems 1-3 above can be formulated in terms of integer linear programming. We focus onIy on Problem 2
giving the details for that case. Problems 1 and 3 can be reformulated as integer programming, then relaxed and
solved, - by a similar way.

Recall that we assume 7} < -+~ <7, .
Problem IP2 Given integer vectors R = (#;,---,7,), S =(s;,---,s,) and R'= (r'l,---,r'c2 ). The problem

is in existence of an m x n binary matrix X ={x, ;} and a (C2)x n binary matrix Y ={y, ;} such that

(1)Zx,,— j =L

(Z)lej_rl_ ,m

Yowing < Xi
(IP2)3 3 Y pgrin.; < i 1<i<i <m, j=1-n

LY

Yoty 2 Xy + Xy —1

DD Yyim, = o 10 <i"<m
i=1

©®)x,, € {05, y,, {01}
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3. Lagrangean relaxation and variable splitting

In a way to solve this problem we apply the Lagrangean relaxation and variable splitting technique.

Lagrangean relaxation for integer linear programming

Consider the following optimization problem

(P) Max {fx! Ax <b,Cx <d,x € Z} in which some constraints are complicating (suppose Ax < b), in
the sense that one would be able to solve the same integer programming problem has these constraints not been
present: Max {fx/Cx <d,x e Z}. One can take advantage of this situation by constructing a so-called

Lagrangean relaxation in the following way. Let 4 > O be a vector of multipliers and let ( LR, ) be the problem

(LR,) Max {fx+A(b—Ax)/ Cx <d,x e Z.(LR),) is the Lagrangean relaxation of (P). Let v(LR,) is
the value of optimal solution of (LR, ). The problem (LD) Min, ,v(LR,) is called the Lagrangean dual of

(P) relative to the Ax < b. The optimal value of LD is a smallest upper bound on the optimal value of (P). For
Problem 2 we will use variable splitting technique - we split our problem into separate vertical and horizontal
subproblems, then the horizontal subproblem is further separated into subproblems for each pair of rows. Thus

we consider Lagrangean relaxation of (IP2). We duplicate variables x; Iz getting 2 independent sets of variables

xh and xl o and then dualize the copy (duplication) constraint using Lagrangean multipliers /11.1 j
max{z/l (x,j —x; )}
(1)Zx;j =5, j=Ln
(@Z%,wz— m
h
(IP2LR) Vi S X
()Y i <X 1<i <i <m, j=1-,n
Vo 2 xl.’?'j +xi’?.’j -1
B0 = o 1<i<i"<m
j=1
(5)xfj,x:j €{01}, 5, {0}

Split the problem into sub problems — horizontal and vertical

(max{y B, x/ )}

(|P2-V) (1)%)(,'1‘)’] :Sj’j :1’...’,/1
i=1

(2)x!, < {03




18

(IP2-h)
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max{>_a, x!' }

(1)le.’fj =r, i=Ll-m
j=

< h
Vping =i

(2) yp(i',i"),j < xj}'l"_/‘ 1S il < l'" < m, ] :1’--.”1

h h
Yoing 2 ¥y + Xy =1
n
(3)Zyp(i.’[..)yj =" i 1<i'<i"<m
=

(4)xl.lfj €{01},y,, {01}

Using similar reasons IP2-h is split into subproblems for each pair of rows:

(IP2-h1)

Further we apply an iterative procedure to find the optimisation coefficients /li, Iz On each iteration we consider

C,i +1 separate subproblems (C,i horizontal and 1 vertical). Each horizontal subproblem is formulated as a

max{ Zl(oc'jx'j +ajxj)}
j:
D Zx'j =7, Zx;. =r"
j=1 j=1

Y <X,
(2) ijx;. j=1--n

Y, Zx'j +x‘]'. -1
3 Eyj =
j=1

(4)x),x;€ {0y, {01}, j=1--n

parameterised set system problem.

4. Algorithms for solving subproblems for pairs of rows

(IP2-h1) is equivalent to the following problem.

Problem of Weighted Threads. Given 2 sets of weighted elements X'={xi,---,x;1} and

X"={x,--,x, } o, >0 is the weight of x, € X', and o, >0 is the weight of x, € X"". Given
also positive integers 7', 7", ¥*, r'< ", ¥*<r". The problem is in finding subsets X' X' and

X"c X", suchthat:

X":r' and

XII

=7 ,and
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L2 o+ 2 o, = max
x,eX' x eXx"

*
=r

2. {(x,'.,x;)/x; € )~(', X, € )}}

In its short description a three stage selection algorithm is constructed.

1. Amanging elements in X' and X' by decreasing order of their weights X' ={x, - x 3
)cl'.1 > > xl . and X—”:{x;l,---,x;.n}, x; > > xj and taking the first iteration for X' and X"
as X, ={x,,~--,x, } and X, ={x;1,---,x;r_"}.

2. If ‘Y ‘ =7 then X r and X r are the required subsets. Otherwise consider cases:

a) ‘Y‘ =1y < " and b) ‘Y‘ =1y > rltis enough to consider the first case:

Shift the elements of Y to the left.

12 ces n 12 e n
r, r'=r, r, r*-—r,
—— —— —
Y Z W Y 7, W
%"/_J
r-r,

Arrange elements (pairs) in Z \U W by decreasing order of sum of elements (weights) of the pair and denote

by Er*_ro first 7~ — 1, elements, and by W - the reminder:

Construct the sets X" and X" by the elements of ¥’ Ufr*_ro (first element of each pair goes to X",

second goesto X"'). Remaining 7'—r eIements of X and 7' —r elements of X are formed as follows:
Arrange elements by decreasing order in W and W where W and W consist of respectlvely the first
(belonging to X') and second (belonging to X'") elements of pairs of W. Consider first 7'—7 subset in

each set and denote them by W _,~ and W ,—,*. Subsets of remaining elements we denote by W rem

and W rem .

1. If there are no elements with the same index in W ,»_,~ and W ,+_,~ , then these elements go to the X'

and X' respectively.
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2. Otherwise we replace the last element in subset W ,+—, by the first element of W em or replace the last

element in W »'—r" by the first element of W rem depending on the sum of corresponding weights.

Remaining " =7 elementsfor X" we take from W .

Problem of Weighted Threads is just one example of fragmental problems that arise in splitting of optimisation
of (0,1) matrices. A series of similar problems arise when different conditions are applied as a consequence of
application area modelling. These problems are relatively simple and a large set of them and their solutions are
collected in a software library serving the experimentation software system created in this regard.

5. Conclusion

Lagragean relaxation and the related set of techniques is one of the ways of constructing approximation
algorithms for hard and unsolved combinatorial problems. A compact class of optimisation problems are
effectively modelled in terms of (0,1) matrices. During the Lagrangean relaxation a number of relatively simple
optimisation problems arise as a result of splitting the problems into fragmental subproblems. The Weighted
Threads Problem of this class is solved and the whole chain of approximation is formalised for an example
demonstration problem. A software system created on this base provides experimentation environment for
treatment of combinatorial NP problems.
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