
International Book Series "Information Science and Computing"

75

MINIMIZATION OF REACTIVE PROBABILISTIC AUTOMATA

Olga Siedlecka

Abstract: The problem of finite automata minimization is important for software and hardware designing. Different
types of automata are used for modeling systems or machines with finite number of states. The limitation of
number of states gives savings in resources and time. In this article we show specific type of probabilistic
automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic
automata), and definitions of languages accepted by it. We present definition of bisimulation relation for
automata's states and define relation of indistinguishableness of automata states, on base of which we could
effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s
minimization with determination of its complexity and analyse example solved with help of this algorithm.

Keywords: minimization algorithm, reactive probabilistic automata, equivalence of states of automata,
bisimulation relation.

ACM Classification Keywords: F. Theory of Computation, F.1 Computation by Abstract Devices, F.1.1 Models
of Computation, Automata; F.4 Mathematical logic and formal languages, F.4.3 Formal Languages

Conference: The paper is selected from XIVth International Conference "Knowledge-Dialogue-Solution" KDS 2008, Varna,
Bulgaria, June-July 2008

Introduction

The problem of finite automata minimization appeared in the end of fifties of last century and its main point is to
find automata with the minimum number of states accepting the same language as input automata. During last
fifty years many algorithms for minimization of finite deterministic automata came into existence, most of which
(except Brzozowsky algorithm which is based on derivatives [Brzozowski, 1962]), is based on equivalence of
states. One of the most popular minimization algorithms is Hopcroft and Ullman's algorithm with running time
O(|Σ|n2) (where |Σ| is the number of symbols in the alphabet, n is the number of states) [Hopcroft, 2000]. Another
algorithm with the same time complexity, but better memory complexity (O(|Σ|n)) is Aho-Sethi-Ullman's algorithm
[Aho, 2006]. The most efficient deterministic finite automata minimization algorithm is Hopcroft's algorithm
[Hopcroft, 1971] with time complexity O(|Σ|nlogn).
In the same period of time scientists were searching for another models of computation. They developed
probabilistic automata [Rabin, 1963], which are extensions of Markov chains with read symbols [Sokolova, 2004],
models of finite automata over infinite words [Thomas, 1990], timed automata [Alur, 1994], hybrid automata
[Henzinger, 1998] etc. We can find their ontological review in article: [Kryvyi, 2007]. It became important to find
minimization algorithms for new types of automata. So far minimization of reactive probabilistic automata hasn't
been described.

Probabilistic automata

It exists many types of probabilistic automata which differs with properties, applications or probability distributions
(continuous or discrete). Their review we can find in article [Sokolova, 2004]. Hereunder we itemize few of
probabilistic automata's types with discrete probability distribution: the reactive automata, the generative
automata, the I\O automata, the Vardi automata, the alternating model of Hansson, the Segala automata, the
bundle probabilistic automata, the Pnueli-Zuck automata and others.
The algorithm showed in article was formulated for the reactive probabilistic automata.

Algorithmic and Mathematical Foundations of the Artificial Intelligence

76

A reactive probabilistic automata is a triple PA=(Q, Σ, δ), where Q is the finite set of states, Σ is the finite set of
input symbols (an alphabet), δ is the transition probability function given by δ:Q×Σ→D(Q) (where D(Q) is the set
of all discrete probability distribution on the set Q) [Sokolova, 2004] .
An initial reactive probabilistic automata with accepting states is a five PA=(Q, Σ, δ, q0, F), in which we have
additionally two elements: q0 - a member of Q, is the start state, F⊂ Q is the set of final (accepting) states.
After reading given symbol automata is in state of superposition of
states: p0q0+p1q1+...+pnqn, where p0+p1+...+pn=1. Henceforth we will
use shorter name of probabilistic automata within the meaning of initial
reactive probabilistic automata with accepting states. An example of
this type of automata we show on figure 1.
The probability of going from state q1 to state q2 after reading symbol σ
we denote as δ(q1,σ)(q2)=p. An extended transition probability function,
denoted by the same notation δ is given by:

 q1, w
q Q

q1, w q q, [Cao, 2006].

The language accepted by the probabilistic automata is defined as
function LPA:Σ*→[0,1], such that:

∑
∈

=Σ∈∀
Fq

PA wwqwLw))(,()(, 0
* δ [Cao, 2006].

We say that language L is recognized with bounded error by an
automata PA with interval (p1,p1), if p1<p2 and p1=sup{Pw|w∉L}, p1=inf{Pw|w∈L} [Golovkins, 2002].
We say that language L is recognized with probability p, if the language is recognized with interval (1-p,p)
[Golovkins, 2002].
We say that language L is recognized with probability 1-ε, if for every ε>0 there exist an automata which
recognizes the language with interval (ε1,1-ε2), where ε1,ε2≤ε [Golovkins, 2002].

Bisimulation and indistinguishableness

Let R be an equivalence relation on the set S, and let P1,P2∈D(S)
be discrete probability distributions. Then
P1≡RP2⇔∀C∈S/R:P1[C]=P2[C], where C is an equivalence class
[Sokolova, 2004].
Let R be an equivalence relation on the set S, let A be a set, and
P1,P2∈D(S) be discrete probability distributions. Then:

P1≡R,AP2 ⇔ ∀C∈S/R, ∀a∈A: P1[a,C]=P2[a,C] [Sokolova, 2004].
Let PA1=(S, Σ, δ) and PA2=(T, Σ, δ) be two reactive probabilistic
automatas. A bisimulation relation R⊆S×T exists if for all (s,t)∈R
and for all σ∈Σ:

- if δ(s,σ)=P1 then there exists a distribution P2 with t∈T
such that δ(t,σ)=P2 and P1≡R,ΣP2 [Sokolova, 2004].

States (s,t)∈R we call bisimilar, what is denoted by s≈t.
Let PA1=(S, Σ, δ, q0, FS) and PA2=(T, Σ, δ, q0, FT) be two initial
reactive probabilistic automata with accepting states. We can define indistinguishableness relation N⊆S×T, if for
all (s,t)∈N and for all σ∈Σ:

- (s,t)∈N0 if and only if ((s∈FS∧t∈FT)∨(s∉ FS ∧t∉ FT)),

Fig.1. The initial reactive probabilistic automata

with accepting states

Fig.2. The bisimulation relation on PA

International Book Series "Information Science and Computing"

77

- (s,t)∈Nk if and only if (s,t)∈Nk-1 and
- if δ(s,σ)=P1 then exists the probability distribution

P2 with t∈T such that δ(t,σ)=P2 and P1≡R,ΣP2.
For n=|Q|, we have N⊆Nn-2⊆Nn-3⊆...⊆N1⊆N0. States s,t we call
indistinguishable, what is denoted by s≡t, if there exists
indistinguishableness relation N, such that (s,t)∈N.

Minimization of reactive probabilistic automata

A probabilistic automata PA=(Q, Σ, δ, q0, F) recognizing language
L with probability p we call minimal, if there doesn't exist automata
with smaller number of states recognizing language L with not
smaller probability.
A minimization of probabilistic automata parts on two steps:

- elimination of unreachable states (probability to reach
those states is 0),

- joining of indistinguishable states (using indistinguishableness relation).
First we show on below code elimination of unreachable states:

Alg.1. Algorithm of elimination of unreachable states:

INPUT: PA=(Q,Σ,δ,q0,F)- reactive probabilistic automata.
OUTPUT: PA’=(Q’,Σ,δ’,q0,F’) - reactive probabilistic automata without unreachable
states, recognizing the same language as PA.
1. FOR ALL {q∈Q} DO
2. markedStates[q]←0;
3. END FOR
4. S.push(q0); markedStates[q]←1; pr←0;
5. WHILE {S≠∅} DO
6. p←S.first();
7. S.pop();
8. FOR ALL {σ∈Σ} DO
9. FOR ALL {q∈Q} DO
10. pr←δ(p,σ)(q);
11. IF {pr≠0 ∧ markedStates[q0]=0} THEN
12. S.push(q);
13. markedStates[q]←1;
14. END IF
15. END FOR
16. END FOR
17. END WHILE
18. FOR ALL {q∈Q} DO
19. IF {markedStates[q]=1} THEN
20. Q’.push(q);
21. END IF
22. END FOR
23. F’←F∩Q;
24. FOR ALL {q∈Q} DO
25. IF {markedStates[q]=1} THEN
26. FOR ALL {p∈Q} DO
27. IF {markedStates[p]=1} THEN
28. FOR ALL {σ∈Σ} DO
29. δ’(q,σ)(p)←δ(q,σ)(p);
30. END FOR
31. END IF
32. END FOR
33. END IF
34. END FOR

Fig.3. The indistinguishableness relation on PA

Algorithmic and Mathematical Foundations of the Artificial Intelligence

78

In this algorithm S is auxiliary stack, on which we put states, which we can reach with non-zero probability going
out from the start state q0. The transition probability function δ(p,σ)(q) gives probability pr of reaching state q,
going out from state p, reading symbol σ. The running time of the algorithm time is bounded by:

T(n,|Σ|) ≤ a(7+9n+2|Σ|n+2n2+6|Σ|n2)+c(4+8n+2|Σ|n +3n2 +5|Σ|n2) ,
where a is time of an assignment and c is time of comparison, clearly O(|Σ|n2) is the time complexity of this
algorithm.
In the algorithm of joining indistinguishable states we use already defined indistinguishableness relation. In one
word, states to be indistinguishable, have to be in the same equivalence class, and must have the same
probability distribution for symbols and equivalence classes, which can be reach from this states. Inspired by
Hopcroft-Ullman's algorithm [Hopcroft, 2000], first we assume that all pairs of states are indistinguishable, above
that, that first element of pair is member of final states' set and second isn't. Next analysing all pair of states and
all symbols we find distinguishable states, until the moment that any change is made. Algorithm analyses
probability distributions of reaching state from state.

Alg.2. Algorithm of joining indistinguishable states:

INPUT: PA=(Q,Σ,δ,q0,F) - reactive probabilistic automata.
OUTPUT: PA’=(Q’,Σ,δ’,q0’,F’) - minimal reactive probabilistic automata recognizing
language LPA.
1. FOR {i←0; i<|Q|; i←i+1} DO
2. FOR {j←0; j≤i; j←j+1} DO
3. IF {(qi∈F ∧ qj∉F) ∨ (qi∉F ∧ qj∈F)} THEN
4. Dqi,qj←1;
5. ELSE
6. Dqi,qj←0;
7. END IF
8. END FOR
9. END FOR
10. FOR {i←1; i<|Q|; i←i+1} DO
11. FOR {j←0; j<i; j←j+1} DO
12. IF {Dqi,qj=0} THEN
13. FOR ALL {σ∈Σ} DO
14. E1←0, E2←0, N1←0, N2←0;
15. FOR ALL {p∈Q} DO
16. IF {Dqi,p=0} THEN
17. E1←E1+δ(qi,σ)(p);
18. ELSE
19. N1←N1+δ(qi,σ)(p);
20. END IF
21. IF {Dqj,p=0} THEN
22. E2←E2+δ(qj,σ)(p);
23. ELSE
24. N2←N2+δ(qj,σ)(p);
25. END IF
26. END FOR
27. IF {E1≠E2 ∨ N1≠N2} THEN
28. Dqi,qj←1; break;
29. END IF
30. END FOR
31. END IF
32. END FOR
33. END FOR
34. Q’←Q, F’←F, q0’←q0;
35. FOR {i←1; i<|Q|; i←i+1} DO
36. FOR {j←0; j<i; j←j+1} DO
37. IF {Dqi,qj=0} THEN
38. Q’←Q’\{qi,qj}, Q’←Q’∪{qij};
39. IF{qi∈F} THEN
40. F’←F’\{qi,qj}, F’←F’∪{qij};

International Book Series "Information Science and Computing"

79

41. END IF
42. IF {j=0} THEN
43. q0←qj;
44. END IF
45. END IF
46. END FOR
47. END FOR
48. FOR ALL {q1×q2×σ ∈ Q’×Q’×Σ} DO
49. IF {q1∉Q ∧ q1=p1p2 : p1p2∈Q} THEN
50. δ’(q1,σ)(q2)← δ(p1,σ)(q2);
51. ELSIF {q2∉Q ∧ q2=p1p2 : p1p2∈Q } THEN
52. δ’(q1,σ)(q2)← δ(q1,σ)(p1)+δ(q2,σ)(p2);
53. ELSE
54. δ’(q1,σ)(q2)← δ(q1,σ)(q2);
55. END IF
56. END FOR

Analyzing algorithm in details: on input we have reactive probabilistic automata; on output we get minimal
automata that accept the same language as input automata. In lines 1 to 9 we tentatively fill structure D, which is
lower triangular matrix of all combination of automata's states. In place where one of the states is final and
second isn't, we set value 1, because states are distinguishable. In other case we set 0, providing that all other
pairs of states are indistinguishable. In lines 10 to 33 is the main part of algorithm, which decides if states are
equal or not, comparing probability distributions. First (line 12) we verify if pair of states is indistinguishable
Dqi,qj=0 (otherwise it makes no sense in analyzing them). For every symbol from alphabet Σ we reset value of
auxiliary variables E1, E2, N1, N2, in which we will sum probabilities of reaching distinguishable states N or
indistinguishable states E. States will be generally recognized as indistinguishable if values of E1, E2 and N1, N2
will be respectively equal. If for two analyzed states, for any symbol of alphabet, we get different values of those
variable, loop is interrupted (line 28), because states are distinguishable and we go to next iteration. In the last
part of algorithm (from line 34) we create output automata, so we replace indistinguishable states by single
states, and calculate values for transition probability function (from line 48). Depending, if we analyze reaching
state or going out from new state, values of probability will be summed or copied. The running time of the
algorithm is bounded by:

T(n,|Σ|) ≤ a(5 + 4.5n - 3.5|Σ|n + 7.5n2 + 2|Σ|n2+ 3n3 + 1.5|Σ|n3)+
c(2 + 7n - 2.5|Σ| n + 7n2 + |Σ| n2 + 7n3 + 1.5|Σ|n3),

so complexity will be O(|Σ|n3).
Lets analyze steps of both algorithms on
example from figure 1. First we reset table
markedStates[qi], which size is 7 (automata
has 7 states). We push on stack start state.
Next we mark with 1 field for this state in
table markedStates[q0]. We pop from the
stack start state and push those, which we
can reach from start state reading symbol 0,
with nonzero probability (those will be q1, q2)
and for symbol 1, respectively q3, q4, in every
case marking them with 1 in table
markedStates[qi]. In next iteration we search
for states we can reach from states put on
the stack. Finally, the only state, which
wasn't marked is q6. In next steps we exclude it from the set of states of automata.
The algorithm of joining indistinguishable states in first part fill structure Dqi,qj with 1 in those places where one of
states is final, and second isn't – for all combinations of other states with state q5. Next we check successively all

Fig.4. a) Elimination of unreachable states b) Joining of indistinguishable states

Algorithmic and Mathematical Foundations of the Artificial Intelligence

80

combinations of states and sum probabilities of going out from this states in variables E1, E2, N1, N2, for
example for states q1, q0, values for this variables are E1=0, E2=1, N1=0, N2=0, so this pair of states is
distinguishable and Dqi,qj=1. Finally structure Dqi,qj has value 1 only for pairs: q1, q2 and q3, q4, which will be
replaced by new single states q12, q34. Probabilities for reaching those states will be summed, and for going out
from them will be copied.

Conclusion

In article we define indistinguishableness relation for reactive probabilistic automata, what give us opportunity to
build minimization algorithm, with complexity O(|Σ|n3). Algorithms will terminate, because number of states or
symbols in alphabet is always limitation for iterations (and we work on finite sets). The probability for accepting
words doesn’t change because it is respectively summed or copied.
The definition of indistinguishableness relation and minimization algorithm is the base for further work on
adequate algorithm for quantum automata.

Bibliography
[Aho, 2006] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition). Addison

Wesley, 2006.
[Alur, 1994] R. Alur, D.L. Dill, A theory of timed automata. Theoretical Computer Science 126, 2 (1994), pp. 183 - 235.
[Brzozowski, 1962] J. A. Brzozowski, Canonical regular expressions and minimal state graphs for definite events. In

Proceedings of the Symposium on Mathematical Theory of Automata (1962), vol. 12 of MRI Symposia Series,
Polytechnic Press of the Polytechnic Institute of Brooklyn, pp. 529 - 561.

[Cao, 2006] Y. Cao, L. Xia, M. Ying, Probabilistic automata for computing with words. ArXiv Computer Science e-prints
(2006).

[Golovkins, 2002] M. Golovkins, M. Kravtsev, Probabilistic reversible automata and quantum automata. Lecture Notes In
Computer Science 2387 (2002), p. 574.

[Henzinger, 1998] T.A. Henzinger, P.W. Kopke, A. Puri P.Varaiya, What s decidable about hybrid automata? Journal of
Computer and System Sciences 57 (1998), pp. 94 - 124.

[Hopcroft, 1971] J.E. Hopcroft, An n log n algorithm for minimizing the states in a finite automaton. In The Theory of
Machines and Computations, Z. Kohavi, Ed. Academic Press, 1971, pp. 189 - 196.

 [Hopcroft, 2000] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation
(2nd Edition). Addison Wesley, 2000.

[Kryvyi, 2007] S. Kryvyi, L. Matveeva, E. Lukianova, O. Siedlecka, The Ontology-based view on automata theory. In
Proceedings of 13-th International Conference KDS-2007 (Knowledge-Dialog-Solution) (Sofia, 2007), ITHEA, Ed., vol. 2,
pp. 427-436.

[Rabin, 1963] M.O. Rabin, Probabilistic automata. Information and Controle 6 (1963), pp. 230 - 245.
[Sokolova, 2004] A. Sokolova, E. de Vink, Probabilistic automata: System types, parallel composition and comparison. In

Validation of Stochastic Systems: A Guide to Current Research (2004), LNCS 2925, pp. 1 – 43.
[Thomas, 1990] W. Thomas, Automata on infinite objects. Handbook of theoretical computer science: formal models and

semantics B (1990), pp. 133 - 191.

Authors' Information

Siedlecka Olga – Institute of Computer and Information Sciences, Czestochowa University of Technology, ul.
Dabrowskiego 73 42-200 Czestochowa, Poland; e-mail: olga.siedlecka@icis.pcz.pl

