
International Book Series "Information Science and Computing"

81

PARALLELIZATION OF LOGICAL INFERENCE
FOR CONFLUENT RULE-BASED SYSTEM1

Irene Artemieva, Michael Tyutyunnik

Abstract: The article describes the research aimed at working out a program system for multiprocessor
computers. The system is based on the confluent declarative production system. The article defines some
schemes of parallel logical inference and conditions affecting scheme choice.

Keywords: Logical Inference, parallel rule-based systems

ACM Classification Keywords: D 3.2 – Constraint and logic languages, I 2.5 Expert system tools and
techniques.

Conference: The paper is selected from XIVth International Conference "Knowledge-Dialogue-Solution" KDS 2008, Varna,
Bulgaria, June-July 2008

Introduction

Production systems (or rule-based systems) are used to develop knowledge-based systems [1]. The set of rules
describes the problem-solving method of the system application. Production systems are preferable to algorithmic
languages as rules usually require terminology of the application domain and are assigned by its ontology [2]
which allows to get a problem-solving method understood by the user.
In confluent production systems, the output does not depend on the order of rules of the logical inference. It
means that all the rules are independent of each other, i.e. the confluent production language does not need
extra language constructions for writing parallel programs and thus for constructing parallel systems to solve
application tasks in knowledge-based systems. This differs them from other classes of production systems and
parallel programming systems based on logical languages [3-5].
A language processor – a production language compiler allocates computations according to a process. When
generating an object code, a language processor analyzes characteristics of the source program, a set of
constraints imposed by the computing environment, characteristics of input data defined by the user and selects
the most applicable scheme of the parallel logical inference.
The aim of this article is to describe schemes of the parallel logical inference implemented by the language
processor of the confluent production system and conditions affecting the scheme choice.

Production System Language Characteristics

The research on ontologies and design knowledge-based systems on their basis makes it possible to formulate
requirements for the language of the confluent production system.
1. The language must allow to represent a problem-solving method as a set of solving methods for subtasks
described by the modules. Each module must have its interface, i.e. data description, that can be used by another
module or that are required for its operation/performance. There must be an explicit condition of a module call,
i.e. among the rules there must be rules the right part of which is a module call.
2. The language must allow to use operations on numeric data and sets. The language must allow to use limited
logical and mathematical quantifiers that are analogs of loops in the rules.

1 This paper was made according to the program № 14 of fundamental scientific research of the Presidium of the
Russian Academy of Sciences, the project 06-I-П14-052

Algorithmic and Mathematical Foundations of the Artificial Intelligence

82

3. The language must admit rules that are dependent on parameters (rule scheme). The scheme assigns a set of
rules, i.e. it can be considered as an analog of a subprogram in the algorithmic language.
The language admits rules of two kinds:
(1) (prefix) P(X) → S1(X1)&…&Sk(Xk), where P(X) is a formula, S1(X1), …, Sk(Xk) are simple formulas, X, X1, …, Xk
are vectors of terms];
(2) (prefix) P(X) → NameMod(S1, …, Sk) is a rule for module call, where P(X) is a formula, NameMod(S1, …, Sk)
is a module name, X is vector of terms, and S1, …, Sk are arguments of the module.
The formula before the symbol «→» is a production antecedent, the formula after the symbol «→» is its
consequent. The antecedent is a logical expression made up of relations, functional terms, atomic formulas,
generalized formulas according the following rules.
Each rule must meet the main antedecent for variables: V({S1(X1), …, Sn(Xn)}) ∪ V(P(X)) ⊆ V(prefix), where V(O)
is a set of variables included into O (O can be any construction).
Prefix is a sequence of descriptions of variables (v1:t1)(v2:t2)...(vm:tm) where (vi:ti) is a description of a variable, vi is
a variable, ti is a term for all i=1,...,m. Term t1 does not contain free variables. For i=2,..., m only variables v1,
v2,...,vi-1 can be free variables of term ti. The sequence of descriptions can be empty. All variables v1, v2,..., vm are
dually different.
The following construction can be called a scheme:
(3) NameSch([.CONST]w1, [.CONST]w2, …, [.CONST]wn): rule where
NameSch is a scheme name, w1, w2, …, wn are variables, rule is of the kind (1). Variables w1, w2, …, wn are
formal parameters of the scheme. The scheme body is a rule and must contain formal parameters. «[.CONST]»
means that «.CONST» can be absent.
The following construction can be called a scheme concretization:
(4) NameSch(zw1, zw2, …, zwn) where NameSch is a scheme name, zw1, zw2, …, zwn are terms that are actual
parameters of the scheme.
The scheme is an analog of a procedure in programming languages, the scheme concretization is an analog of a
procedure call.
A domain symbol (a term of the domain ontology) – name n; variable v; sets I, R, S; empty set ∅; set {t1,t2,...,tk}
where t1,t2,...,tk are terms; intervals I[t1,t2], R[t1,t2] where t1 and t2 are terms; expression t1 ¤ t2 where t1 and t2 are
terms, sign «¤» ∈ {+, -, *, /} , t1 ¤ t2 where t1 and t2 are terms-sets, sign «¤» ∈ {∪, ∩, \} is a sign of operation on
sets; μ(t) is a power of set where t is a term-set, (Zn (v : t1) t2) is a quantifier term where Zn ∈ {+, *, ∪, ∩}, v is a
variable (index of a quantifier term), t1 is a term-set that assigns a range of v, t2 is a term (the body of a quantifier
term) that contains operation index v; f(t1,...,tk) is a functional term where f is a functional symbol (a term of the
domain ontology), t1,...,tk are terms (arguments of functional term) are terms;
p(t1,...,tk) or ¬p(t1,...,tk) where p(t1,...,tk) is an atomic formula, p is a predicate symbol (a term of the domain
ontology), t1,...,tk are terms (arguments of atomic formula); t1 @ t2 where t1 and t2 are terms, sign «@» is a sign of
mathematical relation or relation on sets are simple formulas.
Logical expression f1 @ f2 where «@» ∈ {&, V}; quantifier formula (Zn (v : t) f) where Zn ∈ {&, V}, v is a variable
(index of a quantifier formula), t is a term-set that assigns a range of v, f I a formula (the body of a quantifier
formula) that contains index v are formulas.

Information Graph Definition

A language processor is a compiler that translates a text in the production language into the object code in the
algorithmic high-level language. The object code implements the logical inference assigned by the production
rules and contains calls of modules of the run period support environment. Before the code generation the
language processor makes the program information graph and analyzes its characteristics.

International Book Series "Information Science and Computing"

83

An aligned cyclic graph the vertices of which are rules and arcs of which indicate information relations between
rules, i.e. arcs connect those rules that exchange data, is called the information graph. The arc between two
vertices exists if the following antedecent is met: IF(πj) ∩ THEN(πi) ≠ ∅ where IF(πj) = {o1’, …, oa’} – a set of
terms of a domain included in the antedecent of the rule πj, THEN(πi) = {o1’’, …, ob’’} – a set of terms of a domain
– arguments of the module called in the consequent of the rule πi, or a set of terms of a domain included in the
consequent of the rule πI, i ≠ j. The rule πj will be called dependent on πi. The information graph is created for
each module. So, the information graph of a program is an array of information graphs of its modules.
Let us consider the structures used for representing the information graph of each module and different properties
of a module that can be defined on basis of its graph. The element (i,j) of the incidence matrix IncMatrix with
dimensions μ(Пm) × μ(Пm) where μ(Пm) means the number of module rules is equal to 1 if the j-th rule is a direct
child of the i-th rule, and is equal to 0 otherwise. LoopMatrix stores the information about the graph vertices that
are included in a loop: elements correspondent to the rules not included in a loop are equal to 0, and included –
1. The element of an array iLoopAr with the number i is equal to -1, if the rule i is not included in any of the loops,
is equal to 0 – the rule is included in one of loops but is not a loop entry; if the rule is a loop entry, the element is
equal to the number of direct children of this rule. The number of direct children of the rule i is a value of each
element with the number i of an array iParentsAr.

Using the Information Graph at the Parallelization of Logical Inference

This paper suggests using the “client-server” architecture when a separate process is a dispatcher (main
process), other processes are handling processes (dependent processes) for constructing a parallel production
system. The main process inputs and outputs data, synchronizes them and exchanges data with dependent
processes; it prioritizes rules and provides each process with a subprogram to process a rule. Each dependent
process executes a subprogram that implements the logical inference for the rule, i.e. it searches for all
substitutions at which the condition of the rule applicability is true and for each substitution it performs actions
defined by the consequent of the rule and passes the received data to other processes. Below there are schemes
of the workflow of the main process and dependent process.
Before the main process starts to work, iCurParentsAr – a copy of iParentsAr – is created, at the same time if the
information graph contains loops, we must change values of elements of the array iCurParentsAr in the following
way: if iLoopAr[i] > 1, then iCurParentsAr[i] = iLoopAr[i], i.e. substitute rules-loop entries for the number of parents
that do not belong to loops. Elements of the array iCurParentsAr change their values during the calculations. The
array element i gets equal to -1 if the rule i is being processes, -2 – if the rule i has been processed.
Scheme 1a (main process):
Calculations Begin: μ(Pf) = μ(P); Pw = ∅. Block 1.
LOOP: While exist iCurParentsAr[i] = 0 or Pw ≠ ∅, do: Block 2; Block 3. Loop End.
Block 4. Calculations End.
Block 1 (Start all rules which appropriate to root vertices):
For every free process j from Pf do:

For every element i from array iCurParentsAr: If iCurParentsAr[i] = 0,
then Send(Qi, i, j); iCurParentsAr[i] = -1; Pf = Pf \ {j}; Pw = Pw ∪ {j}.

Block 1 End.
Here Send(Qi, i, j) is a procedure that sends data set Qi into process j and informs process j of the necessity to
calculate rule i; μ(P) is the number of slave processes for calculations; μ(Pf) is the number of free processes.
Data set Qi contains all the values of the objects included in the condition of rule i.
Block 2 (Receive and synchronize results):
1. Recv(Z, i, j); Pw = Pw \ {j}; Pf = Pf ∪ {j}.

Algorithmic and Mathematical Foundations of the Artificial Intelligence

84

2. iCurParentsAr[i] = -2.
3. For all vertices k such as
 iCurParentsAr[k] > 0, do:

3.1. If IncMatrix[i,k] = 1,
then iCurParentsAr[k] = iCurParentsAr[k] – 1;

3.2. If iLooptAr[i] > 0 & iCurParentsAr[k] = -2 & iLoopAr[k] > 0 & THEN(i) ∩ IF(k) ≠ ∅
then iChangedLoopAr[k] = 1.

4. Data = Data ∪ Z;
Block 2 End.
Here Recv(Z, i, j) is a procedure that receives from process j data set Z that are results of computing rule i. Data
set Z contains values of the objects included in the consequent of rule i. Data is a data set that contains all the
values of all the objects included in the rules.

Block 3 (Assign rules ready for computing to free
processes):
For every free process j do:

For every element i from array iCurParentsAr:
If iCurParentsAr[i] = 0
then Send(Qi, i, j); iCurParentsAr[i] = -1.

If Pw = ∅ & not exist elements k from array
iCurParentsAr such as iCurParentsAr[k] = 0 then:

 For every element t from array iCurParentsAr:
 If iCurParentsAr[t] = -2 & iLoopAr[t] > 0 then:

For all vertices s:
If LoopMatrix[t,s]=1 & iCurParentsAr[s]>0
then iCurParentsAr[s] = 0;

Goto Block 3.
Block 3 End.

Block 4 (Make rules which appropriate to loop
vertices ready for repeated calculations):
If exist elements i from array iChangedLoopAr such
as iChangedLoopAr[i] = 1then:

For all rules do:
If k – (distant) child of rule i
then iChangedLoopAr[k] = 1.

 For every element t from array
iChangedLoopAr:

If iChangedLoopAr[t] = 1
then iCurParentsAr[t] = iParentsAr[t];
If iLoopAr[t]>1 then iCurParentsAr[t]=0.

Goto Block 3.
else:
Block 4 End.

Here iChangedLoopAr is an integer array where the element with number i is equal to 1 if loop rule i has been
computed and then appear new values for the objects included in its antecedent; otherwise the element with
number i is equal to 0. This structure is filled in the course of computing the rules and is used to construct a
children list, the children must be computed again.

Scheme 1b (slave process):
Calculations Begin: wRecv(Z, i); wCalc(i, Z, Q); wSend(Q, i); Calculations End

Here wRecv(Z, i) is a procedure that receives from the main process data set Z that contains values of the
objects included in the antedecent of rule i; wSend(Q, i) is a procedure that sends into the main process data set
Q that are the results of computing rule i; wCalc(i, Z, Q) is a procedure that computes rule i with the help of the
logical inference.

International Book Series "Information Science and Computing"

85

Tuple Passing at Incomplete Rule Computation

The previous scheme rigidly specifies that the dependent rule cannot be computed until the rules it is dependent
on have been computed. This scheme does not have such a restriction – the next rule waits for at least one tuple
– the result of the application of the rule it depends on but not the termination of all the rules-parents. If each next
tuple appears at the beginning of the rule application, there can be a situation when all the rules are processed
parallel regardless of how they are connected informationally. However, due to the restrictions connected with the
number of processes of cluster computer free for computation, the number of rules that work parallel cannot
exceed the number of free processes.
Let us complete the above schemes with a series of new operations that will allow loading free processes with
those rules the only parents of which are being computed.
Let iParentsIdAr be an integer array the dimensions of which coincide with the number of module rules, the
element with number i being equal to the number of the parent if vertex i has the only parent. SendPFrom(pfrom,
Qi, i, j) is a procedure that sends data set Q in process j and informs process j of the necessity to calculate rule i,
process j must receive from process pfrom a set of next tuples for the objects included in the antecedent of rule i.
Data set Q contains all the values of the objects included in the antecedent of rule i. SendPTo(pto, pi) is a
procedure that sends in process pi that applies rule i the message about the necessity to send to process pto

tuples for those objects included in the antecedent of rule processed by pto.
Block X1 (Assign additional rules to calculations using tuples passing):
For every free process j from Pf do:
 For every element i from array iCurParentsAr:
 If iCurParentsAr[i] = -1 then
 For every element k from array iParentsIdAr:
 If iParentsIdAr[k] = i then
 iParentsIdAr[j] = -1;
 SendPFrom(pfrom, Qk, k, j);
 iCurParentsAr[k] = -1; Pf = Pf \ {j}; Pw = Pw ∪ {j}.
 SendPTo(pto, pi);
Block X1 End.

Scheme 2a (main process):
Calculations Begin:
μ(Pf) = μ(P); Pw = ∅.
Block 1.
Block X1.
LOOP: While exist iCurParentsAr[i] = 0 or Pw ≠ ∅,
do:
 Block 2.
 Block 3.
 Block X1.
LOOP End.
Block 4.
Calculations End.

 Scheme 2b (slave process):
Calculations Begin:
flag = 0; pto_ = 0;
wRecv_(pfrom, Z, i);
If pfrom > 0 then flag = 1;
Block 1.
If flag = 1 then:
 wRecvPFrom(pfrom, Zi);
 If Zi ≠ ∅ then Z = Z ∪ Zi;
 else flag = 0;
wCalc(i, Z, Q);
If wRecvPTo(pto) = 1then pto_ = pto;
If pto_ > 0 then wSend_(pto_, Q);
Block 1 End.
If flag = 1 then Goto Block 1.
wSend(Q, i);
Calculations End.

Algorithmic and Mathematical Foundations of the Artificial Intelligence

86

Block X1 loads all the free processes with the rules that can receive tuples from their computed parents and
informs the processes that compute parents of the necessity to pass tuples to other processes.
The scheme of the workflow of the dependent process is a modified scheme 1b. To describe it we use the
following procedures.
wRecv_(pfrom, Z, i) is a procedure that is an extended version of procedure wRecv. wRecv_ receives from the
main process data set Z that contains the values of the objects included in the antecedent of rule i and receives
the number of process pfrom from where next tuples can come. If pfrom = 0, tuples from other processes will not be
sent. Z ≡ {O1, …, Oz} ≡ {{k11, …, k1k1}, …, {kz1, …, kzkz}}.
wRecvPFrom(pfrom, Zi) is a procedure that receives from slave process pfrom data set Z that contains the value of
the objects included in the antecedent of rule i. Zi ≡ {O1, …, Oz} ≡ {{k11, …, k1k1}, …, {kz1, …, kzkz}}.
wRecvPTo(pto) is a function that receives from the main process the number of slave process pto to which it is
necessary to send tuples. The function returns 0 if the number of the process from the main process has not been
received, and it returns 1 if it has.
wSend_(pto, Q) is a procedure that sends to slave process pto data set Q that is the current result of the computed
rule i. Data set Q contains all the values of the objects included in the consequent of rule i. Q ≡ {O1, …, Oq} ≡
{{k11, …, k1k1}, …, {kq1, …, kqkq}}.
Applying this scheme we can launch in parallel the process that will process the rule dependent on data not when
the rule-parent has been performed, but when attributions for the objects found in the course of calculations start
to come. Thus, if the dependence on data allows, one can launch all the rules in parallel as the correspondent
attributions appear. This implies that the period of applying all the rules can be shorter than the period of applying
the rules using the first scheme.

Conclusion

The above schemes use such characteristics of the information graph as the number of its vertices, the number
of its branches that can be processed in parallel, etc. To choose a scheme of parallelization of the logical
inference one has to know not only the characteristics of the graph but also architecture and system constraints
imposed by the computing environment. There may be the following constraints:
1. The number of free system processes. If the number of the processes is more or equal to the number of the
rules of the program, this case is convenient for calculations as one can specify in advance the particular rule for
each process. If there are less processes than rules, then the rules are assigned to the processes dynamically.
2. The period of the rule application. In the course of computing a rule there may be a situation when this rule is
processed many times longer than any other rule of the logical program. In this case there may be an idle time of
the system that awaits the end of calculations of this rule. One of the solutions is to send intermediate results of
the rule calculation to other process that process dependent rules.
3. The structure of the program information graph that is assigned by a set of information graphs of modules that
are part of the program. The graph characteristics define the number of graph sections that can be executed in
parallel. One has to analyze the graph to assign a rule for a free dependent process. The more branches are
there in the graph, the stronger is the possibility of parallelizing calculations of rules. As one does not know the
exact time of computing a rule, the maximum number of processes Popt that can be performed in parallel with
each other is defined in the following. For each vertex of the graph they build a set of vertices into which there are
no ways from the given vertex and which are not parents (and far parent as well) of this given vertex. After
computing the maximum from the number of the elements of all the sets, one will have the sought Popt.
The closer is Popt to the number of the rules in module μ(Пm), the more efficient will be the parallelization of the
task and quicker will be the calculations, i.e. E = Popt / μ(Пm) – tends to 1 (E defines the average fraction of the
rule calculation by a separate process). From the definition Popt it follows that Popt will be bigger if the graph has
more direct children for one parent, i.e. there is wide branchiness of the graph.

International Book Series "Information Science and Computing"

87

For each graph Popt is invariable if the rules are executed completely: first – parents, then – children. However,
one can start to pass intermediate results to the dependent rules without awaiting the completion of one rule. In
this case if in the rule-parent there is at least one tuple of new values for the object included in the antecedent of
the rule-child, the process that maintains the rule-parent sends the tuple to the process assigned to process the
dependent rule. Doing this with all the rules and assigning a rule for a process, the system of the logical inference
can assign all the rules for execution in parallel with each other. It implies that Popt is always equal to the number
of rules μ(Пm) (and μ(P) must be equal to μ(Пm)) in module m, E = 1.
Hardware constraints in the form of relatively small number of free processes, memory allocation according to
processes and temporary delays in the course of data passing between processes on the one hand and
multilevel module calls on the other hand constrain module execution in parallel. Therefore sequential module
execution can be considered optimal. In the course of the rule computation there can be a number of module
calls, then the main process does not launch new rules for computing any more, completes the rest and then
passes control to each called module one by one.

Bibliography
[1]. Gavrilova T.A., Khoroshevsky V.F. Intellectual System Knowledge Bases. (In Russian) – SPb.: Piter, 2000.
[2]. Kleshchev A.S., Artemjeva I.L. Mathematical models of domain ontologies // Int. Journal on Inf. Theories and Appl., 2007,

vol 14, № 1. PP. 35-43.
[3]. M. Wallace, St. Novello, and J. Schimpf. ECLiPSe: A Platform for Constraint Logic Programming. Technical report, IC-

Parc, Imperial College, London, 1997. http://citeseer.ist.psu.edu/wallace97eclipse.html
http://citeseer.ist.psu.edu/update/38822

[4]. NESL - A Parallel Programming Language. http://www.cs.cmu.edu/~scandal/nesl.html
[5]. Boon S. Ang, Derek Chiou, Larry Rudolph and Arvind. The START-VOYAGER Parallel System. Massachusetts Institute

of Technology, Laboratory for Computer Science. http://citeseer.ist.psu.edu/ang98startvoyager.html

Authors' Information

Irene L. Artemieva – artemeva@iacp.dvo.ru
Michael B. Tyutyunnik – michaelhuman@gmail.com
Institute for Automation & Control Processes, Far Eastern Branch of the Russian Academy of Sciences;
5 Radio Street, Vladivostok, Russia

