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Abstract: in the paper new non-conventional growing neural network is proposed. It coincides with the Cascade-
Correlation Learning Architecture structurally, but uses ortho-neurons as basic structure units, which can be 
adjusted using linear tuning procedures. As compared with conventional approximating neural networks proposed 
approach allows significantly to reduce time required for weight coefficients adjustment and the training dataset 
size. 
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Introduction 

Nowadays artificial neural networks (ANNs) are widely applied for solving large class of problems related to 
processing information given as time-series or numerical data arrays generated by nonstationary stochastic or 
chaotic systems. The most attractive properties of the ANNs are their approximating possibilities and learning 
capabilities. 
Traditionally by learning we understand a process of the net’s synaptic weights adjustment accordingly to 
selected optimization procedure of accepted learning criterion [1, 2]. Quality of received result can be improved 
not only by adjusting weight coefficients but also by adjusting of the neural network architecture (the number of 
nodes). There are two basic approaches of the neural network architecture adjustment: 1) ‘constructive approach’ 
[3 - 5] – starts with simple architecture and gradually adds new nodes during learning; 2) ‘destructive approach’ 
[6 - 8] – starts with an initially redundant network and simplifies it throughout learning process. 
Obviously, constructive approach needs less computational resources and within the bounds of this approach 
cascade neural networks (CNNs) [9 - 11] can be marked out. The most efficient representative of CNNs is the 
Cascade-Correlation Learning Architecture (CasCorLA) [9]. This network begins with the simplest architecture 
which consists of a single neuron. Throughout learning procedure new neurons are added to the network, 
producing multilayered structure. It is important that during each learning epoch only one neuron of the last 
cascade is adjusted. All pre-existing neurons process information with “frozen” weights. CasCorLA authors, 
S.E. Fahlman and C. Lebiere, point out high speed of learning procedure and good approximation properties of 
this network. But it should be observed that elementary Rosenblatt perceptrons with hyperbolic tangent activation 
functions are used in this architecture as nodes. Thus output signal of each neuron is nonlinearly depended from 
its weight coefficients. Therefore it is necessary to use gradient learning methods such as delta-rule or its 
modifications, and speed of operation optimization becomes impossible. In connection with the above it seems to 
be reasonable to synthesize cascade architecture based on elementary nodes with linear dependence of output 
signal from synaptic weights. It allows to increase speed of synaptic weight adjustment and to reduce minimally 
required size of training set.  

Ortho-neuron 

Within the variety of the functional structures, used for approximation of nonlinear dependences, orthogonal 
polynomials [12, 13] deserve a special attention. They possess quite attractive properties, which make it possible 
to reduce computational complexity and increase precision of received results. At the present time we can 
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observe more and more realizations of the orthogonal polynomials theory in the field of neural networks [14 - 21], 
which demonstrate impressive effectiveness. 
Elementary one-dimensional system described in “input-output” space of some unknown functional 
dependence )(xy can be expressed by the following sum: 
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where x and )(xy are input and output variables of the estimated process correspondingly, )(xjϕ  – orthogonal 
polynomial of the j-th order (j = 0, 1, 2,…, h), which possesses the orthogonality property, j, q, – nonnegative 
integer numbers, k = 1, 2,…,N – current discrete time or the ordinal number of an element in the sampling. 
Equation (1) can be realized by the elementary scheme shown at the Fig. 1 and called us the ortho-synapse [22]. 

 
Figure 1. The ortho-synapse – OSi 

 

At the Fig. 1 ix  is the i-th (i = 1, 2,…, n) component of the multidimensional input signal T
nxxxx ),...,,( 21= , 

jiw (j = 1, 2,…,h) – synaptic weights which should be determined, )( ii xf  – output signal of the ortho-synapse, 
which can be expressed in the form 
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Different systems of orthogonal polynomials (Chebyshev, Hermite, Laguerre, Legendre, etc) can be used as the 
activation functions of ortho-synapse. Particular system of functions can be chosen accordingly to the specificity 
of the solved problem. If the input data is normalized on the hypercube [-1, 1]n, the system of Legendre 
polynomials orthogonal on the interval [-1, 1] with weight 1)( =xγ  can be used: 
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where [ • ] – is the integer part of a number. 
Also to simplify calculations we can exploit recurrent formula 
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System of Legendre polynomials is the best suited for the case when we exactly know interval of data changes 
before network construction. This is quite common situation as well as an opposite one. For the other case the 
following system of Hermite orthogonal polynomials can be used: 
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This system is orthogonal on ),( +∞−∞  with weight function 
2

)( ueuh −=  and gives us a possibility to decrease 
influence of the data lying far from origin. 
Also it can be readily seen that ortho-synapse has the same architecture like a nonlinear synapse of the neo-
fuzzy-neuron [23 - 25], but provides smooth polynomial approximation, based on orthogonal polynomials, instead 
of piecewise-linear approximation. 
We use ortho-synapse as a structural block for the architecture called us ortho-neuron and shown at the Fig. 2. 
 

 
Figure 2. Ortho-neuron – ON 

 
Ortho-neuron which has the same architecture like a neo-fuzzy-neuron realizes the mapping 

,)()(ˆ
1 01
∑∑∑
= =−

==
n

i

h

j
ijiji

n

i
ii xwxfy ϕ  (6) 

and provides high precision of approximation and extrapolation of significantly nonlinear nonstationary signals 
and processes [16, 17, 19 - 22]. But in what follows ortho-neuron will be used as the elementary node of the 
architecture called us the Cascade Orthogonal Neural Network (CONN). 

The Cascade Orthogonal Neural Network Architecture 

The CONN architecture is shown at the Fig. 3 and mapping, which it realizes, have the following form: 
• first cascade neuron : 
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• second cascade neuron 
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• third cascade neuron 
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• m-th cascade neuron 
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 2ŷ
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 mŷ
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Figure 3. The Cascade Orthogonal Neural Network 

 

Thus the CONN contains ))(1(
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linearly included in the definition (10). 
Let us define vector 1)1)(1( ×−++ mnh  of orthogonal polynomials of the m-th ortho-neuron 
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we can represent expression (10) in the vector notation: 
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The Cascade Orthogonal Neural Network Learning 

The Cascade Orthogonal Neural Network learning is performed in the batch mode using entire training set 
).(),();...;(),();...;2(),2();1(),1( NyNxkykxyxyx At the beginning a set of orthogonal functions values 

)(),...,2(),1( ]1[]1[]1[ Nϕϕϕ is calculated for each training sample, so we obtain a sequence of 
vectors 1)1( ×+ nh . Then using direct minimization of the learning criterion 
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vector of synaptic weights can be evaluated 

.)()()()()()()()(
1

]1[

1

]1[]1[

1

]1[]1[]1[ ∑∑∑
==

+

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

k

N

k

N

k

T kykNPkykkkNw ϕϕϕϕ  (13) 

If dimension of this vector is sufficiently large it is suitable to use procedure (13) in the form of recursive least 
squares method with sequential training samples processing: 
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It is necessary to notice that using procedures (13), (14) for adjusting weight coefficients essentially reduces 
learning time in comparison with gradient algorithms underlying delta-rule. Also orthogonality of activation 
functions ensures numerical stability during matrixes inversion. 
After first cascade learning completion, synaptic weights of the neuron ON1 become ‘frozen’ and second cascade 
of network consisting from a single neuron ON2 is generated. It has one additional input for the output signal of 
the first cascade. Then procedures (13), (14) again applied for adjusting vector of weight coefficients ]2[w , which 
dimensionality is 1)1)(1( ×++ nh . 

The neural network growing process (increasing quantity of cascades) continues until we obtain required 
precision of the solved problem’s solution, and for the adjusting weight coefficients of the last (m-th) cascade 
following expression are used: 
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where vectors ][mw and ][mϕ have dimensionality 1)1)(1( ×−++ mnh . 

The main disadvantage of CasCorLA is the necessity of the batch mode learning usage, when all training set 
should be given priori. CONN can be trained in on-line mode, because of algorithm (16) possesses maximal 
possible squared rate of convergence. In this case at the first step architecture consisting of m cascades is 
generated. Each cascade trains using proper algorithm. Since outputs of the previous ortho-neurons become 
additional inputs for the m-th cascade, algorithm (16) realizes recurrent method of the prediction error [26], well 
known in the theory of adaptive identification. Changing cascades quantity during learning process also can be 
easily performed. 
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Simulation Results 

We have applied proposed Cascade Orthogonal Neural Network to solve ‘breast cancer in Wisconsin’ benchmark 
classification problem. 
Dataset containing 699 points have been used for this purpose (ftp://ftp.cs.wisc.edu/math-prog/cpo-
dataset/machine-learn/cancer/cancer1/datacum). 16 points had parameters with missed values so they have 
been eliminated from the dataset and remaining 683 points have been separated on training set – 478 points 
(70%) and test set – 205 points (30%). 
Each point has 9-dimensional feature vector and 1 class parameter which should be determined and identifies 
either benign or malignant tumor have current examined patient. Features values have been normalized on 
interval [-1; 1]. 
There are 3 optional parameters must be specified to start CONN constructive algorithm: 1) type of the 
orthogonal polynomials system in each ortho-synapse; 2) quantity of orthogonal polynomials in each ortho-
synapse; 3) maximal number of cascades. Since input data have been normalized on interval [-1; 1], we choose 
systems of 1 type Chebyshev orthogonal polynomials as activation functions for each ortho-synapse to avoid 
unlimited weight values growth. Previous experiments have shown that optimal ortho-synapse dimensionality is 3-
4 polynomials per input, so these values have been chosen for experiment. For avoiding generalization loss 
maximal number of cascades has been limited by 10. 
For comparison the same classification problem has been solved using the Cascade-Correlation Learning 
Architecture and Multilayered Perceptron. The CasCorLA had 8 cascades and each of them utilized gradient 
minimization for adjusting weight coefficients. MLP had 9x15x1 architecture and tuned with Levenberg-Marquard 
minimization procedure during only 20 epochs. Increasing number of epochs (in this case) results in 
generalization loss. Obtained results of classifications can be found in table 1. 
When output signal be found within the range [0.3; 0.7] it is lesser probability that classification were correct. We 
quantify and marked out such classified samples as points outside the ‘belief zone’. 
 

Table 1 – Classification results for different architectures 
ANN Architecture Accuracy on training set / Points 

outside the ‘belief zone’ 
Accuracy on testing set / Points 

outside the ‘belief zone’ 
CONN 99,8% / 1 98% / 4 

CasCorLA 95% / 46 99% / 15 
MLP 99,2% / 4 98,5% / 3 

 
We can see that CONN shows quite good results of classification, comparable with MLP’s, and much better than 
CasCorLA’s ones. Therewith CONN’s learning procedure takes considerably lesser time and computational 
recources than backpropogation or Levengerg-Marquardt minimization Also using CONN architecture makes 
possible to avoid two significant disadvantages of CasCorLA and MLP: unrepeatability of obtained results and 
necessity to use first- or second-order derivative procedures. 

Conclusion 

The Cascade Orthogonal Neural Network is proposed. It differs from its prototype, Cascade-Correlation Learning 
Architecture, in increased speed of operation, numerical stability and real-time processing possibility. Theoretical 
justification and experiment results confirm the efficiency of developed approach. 
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