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DERIVATION OF CONTEXT-FREE STOCHASTIC L-GRAMMAR RULES  
FOR PROMOTER SEQUENCE MODELING USING SUPPORT VECTOR MACHINE 

Robertas Damaševičius 

Abstract: Formal grammars can used for describing complex repeatable structures such as DNA sequences. In 
this paper, we describe the structural composition of DNA sequences using a context-free stochastic L-grammar. 
L-grammars are a special class of parallel grammars that can model the growth of living organisms, e.g. plant 
development, and model the morphology of a variety of organisms. We believe that parallel grammars also can 
be used for modeling genetic mechanisms and sequences such as promoters. Promoters are short regulatory 
DNA sequences located upstream of a gene. Detection of promoters in DNA sequences is important for 
successful gene prediction. Promoters can be recognized by certain patterns that are conserved within a species, 
but there are many exceptions which makes the promoter recognition a complex problem. We replace the 
problem of promoter recognition by induction of context-free stochastic L-grammar rules, which are later used for 
the structural analysis of promoter sequences. L-grammar rules are derived automatically from the drosophila and 
vertebrate promoter datasets using a genetic programming technique and their fitness is evaluated using a 
Support Vector Machine (SVM) classifier. The artificial promoter sequences generated using the derived L-
grammar rules are analyzed and compared with natural promoter sequences. 
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Introduction 

Promoters are short regulatory DNA sequences that precede the beginnings of genes. They are common both in 
prokaryotic and eukaryotic genomes. It is important to distinguish between promoter and non-promoter 
sequences, because this distinction allows identifying starting locations of genes in uncharacterized DNA 
sequences. Though there are conserved patterns in the promoter sequences of a species, there are many 
exceptions which make the promoter recognition a complex problem. Although many complex machine learning 
methods have been proposed so far for promoter recognition, the problem is still open [Sobha Rani et al., 2007].  
The crucial obstacle in finding mammalian promoters is that they usually do not share extensive sequence 
similarity even when they are functionally correlated, which prevents detection by sequence similarity-based 
search methods such as BLAST or FASTA. Mammalian promoters can be seen as small structures of coding 
regions with few functional elements (exons) interspersed in a larger sequence with no known biological function 
(introns) [Werner, 2003].  
Modern promoter recognition tools use machine learning techniques such as Naive Bayes, Decision Trees, 
Hidden Markov Models, Neural Networks or Support Vector Machine (SVM) [Monteiro, 2005]. Best machine-
learning based promoter recognition methods allow achieving up to 98% accuracy [Ranawana and Palade, 2005], 
however they do not provide any insight on the internal structure of the promoter sequences. Analysis of some 
promoters suggests that promoter sequences may have a modular structure. Identification of promoter structure 
may enhance our understanding of gene regulation mechanisms and genome evolution process. 
Formal grammars can provide a means of describing complex repeatable structures such as DNA. The structure 
of promoter sequences can be described using a formal context-free grammar such as L-grammar (or L-system) 
[Lindenmayer, 1968], and the problem of promoter recognition can be replaced by grammar induction [Unold, 
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2007]. Several authors consider grammar induction in the context of bioinformatics as well as L-systems. The 
possibility of discovering the rewrite rule for L-systems and the state transition rules for cellular automata using 
genetic programming techniques is discussed in [Koza, 1993]. So-called semi-Lindenmayer systems are 
considered for the study of protein formation in [Marcus, 1974]. An algorithm to construct a short context-free 
grammar (also called program or description) that generates a given sequence is proposed in [Jimenéz-Montano, 
1984]. The inference of regular language grammar rules based on n-grams and minimization of the Kullback-
Leibler divergence is described in [Infante-Lopez and de Rijke, 2004]. O’Neill et al. [2004] generate regular 
expressions for promoter recognition problem using Grammatical Swarm technique. Each individual swarm 
particle represents choices of program construction rules, where these rules are specified using a Backus-Naur 
Form (BNF) grammar. Denise et al. [2003] generate genomic sequences and structures according to a given 
probability distribution and syntactical (grammatical) parameters. The method is applied for generating basic RNA 
secondary structures. Stochastic context-free grammars constructed from sample sets of sequences are also 
considered for modeling RNA sequences [Grate et al., 1994; Sakakibara et al., 1994]. The usefulness of 
Chomsky-like grammar representations for learning members of biological sequence families is analyzed in 
[Muggleton et al., 2000]. 
The aim of this paper is 1) to describe automatic derivation of stochastic L-grammar rules from promoter datasets 
using Support Vector Machine (SVM), and 2) to apply the derived L-grammar rules for structural analysis of the 
promoter sequences.  

Modeling of DNA Sequences Using L-Grammar 

If we treat the genome as a language, we can generalize the structural information contained in biological 
sequences and investigate it using formal language theory methods [Fernau, 2003]. Some aspects of formal 
languages are similar to biological processes in general and genetic mechanisms in particular, e.g.: 
− Pure grammars do not differentiate between terminal and non-terminal symbols, so that all words generated 

from the grammar rules are put into the generated language. This notion is well-motivated biologically, 
because all symbols in a DNA sequence have similar role.  

− Erasing rule ε→A  models the death of a cell (which has been in a state A  before its disappearance) or a 
delete mutation in a DNA sequence.  

− Chain rule BA →  reflects a change of a state of the corresponding cell or a single nucleotide mutation in 
DNA.  

− Repetition rule AAA →  models highly repetitive DNA sequences such as tandem repeats. 
− Growing rule BCA →  models the split of a cell being in a state A , into two children being in state B  and C , 

or growth of a DNA sequence.  
− Stochastic rule BAp →:  models the random mutations of DNA sequences. 

From the biological point of view, the components of any biological organism evolve simultaneously, so we 
cannot expect that biological processes could be modeled using a sequential approach. It is more likely that the 
cells that reproduce simultaneously would be modeled by a mechanism that is based on the same behavioral 
principles. This makes a special class of grammars, called parallel grammars [Fernau, 2003], particularly 
interesting for research of biological sequences such as DNA. L-systems are a special class of parallel grammars 
that can model the growth of living organisms, e.g. plant development, but also able to model the morphology of a 
variety of organisms [Prusinkiewicz and Lindenmayer, 1990]. They produce sentences that can be interpreted 
graphically to produce images of fractals or organisms. L-grammars have been applied also for modeling DNA 
sequences [Searls, 1993; Yokomori and Kobayashi, 1998; Mihalache and Salomaa, 2001; McGowan, 2002; 
Gheorge and Mitrana, 2004]. 
The essential difference between sequential grammars such as BNF and L-systems is that in sequential 
grammars the production rules are applied sequentially, one at a time; whereas in L-systems they are applied in 
parallel and may simultaneously replace all letters in a given word. Also, in L-systems there is no distinction 
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between the terminal and non-terminal symbols. All symbols that appear in the grammar are valid in the final 
string, and any symbol in the alphabet can head a rule [Prusinkiewicz and Hanan, 1989]. The recursive nature of 
the L-system rules leads to self-similarity and fractal-like forms which is also a property of DNA sequences 
[Abramson et al., 1999]. 
For modeling DNA sequences we use a context-free stochastic L-grammar, which is defined as a tuple:  

{ }PRVG ,,,ω=  (1) 
where: 

{ }TGCAV ,,,=  is a set of symbols containing elements (nucleotide types, in our case) that can be replaced, i.e. 
the alphabet. 

KV=ω  is a K -length string of symbols that define the initial state of the system. 
LVVR ×⊆ 1  is a finite set of production rules defining the way symbols can be replaced with combinations of 

other symbols. A rule consists of two strings - the predecessor (an individual symbol fromV ) and the successor 
( L -length string composed from V  elements). Each production rule refers only to an individual symbol and not 
to its neighbors. 
P is a set of probabilities [ ]1,0∈jp  that a production rule Rrj ∈  will be applied. 

Machine Learning Using Support Vector Machine 

Support Vector Machines (SVM) [Vapnik, 1998] are one of the most popular tools in bioinformatics for supervised 
classification of genetic data (biosequences, protein structure data, microarray gene expression, etc.). SVM is a 
structural risk minimization-based method for creating binary classification functions from a set of labeled training 
data. SVM requires that each data instance is represented as a vector of real numbers in feature space. Hence, if 
there are categorical attributes, we first have to convert them into numeric data. First, SVM implicitly maps the 
training data into a (usually higher-dimensional) feature space. A hyperplane (decision surface) is then 
constructed in this feature space that bisects the two categories and maximizes the margin of separation between 
itself and those points lying nearest to it (the support vectors). This decision surface can then be used as a basis 
for classifying vectors of unknown classification. 
Consider an input space X  with input vectors Xxi ∈ , a target space { }1,1 −=Y  with Yyi ∈  and a training set 

( ) ( ){ }NN yxyxT ,,...,, 11= . In the SVM classification, separation of the two data classes { }1,1 −=Y  is done by the 
maximum margin hyperplane, i.e. the hyperplane that maximizes the distance to the closest data points and 
guarantees the best generalization on new examples. In order to classify a new point jx , the classification 
function ( )jxg  is used: 
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where: SV  are the support vectors, ( )ji xxK ,  is the kernel function, iα  are weights, and b  is the offset 
parameter. 
If ( ) 1+=jxg , jx  belongs to the Positive class, if ( ) 1−=jxg , jx  belongs to the Negative class, if ( ) 0=jxg , jx  
lies on the decision boundary and can not be classified.  
Here we have a binary classification problem in which the outcomes are labeled either as positive (P) or negative 
(N) class. There are four possible outcomes from a binary classifier:  

− True positive (TP) – the outcome from a prediction is P and the actual value is P. 
− False positive (FP) – the outcome from a prediction is P and the actual value is N.  
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− True negative (TN) – both the prediction outcome and the actual value are N.  
− False negative (FN) – the prediction outcome is N while the actual value is P.  

The efficiency of the classification function ( )jxg  can be evaluated using several different metrics such as 
Sensitivity, Specificity, F-measure or Mathew’s Correlation Coefficient. Here we use a simple Accuracy (ACC) 
metric, which is a measure of how well a binary classification test correctly identifies or excludes a condition. 

%100⋅
+
+

=
NP

TNTP

nn
nnACC  (3) 

where in  is the number of i  cases in the classification results. 

The best possible classification method would yield 100% accuracy (all TPs and no FPs are found). 

Grammar Rule Inference 

Derivation of formal grammar rules, also known as grammatical induction or grammar inference, refers to the 
process of inducing a formal grammar (usually in the form of production rules) from a set of observations using 
machine learning techniques. The result of grammar inference is a model that reflects the characteristics of the 
observed objects. Here, for inference of L-grammar rules we use a “trial-and-error” method [Duda, 2001]. The 
method suggests successively guessing grammar rules (productions) and testing them against positive and 
negative observations. The best ruleset is then mutated randomly following the ideas of genetic programming 
until no improvement in accuracy is found within a certain number of iterations. 
The rules of the L-system grammar are applied iteratively and simultaneously starting from the initial string. Let us 
denote ( )GL  all those strings over V  that can be generated by starting with the start string ω  and then applying 
the production rules in R  with probabilities P . We describe the grammar inference problem as a classical 
optimization problem as follows. Determine G, where V is constant, from a given set of input sequences NVX =  
such as to achieve the best classification ( )Xc ′ :  

( ) ( )∑
′

=′
X

jxgXc max  (4) 

where: ( )GLXxx jj ⊂′∈,  are strings produced by production rules R  with probabilities P , and ( )jxg  is the 
classification function trained on a set of input sequences Xxi ∈ . 

Case Study: Derivation of L-Grammar Rules from Promoter Datasets 

Datasets 
We use the following datasets: 
1) The 2002 collection of data of drosophila (D. melanogaster) core promoter regions [Drosophila]. The test file 
contains 6500 examples (1842 promoters, 1799 introns, and 2859 coding sequences), each 300 bp length.  
2) The collection of data of human and additional eukaryotic (vertebrate) promoter regions. The promoters were 
extracted from the Eukaryotic Promoter Database rel. 50; the negative set contains coding and non-coding 
sequences from the 1998 GENIE data set [Human]. The test file contains 5800 examples (565 promoters, 4345 
introns, and 890 coding sequences), each 300 bp length. 
The positive set consists of promoter sequences and the negative set consists of introns and coding sequences. 
Description of L-grammar rule generation 
The L-grammar rule generation process is performed in two stages as follows: 
1) Derivation of a learned classifier. The promoter dataset is used for training a SVM classifier. As a classifier, we 
use SVMlight, which is an implementation of SVM in C [SVMlight]. Nucleotide sequences are mapped onto a 
feature space using orthogonal encoding, where nucleotides in a DNA sequence are viewed as unordered 
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categorical values and represented by the 4-dimensional orthogonal binary vectors: 
}1000,0100,0010,0001{ →→→→ TGCA . For training, the linear kernel function is used. The result is a 

model of a learned classifier that can separate promoter and non-promoter sequences. 
2) L-grammar rule induction. The classifier model is used for evaluating the fitness of the generation of L-
grammar rules. Rules are generated by L-grammar rule generator using a directed random search method: the 
best ruleset so far is mutated randomly and used to generate 1000 of 300 bp length L-system strings. The 
mutation parameters are the start string, successor strings and production rule probabilities. The number of rules 
as well as the predecessor strings is fixed. There are four rules for each type of nucleotide: A-rule, C-rule, G-rule 
and T-rule. The generated strings are encoded as 4-dimensional orthogonal binary vectors, fed to the trained 
SVM classifier and the accuracy of the classification is obtained. If the accuracy of the mutated ruleset is better 
than the accuracy of the previous best ruleset, the mutated ruleset is saved as the best ruleset; otherwise the 
previous best ruleset is retained. The process is continued until the required accuracy is achieved. 
The structure of the L-grammar induction system is summarized in Fig. 1. 

Random
L-grammar rules

Generated
sequences

Promoter
sequences

Non-promoter
sequences

SVM learner

Classifier
model

SVM classifierL-grammar
rule generator

L-system
generator

Predictions

Accuracy

L-grammar
rules

 
Fig. 1. Structure of the L-grammar induction system 

 
Results 
The classification was done in two stages: (1) SVM was trained using promoter vs. non-promoter sequences, and 
the trained classifier was used to classify (2a) random sequences labeled as promoters, and (2b) artificially 
generated (from the induced L-grammar rules) sequences labeled as promoters. The classification results using 
the Accuracy metric (see Eq. 3) are presented in Table 1.  
We can see that artificially generated sequences can be classified vs. non-promoter sequences almost as good 
as real (natural) promoters. That suggests that induced L-grammar rules indeed capture some essential dataset 
properties of promoter sequences. The results are worse for the vertebrate dataset, because vertebrate 
promoters have more complex patterns with more irregularities and exceptions. 
The derived stochastic L-grammar rules are presented in Fig. 2, a) and Fig. 2, b) for drosophila and vertebrate 
promoter sequences, respectively. Note that in drosophila grammar rules C and in vertebrate grammar rules T 
symbols are completely missing from the right (successor) side of production rules.  
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Table 1. Classification results 
Classified sequences No. of sequences Classification accuracy 

Drosophila 
dataset 

Vertebrate 
dataset 

Promoters vs. non-promoters 6500/5800 99.74% 94.67% 
Random sequences 1000 3.3% 1.2% 
Artificially generated sequences 1000 93.40% 92.10% 

 

a) 

 Variables: A, C, G, T 
Start:  AAACTAAT   
Rules:  0.85: (A -> TATA), 

0.94: (C -> TA), 
0.91: (G -> TAG), 
0.10: (T -> TGA) 

 b) 

 Variables: A, C, G, T 
Start:  A   
Rules:  0.50: (A -> CGGAA), 

0.86: (C -> CCCCG), 
0.19: (G -> ACGG), 
0.50: (T -> AA) 

 
Fig. 2. Stochastic L-grammar rules for generating  

a) drosophila, and b) vertebrate promoter-like sequences 
 

Evaluation 
After analyzing the induced promoter sequence production rules, we can conclude that these rules can fairly good 
characterize the subsequences that are typical for promoters. The drosophila promoter production rules feature 
the TATA successor string, which matches the TATA-box ( TATAA  or TATAAA) typical for the drosophila 
promoters. Other subsequences typical for the promoter sequences are produced by the successive application 
of the production rules, e.g., the Pribnow box ( TATAAT ) is produced by two successive applications of A-rules. 
The vertebrate promoters are typically more complex than the drosophila promoters, because there are many 
TATA-less promoters, which are characterized by other more complex subsequences. These subsequences also 
can be produced from the induced grammar rules, e.g., the CACG  subsequence characteristic to the E-box 
( CACGTG ) is produced by the successive application of the A-rule and G-rule. The AACC  subsequence 
characteristic to the Y-box ( GGGTAACCGA ) is produced by the successive application of the G-rule, A-rule, 
and C-rule. Human promoter sequences are also characterized by the occurrence of DPE (downstream promoter 
element), a distinct 7-nucleotide subsequence )CGTG(A/G)G(A/T  that is similar to the derived G-rule. 

Conclusion 

The advantage of the machine learning method combined with formal grammar is that additionally to recognition 
which does not provide any structural information, the modular structure of the analyzed genetic sequences can 
be identified. The structural analysis of the derived L-grammar production rules allows identifying common 
promoter sequence elements (so called “boxes”) such as TATA-box, Pribnow box, E-box, Y-box and DPE. 
The classification results of the artificial promoter sequences generated using the derived L-grammar rules are 
almost as accurate as that of the natural promoters, thus showing a great deal of similarity between the 
discriminating features of both types of sequences. 
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