
International Book Series "Information Science and Computing"

53

A "CROSS-TECHNOLOGY" SOFTWARE DEVELOPMENT APPROACH

Stefan Palanchov, Alexander Simeonov, Krassimir Manev

Abstract: Contemporary web-based software solutions are usually composed of many interoperating
applications. Classical approach is the different applications of the solution to be created inside one
technology/platform, e.g. Java-technology, .NET-technology, etc. Wide spread technologies/platforms practically
discourage (and sometime consciously make impossible) the cooperation with elements of the concurrent
technologies/platforms. To make possible the usage of attractive features of one technology/platform in another
technology/platform some “cross-technology” approach is necessary. In the paper is discussed the possibility to
combine two existing instruments – interoperability protocols and “lifting” of procedures – in order to obtain such
cross-technology approach.

Keywords: web-solution, interoperability of applications, interoperability protocols, lifted procedures

ACM Classification Keywords: D.2 Software Engineering, D.2.11 Languages (interconnection), D.2.12
Interoperability (interface definition)

Conference: The paper is selected from Sixth International Conference on Information Research and Applications –
i.Tech 2008, Varna, Bulgaria, June-July 2008

Introduction

In [Maneva, Manev, 2008] different models for development and distribution of software (MDDS) and their role for
the efficiency of the developed software products were discussed. Especially it was stressed the status quo of the
contemporary models for development and distribution of web-based business-oriented software solutions. Many
negatives of the existing models were outlined that lead to high costs or to low quality of the implemented web-
based solution in medium and small companies, as well as in the state administration. As a result, the necessity
of a new model concept was formulated. In conclusion, the following features of such model were identified:
• It has to guarantee the independence of the user from the technologies, i.e. the user has to be free to chose

for each component of the solution the existing technology that is the best for this component;
• It has to guarantee that the user will obtain a service with a quality, which is relevant to the paid cost;
• It will be very good if the model has the tolerance for the qualification of the users and to allow them to

extend and update solution, etc.
Dependence of the users from the technologies was identified as a crucial element of the existing models. The
notion independence is not new in the domain of development of software products for the business. For
example, one of the main goals of the very popular approach Model Driven Architecture of OMG [OMG, 2008] is
to liberate the process of conceptual design of the solution from the technologies of the implementation. It is used
by many developers. Following the MDA concept they first design the solution in conceptual (or technology
independent) level and than, automatically, semi-automatically or manually, map the elements of the solution in a
chosen technology/platform.
It is true that MDA gives some independence from the technologies. More precisely MDA gives full
independence, but only in the stage of conceptual design. In the stage of implementation of the conceptual
design there are two possibilities. The fist is to implement all applications with one “clean” technology and to
make the solution totally dependent from this technology. The second is to use different technologies in the
different applications of the solution. If the second possibility is chosen, then some additional efforts will be
necessary for homogenization of the interfaces between interoperating applications. The developers rarely do the
efforts to develop the homogenization from scratch and usually rely it to corresponding software (middleware),
making the product dependent of the middleware.

Advanced Studies in Software and Knowledge Engineering

54

In this paper we will consider the dependences from the technologies, which are generated on the second
stage of applying some concepts, similar to MDA. We will try to investigate the possibility to give to the users
more independence from the technologies or middleware. The main objective is that each technology has its own
positive elements as well as its shortcomings – a single technology, due to different reasons, could not be
ideal. We will try to estimate the possibilities to integrate some of the best features of different technologies on
the base of homogenization of the interfaces among languages, proposed by these technologies. We will call
this a cross-technology software development approach.
In the second section of the paper some terminology and necessary basic knowledge are introduced. In the third
and fourth section two instruments are considered that are necessary for implementation of our idea. Some
advantages and shortcomings of these instruments are stressed. The idea itself is presented in the fifth section.
In the last section some conclusions are given.

Basic notions

In this paper we will call technology (or platform) some general concept or approach for development of software.
Part of the technology or platform are also some preliminary tailored components (classes of objects, small
program modules – applets, servlets, etc., and even not very large “stand alone” applications) that implement the
concept or approach, as well as the corresponding tools (programming languages, IDE, API, DB-interfaces, etc.)
dedicated to support creation/integration of the software solutions (i.e. Java-technology of SUN, or .NET-
technology of Microsoft).
With the term dependence on the technology we will denote different kind of limitations that the users have to
obey if choose specific technology/platform for creating/integrating the necessary solution. For example, any
attempt of the user for appending new functionality to the solution, developed with a specific technology, has to
be implemented “within” the technology. Issuing of a new generation of the elements of the technology could lead
to necessity of total upgrading of all bought to the moment elements and, probably, reintegrating of the solution.
And more, when an element of the technology is of low quality, comparing with the concurrent products with the
same purpose, it is very difficult to eliminate this element from the solution and to replace it with a better one.
Following [Ousterhout, 1998] we have to agree that the contemporary web-programming is really gluing
components (GUI-components, small applications providing content or services, etc.) in a solution. The
components are usually written in some system programming language (like C, C++ or Java) and as a gluing
instrument different scripting languages (like Unix-shells, Java Script, PHP, Perl, Tcl, Python etc.) are used. It is
possible that some components are also written in a scripting language. The opposite, gluing of the solution with
a program written in system programming language is rather nonrealistic – these languages are not dedicated to
such purpose.
One of the main objectives for the promoted in this paper cross-technology approach is that the components
written in different languages (both system and scripting) are not always able to cooperate in run time. Developed
technologies/platforms resolve this problem with some “inner”, built-in, interoperability of one or more system
programming languages with one or more scripting languages (C – Unix-shells, Java – Java Script, etc.). We are
proposing a way to achieve such interoperability in a cross-technology level, i.e. among languages for which
built-in co-operability mechanism does not exist.

Interoperability protocols

One of the possibilities for achieving run-time interoperability of components is to use some interoperability
protocol. Examples of such mechanism for achieving interoperability of different processes written in C/C++ that
even could work on different computers, is Remote Procedure Calls (RPC), developed for Unix-like operating
systems by Sun [Marshal, 1999]. For applying RPC a unique number is assigned to each interoperating program

International Book Series "Information Science and Computing"

55

and, for a given program, a unique number is assigned to each procedure inside the program. Call of a remote
procedure is made trough a corresponding RPC-client (executing function rpc_call() in the calling
process). Beside the traditional list of parameters of the called procedure, many other parameters have to be
provided also – the identification of the host, the unique numbers of the program and of the procedure that is
called, etc. The calling program is waiting as usual to obtain the result or some indication that the remote call
failed (timed out, for example) and then continues the work.
The RPC-client is responsible for serialization of the given arguments of standard types, i.e. translating them to
an inner RPC form, which is suitable for transportation in the net. Serialization of user defined types is
responsibility of the user. For this purpose RPC provide a set of standard procedures and the corresponding
procedure has to be called for each included in the user defined type variable of standard type. The request is
composed following the rules of the protocol, sent to the host and processed by RPC-server. The server performs
deserialization of arguments, identifying and calling the procedure and serialization of the obtained result, which
is sent back to the RPC-client. Finally, the RPC-client performs deserialization of the result and returns it to the
calling process.
The system RPC is developed to support communication among processes, the code of which is written in
C/C++. There are samples of systems for generating interoperability protocols for other languages, well checked
and proved as mentioned RPC – RMI for Java [Java RMI, 2007], RPyC for Python [RPyC, 2007], CORBA, SOAP,
etc.) – that could also be used as a model. There is no popular sample of protocol generating system that is able
to provide interoperability of components, written in different languages. For achieving interoperability of
processes, the code of which is written in different languages, additional efforts will be necessary and we will
discuss them below. We will take some existing systems as models and will try to extend the idea to a system,
which is able to provide interoperability protocols for processes written in different languages – homogenization
protocols.
The advantages of such homogenization protocols are obvious. They could be a first step toward obtaining a total
independence of the developer from the technologies or platforms. In such way each component of the solution
could be created in the most appropriate language, within most favorable technology or platform. Different
components could be executed on different machines and even under different operating systems.
Obvious shortcoming of the homogenization protocols will be the significant amount of time, necessary for the
execution of the procedure call. Each call is passing through a complex process of structuring and parsing of the
request, serialization and deserialization of arguments and results, etc. As a result the additional time could be
many times bigger than the time necessary for the local call. That is why such kind of homogenization is
inappropriate for relatively small and simple tasks. There is no sense to organize a remote call (especially to a
procedure written in another language) for finding the sum of two integers, for example. Homogenization
protocols have to be used only for requesting services that could not be obtained locally or could not be obtained
in reasonable price.
Some negatives of the approach could be observed on the example of RPC also. The function rpc_call()
that performs remote call has 8 arguments due to the rules of he protocol – coding of such call could take time
and the probability for giving a wrong argument is significant. One of the arguments is the identification number of
the program, which contains the called procedure, and, if the system is implemented as in RPC, the developer
has to keep in mind large amount of such identification numbers (in RPC the numbers reserved for programmers
are from 0x20000000 to 0x3FFFFFFF). And finally, we described above a very simple scheme of RPC. Really,
the approach is much more complex and could be used only by very experienced programmers. All these
negatives are not generic and could be surmounted in one well planned implementation.

“Lifted” procedures

On the road for achieving cross-technological interoperability of components written in different languages, we will
use one other approach too that we will call lifting of procedures. As it was mentioned above, for creation and

Advanced Studies in Software and Knowledge Engineering

56

integration of software solution, languages of different level of abstraction are used. The idea is to choose one
language as a basic, to create a library of necessary procedures in this language and than to “lift” each procedure
to each of the other languages being in use. With “lifting” of the procedure we will denote the process of making
basic procedures accessible from programs written in languages different from the basic language. The
assumption is that the basic language is of the lowest level among all used languages. That makes the candidate
for a basic language almost unique – the C language. The level of C is low enough. C++ and Java, as well as
many of the most used scripting languages inherit the syntax of C and are appropriate for the “lifting” process.
Example of a tool for lifting of procedures is the system SWIG [SWIG, 2007]. It is a typical “open source” project
developed and maintained by some enthusiasts on voluntary principle. As mentioned on the official page of the
system: “SWIG is a software development tool that connects programs written in C and C++ with a variety of
high-level programming languages.” Nowadays the most popular scripting languages as Perl, PHP, Python, Tcl
and Rubby, as well as non-scripting languages as Java, C#, Common Lisp, etc. are supported by SWIG.
The system SWIG was written initially (by Dave Baezley in 1995) for C as a basic language. In 1996 the system
was rewritten for C++ as a basic language. Obviously a bit more high level of C++ was not suitable for the goals
of the system because since version 3.1 the software migrated back to C. This confirms our observations that the
basic language has to be of as low level as possible.
The idea of lifted procedures originally was to ameliorate the performance of programs written in a specific
scripting language, providing a mechanism for calling procedures written in the language C, through which the
scripting language was interpreted. The idea happens to be very helpful and soon some versions for other
scripting languages interpreted trough C or C++ were created. Finally, the idea happens to be universal and soon
versions for non-scripting languages and, which is more important, genetically not connected to C and C++
appeared too.
The lifting of procedures practically has no shortcomings beside the fact that for each new language a specific
module of the system has to be created. Fortunately the most of used in the contemporary web-solutions
programming languages are supported by the current version of SWIG; the software is relatively wide spread and
well tested. A few small shortcomings could appear from the peculiarities of some language that could make one
universal lifted procedure inefficient in this language. In such case a specific version of the procedure has to be
written for each such language.
There is an objective that we have to keep in mind when plan to use “automatic” tools like SWIG. It is quite
possible that such automatic tool does not support all constructions of the basic language. For SWIG and C
language this seems not to be true, but for SWIG and C++ such problems exist. Fortunately, the systems like
SWIG are with open code. This gives a possibility to qualified users to re-develop some specific modules in order
to solve some specific problem and, as a result, to contribute to extension and amelioration of the tool.

“Lifted” interoperability protocols

The general idea of this work is to mix the two approaches – interoperability protocols and “lifted” procedures – in
order to obtain interoperability of applications written in different languages. As a beginning, let us take some tool
for achieving interoperability through interoperability protocols. It could be RPC or some modification of RPC, if
some features of RPC are not suitable for implementation of the idea. It could be some other tool with the same
functions also. Finally it is possible, following the model of RPC and another existing system, to create a new tool
for implementation of interoperability protocols. Let us call this tool Basic Interoperability Protocols (BIP). The
language of creating of BIP has to be as low as possible – most probably it will be the C language.
Schematically BIP could be split in three parts (see the Figure) – BIP-client creator, Core and BIP-server creator.
The Core part is independent of any used language and is dedicated to provide a transportation mechanism
between applications (including applications that are working on different computers). The BIP-client creator and
the BIP-server creator are dedicated to enable communication of the Core with calling procedure and called
procedure, respectively. Both creators could have a part, which is independent of the used languages. But the

International Book Series "Information Science and Computing"

57

essential for them is the part that depends of the language of calling/called procedure. It is very probable that
these parts will have more than one version (because of the mentioned above particularities of the used
language) but we will prefer to refer them as integral elements of the system – the front-agent and the end-agent.

Core

Client-creator

Server-creator

Front-agent End-agent

“Lifted” end-agent
for programs written

in language L2

“Lifted” front-agent
for programs written

in language L1

WEB-SOLUTION

Applicaton written in
language L1

Applicaton written in
language L2

Figure

The front-agent and the end-agent of the BIP system (really they are set of written in C functions) are lifted to the
level of all used languages. Initially the lifting could be maid by existing SWIG processors. Some additional lifters
written in SWIG-style could be created if necessary (for example, when some of the existing SWIG processors
are not appropriate for BIP, or when a language not supported by SWIG is used).

Really, lifting of front-agent and end-agent are different kind of processes. It is possible to say that lifting of the
front-agent is a classical use of SWIG-like mechanism and lifting of end-agent is an attempt to extend the
possibilities of the tool with a new functionality that was not initially presumed. Lifted front-agent has to provide to
procedures written in high-level language a possibility to call procedures written in low-level language. In our case
these are the procedures of the interoperability protocol that have to transport the remote call to the called
procedure. Lifted end-agent practically makes the opposite – provides to procedures written in low-level language
a possibility to call procedures written in high-level language. In our case these are the called procedures. It will
be more correct to say that the end-agent is “taking down” the level of these procedures.
Because initially SWIG-like mechanisms were not designed for taking down the level of procedures, this process
will not be as easy as lifting of the level. Anyway, there are mechanisms for solving the problem and one of them
is the “callback” mechanism. For some reasons, different of discussed in this paper, the callback of procedures
was implemented in SWIG and, even if it is not working very smoothly (see for example [SWIG, 2002]), it could
be used for our purposes.

Conclusions

The discussions and the innovative ideas presented in this paper are results of some experiments. The current
versions of RPC, as a generator of interoperability protocols, and SWIG, as an instrument for lifting of
procedures, were used. First, some experiments with SWIG system were made. Procedures (containing relatively
heavy calculations) were written in C/C++ and were lifted to some of the most popular scripting languages (PHP,

Advanced Studies in Software and Knowledge Engineering

58

Perl and Phyton). The lifting process passed smoothly and the results were encouraging – using of lifted
procedures led to significant decreasing of execution time, compared with the time necessary for same
calculations but written in the corresponding scripting language.
The second experiment was dedicated to execution of call (local, not remote) of procedure written in C from
procedure written in scripting language. One of the standard interoperability protocols, created with RPC, was
extended to a front-agent and lifted to Python-level. Then a procedure written in Python called successfully a
procedure written in C. Some experiments for remote call of procedure written in C from procedures written in
scripting language are in progress. It is clear, that more efforts will be necessary for implementing of the end-
agent.
As a result of experiments we could make the following conclusions:
• Proposed in the paper approach is quite realistic and could be used for achieving cross-technological

interoperability of the applications in a web-based software solution;
• The proposed approach is very promising in sense of time consuming and could be much more

appropriate than some other approaches – for example, using XML as an interoperability mediator;
• The proposed approach could be implemented with minor extensions of the existing tools for creation of

interoperability protocols and lifting of procedures. RPC and SWIG are very good base for start of the
implementation;

• Both discussed mechanisms are not easy and their usage will be a true challenge for some developers. That
is why a corresponding interface (shell) for ordinary users has to be provided too.

Bibliography
[Maneva, Manev, 2008] N. Maneva, Kr. Manev. On the models of development and distribution of Software, Interntional

Journal of Information Theories and Applications, No. 15, 2008.
[OMG, 2008] Model Driven Architecture, http://www.omg.org/mda
[Ousterhout, 1998] Scripting: Higher Level Programming for the 21st Century. IEEEComputer, March 1998.
[Marshal, 1999] D. Marshal. A tutorial on ONC RPC, http://www.sc.cf.ac.uk/Dave/C/node33.html, May 1999.
[Java RMI, 2007], The Java Tutorials. RMI. http://java.sun.com/docs/books/tutorial/rml, 2007.
[RPyC, 2007] Remote Phyton Call (RPyC). http://rpyc.wikispaces.com, 2007.
[SWIG, 2007] Welcome to SWIG. http://www.swig.org, 2007.
[SWIG, 2002] SWIG :Pointers to functions and callbacks,

http://www.garyfeng.com/wordpress/2002/11/27/swig-pointers-to-functions-and-callbacks/, 2002.

Authors' Information

Stefan Palanchov – Manager; STEMA-SOFT, St. Ivan Rilski, No. 27, vh. A, Varna-9009, Bulgaria;
e-mail: s.palanchov@stemasoft.com
Alexander Simeonov – Manager; Inovative Web Solutions, Mladost 4, 448, vh. 3, Sofia-1715, Bulgaria;
e-mail: simeonov@stemasoft.com
Krassimir Manev – Associated Professor, Faculty of Mathematics and Informatics, Sofia University, 5
J. Bourchier str, Sofia-1164, Bulgaria; e-mail: manev@fmi.uni-sofia.bg

