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Abstract: The key agreement protocol (KAP) using elliptic curve matrix power function is presented. This function 
pretends be a one-way function since its inversion is related with bilinear equation solution over elliptic curve 
group. The matrix of elliptic curve points is multiplied from left and right by two matrices with entries in Zn.  
Some preliminary security considerations are presented. 
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Introduction 

Key agreement protocols (KAP) is one of the basic cryptographic protocols. KAP allows two or more parties 
negotiate a common secret key using insecure communications. 
First KAP was presented by Diffie-Hellman [Diffie, Hellman, 1976] which caused rapid development of 
asymmetric cryptography. 
In 1993 new ideas appeared in asymmetric cryptography [Sidelnikov et al, 1993] – using known hard 
computational problems in infinite non- commutative groups instead of hard number theory problems such as 
discrete logarithm or integer factorization problems to construct one-way functions. 
This idea was realized in [Anshel et al, 1999] where KAP was constructed using conjugator search problem and 
membership problem in Braid groups. The similar result was presented in [Ko et al, 2000]. 
Later, [Shpilrain, Ushakov, 2004] showed that conjugator search problem does not produce sufficient security 
level. The others hard problems were investigated to construct KAP and were based on triple decomposition 
problem [Kurt, 2006], subgroup membership problem [Shpilrain, Zapata, 2006] and elliptic curve pairing [Smart, 
2002].  
The idea to use non-commutative infinite group (e.g. braid group) representation was also used for the other kind 
of one-way functions construction as a background of both digital signature scheme and key agreement protocol 
[Sakalauskas, 2005], [Sakalauskas et al, 2007]. The (semi)group representation level allows us to avoid a 
significant problem of hiding the factors in the publicly available group word when using its presentation level. The 
hiding of factors in representation level occurs in a very natural way. However, the original hard problems, such 
as conjugator search or decomposition problems in (semi)group presentation level are considerably weakened 
when they are transformed into the representation level. Therefore using representation level these problems 
must be considerably strengthened by simultaneously adding the other additional hard problems. 
In this paper we present KAP using elliptic curve matrix power function. This function pretends be a one-way 
function since its inversion is related with bilinear equation over elliptic curve group. The matrix of elliptic curve 
points is left and right side multiplied by two matrices with entries in Zn. 
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Mathematical background 

Let p > 3 be a prime integer. An elliptic curve Ep(a, b) over GF(p) is defined by equation  
y2 = x3 + ax + b, (1) 

where a, b ∈  GF(p) and 4a3 + 27b2 mod p ≠ 0. 
The addition operation between two points P =(x1, y1) and Q = (x2, y2) on elliptic curve is written in following 
algebraic formulas: 
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A set of all points (x, y), a, b ∈  GF(p), which satisfy (1) equation, together with special point O, called infinity 
point, and addition operation forms a finite cyclic group with O as its identity.  
Another operation, defined on elliptic curve is multiplication of point P by integer k. This operation is defined 
straightforward, i.e. 4P = P + P + P + P.  
Elliptic curve group order n = #Ep(a, b) can be roughly estimated using Hasse theorem [York, 1992]:  
Let Ep(a, b) is a group on elliptic curve y2 = x3 + ax + b and t = p + 1 – #Ep(a, b). Then  

≤ 2t p . (3) 

Equation (3) can be rewritten in more comfortable form: 

( )#E , .+ − ≤ ≤ + +1 2 1 2pp p a b p p
 

Since elliptic curve group is cyclic with order n, fixed point P multiplication by any integer k can be replaced with 
multiplication by number ∈� nk Z , where �k = k mod n and 0P = O, i.e. any point multiplied by zero is an infinity 
point. 

Key agreement protocol (KAP) 

Now we propose the following two parties key agreement protocol. 
1. Parties agree on publicly available matrix Q over elliptic curve Ep(a, b) and matrices L, R over Zn.   
2. Alice randomly generates two secret sequences {xi}, {yi}, i = 0, 1, …, k  in Zn  and computes 
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3. Bob randomly generates two secret sequences {ui}, {vi}, i = 0, 1, …, k  in Zn  and computes  
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V = v R = v I + v R +…+ v R . 

4. Alice computes intermediate value KA and sends result to Bob. 
KA = XQY (4) 

5. Bob computes intermediate value KB and sends result to Alice. 
KB = UQV (5) 

6. Since matrices X, U and Y, V are commutative, both parties compute common secret key  
K = XKBY = UKAV = XUQVY. (6) 

Preliminary security analysis 

The security parameters are matrix dimension m, elliptic curve group order n and secret sequences length k. 
They must be large enough to prevent brute force attack. To compromise the key K, the adversary must solve the 
(4), (5) matrix equations to find X, Y and U, V with known instances Q, KA, KB. 
Let X = {xij}, Y = {yij}, Q = {Qij}, A = {Aij} are matrices of 2-nd order. Then matrix equation XQY = KA =A can be 
rewritten as system of bilinear equation over elliptic curve group:   
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We do not know the actual complexity of such systems. It is known that solution of a system of polynomial 
equations over any field is NP-Complete [Garey, Jonson, 1979]. But in this case the obtained system is not over 
the field. This system can be interpreted also as a system of equations in vector space of elliptic curve points over 
Zn. Thus, we can make a conjecture that solving a system of bilinear equations over elliptic curve points vector 
space is not easier than solving a system of bilinear polynomial equations over any field. 
We can also refer to Schaefer Dixotomy theorem for a constraint satisfiability problem denoted by SAT(S) 
[Schaefer, 1978]. In general, the complexity of any computational problem can be estimated by reformulating this 
problem into the decisional problem and reducing some known NP-Complete problem into this decisional 
problem. Without proof we assert that there is a SAT(S) problem reducible in polynomial time to the decisional 
problem corresponding to (4), (5). 
On the other hand, notice that proposed KAP is a generalized elliptic curve Diffie-Hellman KAP (ECDH). Indeed, 
if we set matrix dimension to m = 1 and secret sequence length to k = 1, we get algorithm similar to ECDH.  
Further investigations are required to select the values of security parameters and estimate the security level.  
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