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Introduction 

Main object of asymmetric cipher constructing is one way function, which must be based on hard mathematical 
problems. For example traditional cryptosystems is based either the problem of factoring large integer number or 
on the discrete logarithm problem (DLP). 
New ideas in public key cryptography using hard problems in infinite non-commutative groups and semigroups 
appeared in [Sidelnikov et. al., 1993]. The realization of these ideas appeared in [Ko et al., 2000], using the braid 
group as a platform. The security of this cryptosystem was based on conjugator search problem. But according 
[Shpilrain and Ushakov, 2004] the approach is not sufficient and necessary. 
The other approach to use non-commutative infinite group (e.g. braid group) representation was also used for the 
other kind of one way functions construction as a background of both digital signature scheme and key 
agreement protocol [Sakalauskas, 2005], [Sakalauskas et al., 2007]. The (semi)group representation level allows 
us to avoid the significant problem to hide the factors in the publicly available group (braid group) word when 
using its presentation level. The hiding factors in representation level are achieved in a very natural way. 
However, the original hard problems, such as conjugator search or decomposition problems in (semi)group 
presentation level, are considerably weakened when transferred to the representation level. Hence these 
problems must be considerably strengthened by simultaneously adding the other additional hard problems in 
representation level. 
Lately the idea to use matrix group conjugacy problem together with matrix discrete logarithm problem for the one 
way function construction is presented in [Sakalauskas et al., 2007]. Another approach is based on so called 
matrix power operation for a matrix power S-box construction, is introduced in [Sakalauskas and Luksys, 2007]. 
In this study we propose new asymmetric cipher using decomposition (double coset) problem in matrix semiring 
M over semiring N of natural numbers. 

Preliminaries 

We consider an infinite multiplicative matrix semiring M over the semiring at natural numbers N. We assume 
N = {0, 1, 2, …}. The elements of M are m-dimensional square matrices with entries in N. Let us choose two 
distinct matrices ML and MR in M and define the set of all possible polynomials P= {pi( )} over N. Then the set PL 
we define as a set of all matrices of all polynomial functions in P with argument ML and PR as a set of all 
polynomials functions with arguments MR. In other words PL ={pi(ML)} and PR = {pi(MR)}. It is evident, that all 
matrices in PL and all matrices in PR are commuting. 
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To choose, for example, some matrices X, U in PL and Y, V in PR we can select two pairs of polynomials pX, pU 
and pY, pV in P and using the addition and multiplication operations in N find the following matrices: 

( ) ( )RYLX MpYMpX == ,  (1) 

( ) ( )RVLU MpVMpU == ,  (2) 

As we can see, the matrices X, U and Y, V are commuting, i.e.: 
VYYVUXXU == ;  (3) 

Asymmetric cipher 

On the bases of presented above formalism we can construct an asymmetric ciphering algorithm. Let’s choose 
distinct matrices ML1 and ML2 from PL and MR1 and MR2 from PR to calculate polynomial matrices X and Y by (2.1) 
in the following way: 

( ) ( )2211 LXLX MpMpX ⋅=  (4) 

( ) ( )2211 RYRY MpMpY ⋅=  (5) 

( ) ( )2211 LULU MpMpU ⋅=  (6) 

( ) ( )2211 RVRV MpMpV ⋅=  (7) 
where all polynomials are in P. 
All polynomials in (4), (5) are represented by the following vectors ( )nL aaaa ,,, 21 …= , ( )nL bbbb ,,, 21 …= , 

( )nR ccca ,,, 21 …= , ( )nR dddb ,,, 21 …=  with components in N. Let the matrices MR1, ML1, MR2, and ML2 are at 
the form: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ

Θ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ

Θ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ

Θ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ

Θ
=

2

2
2

1

1
1

2

2
2

1

1
1 ,,,

R
Ir

M
Ir

R
M

L
Ih

M
Ih

L
M RRLL  (8) 

where Θ  are m/2-dimensional zero matrix, 1L , 2L , 1R  and 2R  are m/2-dimensional square matrix over N, I is 
m/2-dimensional identity matrix, 1h , 2h , 1r  and 2r  are numbers in N. Let’s choose any matrix Q in M not equal 
ML1, ML2 and MR1, MR2 and calculate matrix, using the matrices X and Y calculated by (4) and (5) 

XQYA =  (9) 

Assymmetric cipher public parameters we declare M, R and matrices 2121 ,,, RRLL MMMM . The private key 
is { }YX ,PrK =  and public key { }AQ,PuK = . When vectors La , Ra , Lb , Rb  are unknown, matrices X and Y 
are also unknown. Using (2) and PuK we define encryptor and decryptor operators. 
Definition 1: Encryptor ε is an element in M which is calculated by following equation: 

UAV=ε  (10) 

Definition 2: Decryptor δ is an element in M satisfying following equation: 

UQV=δ  (11) 

It is clear that the elements of N can be transformed in the binary form. 

Definition 3: The bitwise XOR operation ⊕  of the elements (numbers) in N is a sum modulo 2 of bits of 
numbers presented in binary form. 
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Let Alice intents to encrypt her message t with Bob’s public key { }AQ,PuKB =  obtaining a ciphertext C. Then 
Bob decrypts received C using his private key { }YX ,PrKB = . For the ciphering message t Alice must perform 
encoding t by the numbers in N and to form a m-dimension matrix T, corresponding t. 
Then the encryption algorithm is following: 
Step 1. Alice takes 2121 ,,, RRLL MMMM  matrices, chooses at random vectors of polynomials coefficients La , 

Ra , Lb  and Rb  and using (6), (7) calculates matrices U and V. 

Step 2. Alice calculates encryptor ε using (10).  
Step 3. Alice calculates decryptor δ using (11). 
Step 4. Alice obtains the cyphertext C computed by the formula: 

TUAVTC ⊕=⊕= ε  (12) 

Step 5. Alice sends to Bob the following data ( )δ,CD = . 

Decryption algorithm: 
Bob gets data ( )δ,CD =  and using his private key BPrK  calculates the decoded plaintext T: 

TCYX =⊕δ  (13) 
The last equation is valid since using (3) the following identities take place: 

( ) ( ) TTUXQYVXUQVYTUAVYUQVXCYUQVXCYX =⊕⊕=⊕⊕=⊕=⊕δ  (14) 

4. Security analysis  

To break this asymmetric cipher, Bob’s BPrK  must be compromised, i. e. to find any X’ and Y’, satisfying (9) 
and commutativity conditions (3). Hence for compromising BPrK  it is not required to find the true values of X 
and Y. The required matrices X’ and Y’, must satisfy equation: 

AQYX =''  (15) 
It is easy to notice, if (15) is satisfied, then 

( ) ( ) TTUAVUAVTUAVVYQXUCYUQVXCYX =⊕⊕=⊕⊕′′=⊕′′=⊕''δ  (16) 

Definition 4. The computational decomposition (or double coset) problem (DP) in M is to find any matrices X’ 
and Y’ in M when given A and Q satisfying equation (15). 

Definition 5. The decisional (YES/NO) DP is to get an answer, if there are there any matrices X’ and Y’ in M 
satisfying (15) for given Q and A. 
Definition 6. The DP is strong one way function (OWF) if determination of any X’ and Y’ is infeasible when given 
A and Q. 
On the complexity of formulated computational DP relies on security of proposed cipher algorithm. So formulated 
DP is equivalent to task find any coefficients of polynomials 21, XX pp  and 21, YY pp  in (4) and (5) when the 
matrices X’ and Y’ computed using these equations satisfies (15). Let 
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Then the DP according the Definition 4 is equivalent to find any vectors ( )nL aaaa ′′′=′ ,,, 10 … , 

( )nR bbba ′′′=′ ,,, 21 … , ( )nL cccb ′′′=′ ,,, 10 …  and ( )nR dddb ′′′=′ ,,, 10 … , satisfying (15), when X’ and Y’ are 
computed using ((17) and (18). 
The set of possible values of vectors La′ , Ra′ , Lb′  and Rb′  must be large enough to prevent the total scan (i.e. 
brutal force attack), to find solution. If this is done the other way is to try to solve the matrix equation (15), using 
some more advanced algorithm. We can write (17) (18) in following way: 
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Then (15) can be rewritten as: 

( )∑ ′′′′=
lkji

l
R

k
R

j
L

i
Llkji MQMMMdcbaQYX

,,,
2121''  (21) 

This matrix equation corresponds to the mxm system of polynomial equation with fourth order 
monomials dcba kji ′′′′ . But nevertheless this system allows a direct linearization. To linearize this system, let us 

introduce a set of new variables { }ijklz , when lkjiijkl dcbaz ′′′′= , then (21) can be rewritten in the form: 
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As we see there are m2 equations and (n+1)4 unknowns in every equation. Depending on m2 and (n+1)4 ratio, this 
system is: 
a) Under defined, when m2 > (n+1)4; 
b) Equal defined, when m2 = (n+1)4; 
c) Over defined, when m2 < (n+1)4; 
We conjecture that greatest computational complexity of (22) can be achieved when the cases a) and b) are near 
the equal defines case. We do not know the algorithmically affective methods, how to find ijklz  in semiring N of 
natural numbers Hence we can make a conjecture that private key computed by (9) represents the one-way 
function. 
In a natural way we can choose the following security parameters for our cipher: 
- dimension of matrices m; 
- maximum order of matrices’ ( )QMMMM RRLL ,,,, 2121  elements r; 

- maximum order of polynomials n; 
- maximum order of polynomials’ coefficients s; 
We need to define optimal limits of these parameters to prevent the brute force attack, qualitatively estimate the 
security of the cipher and minimize needs of computer’s memory for matrix storage. The total scan to find a 
coefficients of the polynomials requires to perform the number of verification operationsη: 

44 += nsη  (23) 

The number of bits  β required to store the matrix A is: 
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For example, consider such case: let n = 2, s = 82 , r = 42 , m = 8. Then ( ) 964248 22 ==
+⋅

η  and the number of 

bits representing matrix A is ( ) ( ) ( )( ) 486476642228log8 48124422
2

2 =⋅=⋅=
+⋅⋅β bits. 

It is clear that under these parameters we prevent the brute force attack. In this case we have 64 equations and 
81 monoms corresponding to (22). Hence our system is under defined. If we use linearization method to 
compromise cipher, we should freely choose 17 monoms values and then we need to solve system of 64 
equations over semiring of natural number N. We reckon this problem is hard enough to compromise a private 
key. Even if suitable variables ijklz  will be found the problem of restoring the coefficients of polynomials remains 
hard. 

Conlusions 

In this paper we proposed one asymmetric cipher protocol using decomposition problem in matrix semiring M 
over semiring of natural numbers N. We showed that the compromisation of cipher relies on the intractability of 
solution of system of linear equation over the semiring N. After that the other problem is to restore the 
coefficients of polynomials which we reckon to be also hard task. The complexity estimation requires further 
investigations in order to find the estimates of security parameters and their relation to the other security 
parameters of known cryptographic primitives. 
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