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METHOD OF FINDING HAMILTON ROUTES IN TRANSPORT NETWORK 
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Abstract: This article discusses a solution method for Hamilton Problem, which either finds the task's solution, or 
indicates that the task is unsolvable. Offered method has significantly smaller requirements for computing 
resources than known algorithms. 
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Introduction 

The paper presents the method of Hamilton’s Problem (HP) solution with significantly lesser requirements for 
computing resources, than for known methods. 
Let's formulate the HP. 
Let H = (V, U) is a connected graph without closed loops and multiple edges, V – set of vertexes, V n= , U – set 

of edges. An edge { },i j U∈  has the weight (cost) 0ijd Z+∈ , , 1,  i j n= , 0Z+  is set of non-negative numbers. The 

symmetric matrix of weights ij n
d⎡ ⎤⎣ ⎦  completely defines weighed graph H = (V, U), and at this matrix 0ijd Z+∈  if 

{ },i j U∈  else ijd = ∞ , i j≠ , iid = ∞ , 1,  i n= . 

Graph H = (V, U) is Hamiltonian if it contains a Hamilton cycle, i.e. the simple cycle which is passing through all 
vertices of V exactly once. The cost ( )D z  of the Hamilton cycle is equal to the sum of weights z edges – it is put 
in correspondence to this cycle. 
The essence of HP is in finding a Hamilton cycle *z  of the minimum cost ( )*D z . 

The task is NP - difficult [1]. Known methods of its solution are presented by schemes of the organization of 
exhaustive search of all cycles in graph H [2-5]. Practical implementation of these methods is problematic even 
with application of the most powerful computing systems. 
The HP is also not always solvable. Therefore a unique method of finding a minimum cost Hamilton cycle *z  is 
the method which builds *z  if a HP it is solvable, or correctly indicates that graph H = (V, U) is not Hamiltonian. 
Let’s setup the solution search in two stages. At the first stage sufficient conditions of non-Hamiltonian graph H = 
= (V, U) are checked. Complexity of checking each of them is estimated by a polynomial of a degree not above 3 
from a size of task input data. A HP it is not solvable, if at least one of sufficient conditions of the non-Hamiltonian 
graph is fulfilled. 
It is obvious, that if graph N contains final vertices the HP has no solutions. The condition of graph containing 
concatenation points being non-Hamiltonian is less obvious. Concatenation point is a vertex deleting which 
together with incidental edges, results in a disconnect graph [6]. Recognition of concatenation points in connected 
graph H = (V, U) is fulfilled with complexity ( )O V U+  [6]. It is not complicated to show, that graph  is not 
Hamiltonian if it contains the bridge defined as such edge deleting which increases the number of connectivity 
components [6]. It is possible to fulfill recognition of bridges in time ( )O U V+  in graph H = (V, U). 

At the second stage let’s search the solution a HP *z  for the graph which is not containing final vertexes, points 
of a concatenation and bridges. 
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The search scheme of the minimum cost Hamilton path on a transport network. 

The *z  searching algorithm is constructed according to the main scheme of the branch and bound algorithm. It 
calls procedure of solving an assignment problem (AP) for an evaluation of lower bounds of magnitude ( )*D z  
[4]. At the same time, it has features inherent only in it which in the course of branching allow to define, what HP 
subtasks have no solution. 

Let's consider a matrix of weights of HP ij n
d⎡ ⎤⎣ ⎦ . To calculate a lower bound of required magnitude ( )*D z , it is 

required to solve AP for this matrix. But AP with a matrix of weights ij n
d⎡ ⎤⎣ ⎦  contains a part of elements ijd = ∞  

and may not have a solution. Therefore, for an evaluation of the lower bounds in the course of finding *z  the 
algorithm is required , which correctly discovers AP solution or strictly indicates, that AP has no solutions. 
Modification of Caen-Munkres algorithm works exactly in such way [4]. 
The algorithm of Caen-Munkres solves AP on a maximum with the assumption that all units ijd ≠ ∞ , i j≠ . The 

input of the updated algorithm is the matrix ij n
d ′⎡ ⎤⎣ ⎦  where ij ijd d d= −  if ijd ≠ ∞  and ijd ′ = −∞  else, d ≠ ∞  is a 

maximum element of matrix ij n
d ′⎡ ⎤⎣ ⎦ . Then, if there is solution of AP on a maximum for a matrix ij n

d ′⎡ ⎤⎣ ⎦ , it is the 

solution AP on a minimum for a matrix ij n
d⎡ ⎤⎣ ⎦ . Weights of solutions ( )C π  and ( )C π′  accordingly for matrixes 

ij n
d⎡ ⎤⎣ ⎦  and ij n

d ′⎡ ⎤⎣ ⎦  are linked by equality  

( ) ( )C nd Cπ π′= − . 

The updated algorithm of Caen-Munkres searches for an AP solution in a bipartite graph ( ),  ,  K X Y E , 

X = Y n= , 2E U=  corresponding to a matrix ij n
d ′⎡ ⎤⎣ ⎦  where the vertex ix X∈  is connected to vertex 

jy Y∈  by an edge ( ),i jx y  with weight ( ),i j ijd x y d= ≠ ∞ . The AP is solvable if the perfect matching π  with 

the maximum sum of weights of edges is constructed in the graph ( ),  ,  K X Y E . The AP is unsolvable, if the 

graph (K X , ),  Y E  does not contain perfect matchings. 

The detailed description of Caen-Munkres algorithm modification is presented in [4]. Its main part is a known 
procedure of searching of a perfect matching in the bipartite non-weighed graph ( ),  ,  H X Y E , X Y= , 

2E U=  with additional means of determining amount of units ijd = −∞  and their disposition in the matrix 

ij n
d ′⎡ ⎤⎣ ⎦  when AP is insoluble [4, 7]. Algorithm of Caen-Munkres and its modification both are characterized by the 

labor expenditures estimated by magnitude ( )4O n  [7]. 

The algorithm of finding *z  is fulfilled under the scheme of a branch and bound algorithm offered in [2] for 
symmetric TSP solution. A combination of this scheme with modification of algorithm of Caen-Munkres is 
applicable for a solution a HP as well. 
Let’s assume the perfect matching π  is constructed. It supplies the target AP functional with a minimum ( )C π , 
which is accepted as the lower estimate of weights of a required cycle *z . Considering the matching π  as 
permutation of columns of the weight matrix, we will present its cyclic expansion, i.e. as a set of non-intersecting 
cycles. Cyclic expansion of permutation π  and the estimate ( )C π  form the rout of a tree of branching. The 

permutation π  presented by a unique cycle, is a *z  – HP solution. It’s weight is ( )C π . 
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Generally the AP solution contains some non-intersecting cycles. Let’s select from them a cycle σ = ( 1v 2v , 

…, kv , )1v  with the minimum number of edges. Let’s delete all solutions of AP, which contain a cycle σ , without 
losing any admissible solution z  in an initial matrix. It is possible to present set of all solutions of an AP as a 
partition on k  subsets because at least one of k edges ( )1 2,v v , ( )2 3,v v …, ( )1,kv v  should not be included in 

z. Let’s designate AP with an initial matrix ij n
d⎡ ⎤⎣ ⎦  as 0P . Then 0P  is divided on k subtasks 1P , 2P , …, kP . Each 

of those subtasks correspond in a one-to-one relationship to edges of cycle σ . Weights of edges of σ  are set to 
∞  in ij n

d⎡ ⎤⎣ ⎦  matrix , all of the remaining weights are not modified. In the matrix ij n
d ′⎡ ⎤⎣ ⎦  of AP on maximum this 

edge’s weight is assigned −∞ . Then if there exists a HP solution it belongs to a set of solutions of any of the 
subtasks 1P , 2P , …, kP  , which are presented by vertices of a branching tree, emerging from vertex 0P . 

In each subtask iP , 1,  i k= , it is possible to eliminate not only those solutions which containing the cycle σ , but 
also the solutions including cycles with vertices from set { }1 2, ,..., kS v v v= . To achieve that, let’s take the weight 

matrix of subtask iP  received from 0P  by assigning the element 1v vi id
+

, 1,  i k= , 1 1kv v+ = , of weight equal to 

∞ . In this matrix let’s set v vi jd = ∞  for all { }\i iv S v∈ . In the corresponding weight matrix of AP subtask on 

maximum each unit v vi jd  gets weight −∞ . 

For AP on maximum corresponding to subtask iP , 1,  i k= , let’s apply modification of algorithm of Caen-Munkres 
to build a permutation iπ  if iP  is solvable or find out that it has no solutions. If the subtask iP  is unsolvable the 
vertex corresponding to it in a tree of branching has no admissible prolongation. Let’s suppose that from k 
subtasks iP  there are 1k  solvable subtasks isP , i∈ {1, 2, …, k}, 1,  s k= , i.e. there were built optimal 

permutations isπ  and values supplied by them were calculated ( )isC π . Obviously, it is possible to limit the cost 

of the required Hamilton cycle *z from below to magnitude 

( ) { }{ }1min | 1,  2,...,  ,  1,  isC C i k s kπ= ∈ = . 

Let's consider a subtask qP  for which ( )qC Cπ = . If the solution qπ  is a Hamilton cycle it will be a solution of 

HP also. Otherwise permutation qπ  produces several non-intersecting cycles. Then the node qP  of the solution 

tree is declared as top of branching [2]. The task qP  is divided into the subtasks which solutions do not contain a 

minimum length cycle σ  from permutation qπ  expansion. In solutions of subtasks all cycles generated on set of 
vertexes of σ  are eliminated also. Having fulfilled modification of algorithm of Caen-Munkres for each received 
subtask qsP , we will define 2k  solvable subtasks, q∈{1, 2, …, 1k }, 21,  s k= . Now a current lower bound of cost 

of an optimal Hamilton cycle *z  is magnitude 

( ) { }{ }{ 1 2min min | 1,  2,...,  ,  1,  qsC C q k s kπ= ∈ = , ( ){min |isC π { }1, 2,..,  i k∈ , { }11,  2,...,  s k∈ , }}si q≠ ,  

corresponding to the task pP . If all subtasks received from the task qP  are unsolvable the vertex of branching of 

a solution tree corresponds to the task pP  with a current estimation ( ) { }{ π= ∈min | 1,  2,...,  isC C i k , 

{ } }∈ ≠11,  2,...,  ,  ss k i q . 

Further branching for vertex pP  is carried out in the same way as for vertex qP . Finding the HP solution is 

completed in one of two cases. In the first case the algorithm finds a Hamilton cycle *z for HP, which is a solution 
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of a AP with current value of C. In the second case algorithm determines that all finite vertexes of the solution tree 
are not subjects to further branching, and therefore the HP is unsolvable. 
Graph H has no trailing vertexes and concatenation points. As a result of vertex-edges reorganization (VER) its 
only chain (1, 8, 2) is replaced by an edge connecting vertexes 1 and 2. Therefore it is impossible to assert that 
graph H not Hamiltonian. 
 

 6 

5 2 

8 

1 7 

3 

4  

 1 2 3 4 5 6 7 8  
1 ∞  ∞  9 5 10 6 11 4  
2 ∞  ∞  ∞  ∞  11 4 9 4  
3 9 ∞  ∞  4 ∞  ∞  2 ∞   
4 5 ∞  4 ∞  ∞  11 9 ∞  . 
5 10 11 ∞  ∞  ∞  12 ∞  ∞   
6 6 4 ∞  11 12 ∞  ∞  ∞   
7 11 9 2 9 ∞  ∞  ∞  ∞   

⎡ ⎤⎣ ⎦8ijd = 

 

8 4 4 ∞  ∞  ∞  ∞  ∞  ∞    
Fig. 1. Graph H = (V, U) and a matrix of weights of its edges. 

 

Let’s apply modified algorithm of Caen-Munkres [4] to solve AP 0P  with an input weight matrix ⎡ ⎤⎣ ⎦8ijd . 

The algorithm searches for the AP solution on maximum for a matrix 
 

 1 2 3 4 5 6 7 8  
1 −∞  −∞  3 7 2 6 1 8  
2 −∞  −∞  −∞  −∞  1 8 3 8  
3 3 −∞  −∞  8 −∞  −∞  10 −∞   
4 7 −∞  8 −∞  −∞  1 3 −∞   
5 2 1 −∞  −∞  −∞  0 −∞  −∞  . 
6 6 8 −∞  1 0 −∞  −∞  −∞   
7 1 3 10 3 −∞  −∞  −∞  −∞   

′⎡ ⎤⎣ ⎦8ijd = 

8 8 8 −∞  −∞  −∞  −∞  −∞  −∞   
 

Optimal solution of the AP 0P  both on maximum and minimum is permutation π = (4, 8, 7, 1, 6, 5, 3, 2), ( )π′C = 

= 50. The minimum of a target functional of AP 0P  is ( )πC = 46. It limits from below weight of the required HP 

solution *z . Cyclic expansion of permutation π  looks like the following: σ1 = (1, 4, 1), σ 2 = (2, 8, 2), σ 3 = (3, 7, 
3), σ 4 = (5, 6, 5). Each cycle of expansion contains two edges. Thus for branching we will select any of four, for 

example σ 3 = (3, 7, 3). On fig. 2 the branching tree of finding the Hamilton cycle *z  ( )πC  is presented. All 
calculation results, which form the branching tree, are given in table 1. 
The AP 0P  as a result of branching generates two tasks 1P and 2P  on maximum with weight matrixes received 

from ′⎡ ⎤⎣ ⎦8ijd . In matrix ′⎡ ⎤⎣ ⎦8ijd  for task 1P  −∞  is assigned to element ′37d =10, and for task 2P  – to element 

73d =10. The modified algorithm of Caen-Munkres finds solutions π1  and π2  for these tasks and defines weights 
of received solutions ( )π1C = ( )π2C = 49. For branching it is possible to select any of subtasks with identical 
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estimates. Let’s select task 1P . Permutation π1  is exhausted with two cycles, from which the cycle (3, 4, 7, 3) 
has the minimum length. Elimination of AP solutions containing this cycle and all cycles with vertices from set {3, 
4, 7} produces three tasks 11P , 12P , 13P  on maximum with corresponding weight matrices. In the first matrix 
′ =37d ′ = −∞34d , in the second ′ =37d ′ =43d 47d ′ = −∞ , in the third ′ =37d ′ =73d ′ = −∞74d . All three tasks are 

solvable. Weights of their solutions are ( )π11C = 57, ( )π12C = 52, ( )π13C = 58. By the current moment all final 

vertices of branching tree 2P , 11P , 12P  are active 13P . As, =minC ( ){ π2C ( )π11C ( )π12C ( )}π13C = min {49, 

57, 52, 58} = 49, the vertex 2P  appears as branching vertex. 
 

 

0P

1P  2P

12P  

11P  
13P

121P  122P

22P

21P
23P

221P
222P

( ) 46C π =

( )1 49C π =

( )11 57C π =  
( )13 58C π =

( )12 52C π =

( )121 56C π =  ∅

( )2 49C π =  

( )21 63C π =
( )23 57C π =

( )22 52C π =  

( )221 56C π = ∅

34d = −∞  

73d = −∞  

37d = −∞  73d = −∞

43d = −∞  

47d = −∞  

73d = −∞

74d = −∞

56d = −∞  
65d = −∞

34d = −∞

37d = −∞
73d = −∞  

74d = −∞  

43d = −∞

47d = −∞

56d = −∞ 65d = −∞

 
Fig. 2. The branching tree for HP with numerical data of an example 1. 

 

Task 2P  is divided into three subtasks 21P , 22P , 23P  with weights of solutions ( )π =21 63C , ( )π =22 52C , 

( )π =23 57C . From current set of active vertexes { 11P , 12P , 13P , 21P , 22P , }23P  of the branching tree we will 

select vertex with the minimum estimate = minC {57, 52, 58, 63, 52, 57} = 52. Vertices 12P , 22P  have equal 

rights to become the branching vertex. For further branching we will select subtask 12P . In cyclical expansion of 

permutation π12  the cycle (5, 6, 5) has the minimum length. Therefore the task 12P  generates two subtasks 121P  

and 122P . The modified algorithm of Caen-Munkres builds AP solution of 121P  in the form of a Hamilton cycle  
(1, 8, 2, 7, 3, 4, 6, 5, 1) with weight ( )π =121 56C  and determines that task 122P  has no solutions. 

Having built Hamilton cycle with weight 56 we no longer need to branch all active vertices with equal or greater 
estimates. There remains a single AP 22P  whose weight of solution is equal to 52. Cyclical expansion of 

permutation π22  includes a cycle (5, 6, 5), calling two new subtasks 121P  and 222P . AP 222P  has no solution, 

and a solution of AP 221P  is a Hamilton cycle (1, 5, 6, 4, 3, 7, 2, 8, 1) for which the total weight of edges ( )π221C  
is equal to 56. 
The cost of the constructed Hamilton cycles is less, than a lower bound in any final vertex of the branching tree. 
Thus, the optimal solution of the HP are cycles π=*

1 121z = (1, 8, 2, 7, 3, 4, 6, 5, 1), π=*
2 221z = (1, 5, 6, 4, 3, 7, 2, 

8, 1).    
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Table 1. 
AP AP solution Cycle expansion of AP solution 

0P  π = (4, 8, 7, 1, 6, 5, 3, 2), ( )π = 46C  (1, 4, 1) (2, 8, 2) (3, 7, 3) (5, 6, 5) 

1P  π1 = (5, 8, 4, 7, 6, 2, 3, 1), ( )π =1 49C  (1, 5, 6, 2, 8, 1) (3, 4, 7, 3) 

2P  π2 = (5, 8, 7, 3, 6, 2, 4, 1), ( )π2C = 49 (1, 5, 6, 2, 8, 1) (3, 7, 4, 3) 

11P  π11 = (4, 8, 1, 7, 6, 5, 3, 2), ( )π =11 57C  (1, 4, 7, 3, 1) (2, 8, 2) (5, 6, 5) 

12P  π12 = (8, 7, 4, 1, 6, 5, 3, 2), ( )π =12 52C  (1, 8, 2, 7, 3, 4, 1) (5, 6, 5) 

13P  π13 = (3, 7, 4, 3, 6, 5, 2, 1), ( )π =13 58C  (1, 8, 1) (2, 7, 2) (3, 4, 3) (5, 6, 5) 

21P  π21 = (8, 7, 1, 3, 6, 5, 4, 2), ( )π =21 63C  (1, 8, 2, 7, 4, 3, 1) (5, 6, 5) 

22P  π22 = (4, 8, 7, 3, 6, 5, 2, 1), ( )π =22 52C  (1, 4, 3, 7, 2, 8, 1) (5, 6, 5) 

23P  π23 = (3, 8, 7, 1, 6, 5, 4, 2), ( )π =23 57C  (1, 3, 7, 4, 1) (2, 8, 2) (5, 6, 5) 

121P  π121 = (8, 7, 4, 6, 1, 5, 3, 2), ( )π =121 56C  (1, 8, 2, 7, 3, 4, 6, 5, 1) 

122P  AP is unsolvable – 

221P  π222 = (5, 8, 7, 3, 6, 4, 2, 1), ( )π =52 56C  (1, 5, 6, 4, 3, 7, 2, 8, 1) 

222P  AP is unsolvable – 
 

Conclusion 

The method has been implemented in C# programming language. For perfomance tests we have used Celeron 
1.8GHz PC. Solution time for HP with cost matrix size around 60 in the worst case does not exceed 3 minutes. 
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