
International Book Series "Information Science and Computing"

203

USING SAT FOR COMBINATIONAL IMPLEMENTATION CHECKING

Liudmila Cheremisinova, Dmitry Novikov

Abstract. The problem of checking whether a system of incompletely specified Boolean functions is implemented
by the given combinational circuit is considered. The task is reduced to testing out if two given logical descriptions
are equivalent on the domain of one of them having functional indeterminacy. We present a novel SAT-based
verification method that is used for testing whether the given circuit satisfies all the conditions represented by the
system of incompletely specified Boolean functions.

Keywords: design automation, verification, simulation, SAT.

ACM Classification Keywords: B.6.2 [Logic Design]: Reliability and Testing; G.4 [Mathematical Software]:
Verification; B.6.2 [Reliability and Testing]: Error-checking.

Introduction

Verification takes place at all design levels: from the conceptual design down to the design of combinational
circuits. In this process, the objective of verification is to ensure that implemented and specified behaviors are the
same; at this point, the design is error-free. Validating the functionality of digital circuits and systems is an
increasingly difficult task. Multiple chip design projects are reporting that approximately 70% of their design time
is spent in verification. This is due to the growing complexity of the designs that has not been accompanied by
improvements in functional verification techniques.
While design tools have been made, and they, at least partially, support the complexity of highly integrated
designs, there is a lack of verification support. Widely used tools for verification are logic simulators. At present,
logic simulation is the most widely used technique for ensuring the correctness of digital integrated circuits in
industry because of its scalability and predictable run-time behavior. This technique is based on verifying a digital
system by stimulating inputs of the circuit with binary signals values that propagate in the circuit leading to a
corresponding activation of the outputs, whose values must be consistent with the expected ones.
The past ten years have seen efforts in developing commercial formal verification tools. Instead of testing all input
combinations explicitly (as simulators do), they formally prove a circuit's functionality to be consistent with its
specification. Formal verification techniques have the potential of providing more general results than traditional
simulation methods: it is possible to guarantee that a specific property holds for a design under all possible input
stimuli. Now combinational equivalence checking (CEC) plays an important role in VLSI design; its usual
application is verifying functional equivalence of combinational circuits after multi-level logic synthesis. In a typical
scenario, there are two structurally similar implementations of the same design, and the problem is to prove their
functional equivalence. This problem was addressed in numerous research publications, some of them are
referenced in [Drechsler, 2000; Kropf, 1999; Mishchenko, 2006; Ganai, 2002; Kuehlmann, 2002; Kunz, 2002]. In
a modern CEC flow based on formal verification approach, both circuits to be verified are transformed into a
single circuit called a miter. It is derived by combining the pairs of inputs with the same names and feeding the
pairs of outputs with the same names into EXOR gates, which are ORed to produce the single output of the miter.
The miter is a combinational circuit with the same inputs as the original circuit and there is constant 0 on its
output if and only if the two original circuits produce identical output values under all possible input assignments.
In the paper, the verification task is examined for a case, when desired functionality of the system under design is
incompletely specified, i.e. intended behavior of implemented design allows functional indeterminacy. Such a

Artificial Intelligence and Decision Making

204

case usually occurs on early stages of designing when assignments to primary inputs of designed device exist
which will never arise during normal mode of the device usage. Thus when hardware implementing this device, its
outputs in response of these inputs may be arbitrary defined. In this case verification methodologies must
consider only possible input scenarios to the design under verification and verify that every possible output signal
of implemented behavior has its intended (described in initial specification) value.
The considered case could be thought as solvable by means of simulation-based tools of verification. But we
propose a Boolean satisfiability-approach (SAT-approach) of checking whether a given combinational circuit
implements a particular design specification. In this paper, we propose the following contributions to the problem
of combinational verification: 1) the behaviour of the combinational circuit to be designed is specified with
functional indeterminacy; 2) we show how it is possible to use SAT tools [Goldberg, 2002] for the considered
case.
So in this paper we consider the verification problem for the case, when: 1) desired incompletely specified
functionality is given in the form of a system of incompletely specified Boolean functions; 2) functions of the
system are specified on intervals (cubes) of values of Boolean input variables and these intervals are large
enough; 3) the system is implemented in the form of a combinational circuit in the basis of the elementary gates
AND, OR and NOT.
We will discuss a novel SAT based method for testing whether the given circuit implements all multiple-output
cubes representing the system of incompletely specified Boolean functions.

Background

Vectors and assignments. Let us consider a Boolean vector x = (x1, x2, …, xn) of input variables. Let us call a set
of equalities of type xi = σi (where σi ∈ {0, 1}, i = {1, 2,…, n}) as a variable value assignment a for the vector x of
input variables. A variable value assignment a for the vector x can be a complete if all xi are assigned or a partial
otherwise. In the last case some of variables may be don’t-care, meaning that any assignment to these variables
is permissible. A complete variable value assignment represents a minterm and partial assignment represents a
cube in n-dimensional Boolean space En = {0,1}n. A cube represents a product of literals (from now on, literal is a
Boolean variable or its negation). A cube of the size k fixes values of exactly k variables and covers 2n–k
minterms. In general case a cube ck (and the appropriate product) covers another cube cl (and the appropriate
product) if the literals of ck are a subset of the literals in cl.
Boolean functions. A completely specified Boolean function (CSF) f(x) = f(x1, x2, …, xn) is a many-to-one
mapping from n-dimensional (n ≥ 0) Boolean space into a single-dimensional one: En → E. A don’t-care for a
logic function allows it to have either 0 or 1 as a possible value. If, for some input combinations (minterm), the
output of the function is a don’t-care, this Boolean function is called as incompletely specified one (ISF). ISF is a
mapping En → {0,1,–}m, where the symbol “–” denotes don’t-care condition. A CSF has only care minterms,
which correspond to the assignments, for which it takes values 0 or 1. An ISF additionally has don’t-care
minterms, which correspond to the assignments, for which the function is flexible and can be either 0 or 1.
CSF f (x) is specified by a pair of sets Uf1 and Uf0 of cubes (or minterms) that represent its on-set and off-set that
divide Boolean space En into two parts. In the case of ISF there exists a don’t-care set En \ (Uf1 ∪ Uf0) of cubes
(that is not empty). A CSF g (x) implements an ISF f (x), if the CSF can be derived from the ISF by assigning
either 0 or 1 to each don’t-care minterm or, that is the same, if

Uf1 ⊆ Ug1 , Uf0 ⊆ Ug0 (1)
A system of Boolean functions F = { f1(X), f2(X), …, fm(X) } (or f (x) in the vector notation, where x and f are
vectors of input and output variables) of completely specified Boolean functions (CSF) is a mapping between

International Book Series "Information Science and Computing"

205

n-dimensional and m-dimensional Boolean spaces. In the case of ISF don’t-care minterms may differ for different
functions.
Let us specify a system f (x) of ISFs as a set of multiple-output cubes. A multiple-output cube (u, t) is a pair of
ternary vectors (products) of dimensions n and m that are called as its input and output parts correspondingly.
The input part u represents a cube in En or a product of some literals xi ∈ X. The output part t is a ternary vector
of values of functions for the cube u or a product of some literals fi ∈ F. For each fi ∈ F the j-th entry t j of t is 1 or
0 (t j = 0) if all the minterms covered by the cube u are in the on-set Ufj1 or in the off-set Ufj0 correspondingly;
otherwise t j is don’t-care. For example, for the case (u, t) = (– 0 1 0 –; – 0) (or (u, t) =(⎯x2 x3⎯x4;⎯f2)) we may
state that all four minterms (belonging to the interval – 0 1 0 –) 0 0 1 0 0, 0 0 1 0 1, 1 0 1 0 0, 1 0 1 0 1 ∈ Uf20 and
f2(x1,0,1,0,x5) = 0 but we can say nothing about the value of the function f1 on these minterms: some of them can
be care some don’t-care ones.
A Conjunctive normal form (CNF) represents a Boolean function as conjunction of one or more clauses, each
being in its turn a disjunction of literals. From now on, we consider only clauses that do not simultaneously
contain a literal and its negation.
A CNF denotes a unique completely specified Boolean function f (x) and each of its clauses corresponds to an
implicate of the function. A Boolean variable can be assigned a truth value (0 or 1). Also, clauses and CNF may
assume values depending respectively on the values of the corresponding literals and clauses. CNF
representation is popular among SAT algorithms because each clause must be satisfied (evaluate to 1) for the
overall CNF to be satisfied. The SAT problem is concerned with finding an assignment X’ → {0,1} to the variables
of some subset X’ ⊆ X that makes CNF equal to 1 or proving that it is equal to the constant 0. If the first outcome
takes place they say that the CNF is satisfied and refer to X’ → {0,1} as a satisfying assignment.
Matrix Models of Boolean functions and CNF. Matrix representation of CNF formula C containing k clauses
and n distinct variables is a ternary matrix C having a row for each clause and a column for each variable. The
entry cij of the matrix in the i-th row and the j-th column is 1, 0 or “–” depending on in what a form (xj or ⎯xj) the
variable xj appears or does not appear in i-th clause of C. The same manner, matrix representation of ISF f (x) is
a pair of ternary matrixes Uf1 and Uf 0 having rows for all cubes from Uf1 and Uf 0, correspondingly.
The system f (x) of ISFs given by the set S of multiple-output cubes (ui, ti) can be represented by a pair of ternary
matrices U and T of the same cardinality (Fig. 1). The matrix U contains as its rows all input parts of
multiple-output cubes from S; similarly matrix T specifies as its rows all output parts.

 x1 x2 x3 x4 x5 f1 f2
 – – 1 1 1 1 – 1
 1 1 – – – 1 0 2
U = – 0 0 0 – T = 0 1 3
 0 1 – 1 0 0 0 4
 – 0 1 0 – – 0 5
 – 1 – 1 1 – 1 6

Figure 1: An example of ISF system

Representation of a function in multiple-output cubes form has the following distinctive features. Cubes ui, uj ∈ U
can intersect each other (in contrast to a representation in the minterm form). Don’t-care value of an element ti j of
the matrix T means that either the function fj is don’t-care on the whole cube ui or fj does not take the same value
(1, 0 or “–“) on the whole interval ui, i.e. there exist at least two minterms covered by the cube ui on which fj has
different values. For example, the cubes u1 = – – 1 1 1 and u2 = 1 1 – – – intersect on the minterm 1 1 1 1 1 so
we may say that f2(1,1,1,1,1) = 0 and f2 do not take the same value on the whole interval u1.

Artificial Intelligence and Decision Making

206

x1 x2 x3 x4 x5 z1 z2 z3 y1 y2
1 – – – – 0 – – – – 1
– 1 – – – 0 – – – – 2
0 0 – – – 1 – – – – 3
– – – 1 – – 0 – – – 4
– – – – 1 – 0 – – – 5
– – – 0 0 – 1 – – – 6
– – 0 – – – 1 0 – – 7
– – 1 – – – – 1 – – 8
– – – – – – 0 1 – – 9
– – – – – 1 1 – 0 – 10
– – – – – 0 – – 1 – 11
– – – – – – 0 – 1 – 12
– 0 – – – – – – – 0 13
– – – – – – – 1 – 0 14
– 1 – – – – – 0 – 1 15

Figure 2: An example of a combinational circuit: a) the circuit; b) the corresponding conventional CNF

Combinational circuit. A combinational circuit under consideration refers to a gate-level network where primary
inputs are connected to primary outputs through an interconnection of basic gates that implement elementary
Boolean functions such as AND, OR, NOT, NAND etc. As usual we consider further only acyclic circuits.
The topological description of an acyclic combinational circuit can be represented using a directed acyclic graph,
where nodes correspond to the gates, primary inputs and outputs of the circuit; edges correspond to circuit wires
connecting the nodes. Incoming edges of a node are called its fanins and outgoing edges are called fanouts. A
node in the circuit is multiple fanout if its output is a fanin to different gates. The node and its output signal are
named the same. Nodes without fanins are the sources of the graph, called as primary inputs of the circuit; nodes
without fanouts are the sinks, called as the primary outputs. Internal nodes of the graph correspond to logical
gates implementing elementary Boolean functions. An example of a circuit (that will be tested later whether it
implements the system of two ISFs depicted in Fig. 1) with five inputs, two outputs and seven gates is shown in
Fig. 2,a. Here AND, OR, NOT gates are used as the basic ones.
Let us call the functionality of a circuit node in terms of its immediate fanins as the local function of the node, and
the functionality of a circuit node in terms of the circuit primary inputs as the global function of the node. Thus the
functionality of the circuit in terms of its primary inputs is the system of global functions implemented on the circuit
primary outputs. For example, the local function of the node connected with primary output y1 is y1 = z1 ∨ z2 and
the corresponding global function is y1 = x1 x2 ∨ x4 x5.

Simulation-based verification

At present, logic simulation is the most widely used technique for ensuring the correctness of digital integrated
circuits in industry. This technique computes the values of the internal signals and primary outputs of a circuit,
given the values of its primary inputs. One round of simulation begins with stimulating primary inputs of the
simulated circuit with binary signals values simulation and then this one is propagated through the circuit leading
to a corresponding activation of the circuit primary outputs, whose values must be consistent with the expected
ones. The complexity of simulating a particular set of input values is linear in the simulated circuit size (let us
remember we consider only combinational circuit, so there are no internal state variables). But the overall
Boolean space of values of n primary input variables contains up to 2n combinations. Due to the complexity of

International Book Series "Information Science and Computing"

207

constructing all these combinations and verifying the compatibility between implementation and specification,
simulation is infeasible for state-of-the-art designs.
A special type of simulation is of the most interest: guided simulation, when inputs are assigned based on certain
information, provided by the design specification. In our case inputs could be assigned minterms covered by input
parts ui of multiple-output cubes of ISF-system. So the first step on the way of ISF-system verification consists in
representing all the multiple-output cubes as multiple-output minterms. Then parallel binary simulation
[Cheremisinova, 2008] of the combinational circuit can be performed under all input assignments corresponding
to the minterms simultaneously.
Such a method could reduce in some cases the search space of simulators but only in the case when the input
parts ui of multiple-output cubes are “small enough” covering a small number of minterms. However though the
specification of the designed circuit with n inputs would be specified with a small number of multi-output
implicants, the overall size of Boolean space covered by them could be near to 2n. So for the case when ISF
system contains “big” multiple-output cubes covering a great number of minterms we propose a novel SAT-based
method of testing whether the circuit implements such a multiple-output cubes.

SAT-based verification

SAT-solvers can be circuit-based or CNF-based. The former represent the SAT problem as a circuit composed of
simple gates, while the latter use conjunctive-normal-form. To tackle the problems of circuit verification using the
second type of SAT-solvers, they usually require their input to be in CNF because instances of SAT are usually
represented as CNF formulas. This type of solvers is more general and can also be applied to circuits, by
converting them into CNF form.
CNF encoding of combinational circuit. Majority of SAT applications derived from circuit representation rely on
some a version of the Tseitin transformation for producing conventional CNF of the circuit. A circuit-to-CNF
conversion uses as many variables as there are primary inputs and gates in the circuit.
When the conventional transformation is applied to a combinational circuit, for output of each gate (except output
ones) its own internal Boolean variable is introduced and only local functions of the gates are considered. Then
CNF formula is associated with each gate, and captures the consistent assignments between gate inputs and
output. These all the gate local CNFs are joined then in the overall circuit CNF by using the conjunction operation.
Both the size of the resulting CNF and the complexity of the conventional translation procedure are linear in the
gate number of the original combinational circuit.
The derivation of CNF for a gate representing a local function y = f (z1, z2, …, zk) is based on defining a new
Boolean function ϕ (y, f) = y ∼ f (z1, z2, …, zk) (as in [Kunz, 2002]), that is true in the only case when both functions
y and f (z1, z2, …, zk) assume the same value. Next, the function ϕ should be represented as a CNF form. As an
example consider 2-input AND and OR gates, the formulas ϕ for them can be transformed the following way:

ϕ∧(y, f∧) = ϕ∧(y, z1,z2) = y ∼ f (z1,z2) = y ∼ z1 z2 = (⎯y ∨ z1 z2)(y ∨⎯z1 ∨⎯z2) = (⎯y ∨ z1)(⎯y ∨ z2)(y ∨⎯z1 ∨⎯z2);

ϕ∨(y, f) = ϕ∨(y, z1,z2) = y ∼ f (z1,z2) = y ∼ z1 ∨ z2 = (⎯y ∨ z1 ∨ z2)(y ∨⎯z1⎯z2) = (⎯y ∨ z1 ∨ z2)(y ∨⎯z1)(y ∨⎯z2).

The above CNF formulas of 2-input AND and OR gates r could be obtained reasoning from the truth table for the
relational representations of AND and OR gates, identifying what combinations of the inputs and the gate output
are admissible or possible (Fig. 3). In other words, the rightmost column of the truth tables is true iff the
characteristic function of f (z1,z2) is equal to y [Kropf, 1999.]. Than we construct a clause for each row of the truth
table where the final column has 0 by formulating a disjunction of literals z1, z2, y in the negated form relative to

Artificial Intelligence and Decision Making

208

the values of the considered truth table. The disjunction of all these clauses results in the CNF formula. So for
2-input AND and OR gates we will obtain the following representations (the same as ones shown above):

ϕ∧(y, z1,z2) = (⎯y ∨ z1 ∨ z2)(⎯y ∨ z1 ∨⎯z2) (⎯y ∨⎯z1 ∨ z2)(y ∨⎯z1 ∨⎯z2) = (⎯y ∨ z1)(⎯y ∨ z2)(y ∨⎯z1 ∨⎯z2);

ϕ∨(y, z1,z2) = (⎯y ∨ z1 ∨ z2)(y ∨ z1 ∨⎯z2)(y ∨⎯z1 ∨ z2)(y ∨⎯z1 ∨⎯z2) = (⎯y ∨ z1 ∨ z2)(y ∨⎯z1)(y ∨⎯z2).

z1 z2 y∧ ϕ∧ z1 z2 y∨ ϕ∨
0 0 0 1 0 0 0 1
0 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0

Figure 3: Truth tables of the 2-input AND and OR functions

For the general case here are the conventional CNF representations of NOT, k-input AND and OR gates
comprising the example circuit in Fig. 2, a:

ϕ¬(y, z) = (z ∨ y) (⎯z ∨⎯y);

ϕ∧(y, z1,z2,..., zk) = (z1 ∨⎯y) (z2 ∨⎯y) … (zk ∨⎯y) (⎯z1 ∨⎯z2 ∨ … ∨⎯zk ∨ y);

ϕ∨(y, z1,z2,..., zk) = (⎯z1 ∨ y) (⎯z2 ∨ y) … (⎯zk ∨ y) (z1 ∨ z2 ∨ … ∨ zk ∨⎯y).

It is possible to eliminate the output variable y of NOT y =⎯z gate and two appropriate clauses of circuit
conventional CNF if to subsume y in fanout gates of the NOT gate replacing all instances of y with the negated
input variable z of this gate. Fig. 2, b shows a circuit and its conventional CNF.
Conventional CNF analysis. SAT problem for a CNF formula is formulated as follows [Kunz, 2002]: given a CNF
formula representing a Boolean function y = f (x1, x2, …, xn), the problem consists of identifying a set of
assignments to the formula variables, {x1 = a1, x2 = a2, …, xn = an}, such that all CNF clauses are satisfied (taking
into account that a clause is satisfied if at least one its literal is equal to 1, i.e., f (a1, a2, …, an) =1, or proving that
no such assignment exists. Recall that a CNF formula is satisfiable if there exists an assignment {x1 = a1, x2 =
a2, …, xn = an} providing f (a1, a2, …, an) =1. This assignment is known as a satisfying assignment.
When we have a multiple-output circuit we can state a problem of finding out primary input assignments making
some primary output to be one. To test whether the output be 1 the unit clause (a clause consisting of the only
literal) corresponding to the tested output yi is added to the circuit CNF. Once the overall problem is formulated in
CNF, a SAT solver can be used to solve it. The resulting satisfying assignments of the circuit CNF and only they
form the on-set of the global function yi and furthermore only on-set minterms satisfy the CNF. For example, after
adding to the CNF of the circuit (Fig. 2) the unit clause y1 and testing CNF for existence partial assignments
satisfying every clause one could find CNF partial assignments (for the subspace restricted by the function y1)
given in Fig. 5.
In general case let yσ (where σ ∈ {0, 1}) be a literal of the variable y, precisely, y1 = y and y0 =⎯y. Then the unit
clause yσ represents the assignment y = σ. Let we have to check whether an output yi of a circuit to be constantly
σ. We cannot directly use SAT solver to show that this statement is true but we could without problems to prove
using SAT solver that yi equals (in the case when yi is not the constant σ) or does not equal to⎯σ for some
argument assignments. If we cannot prove yi equals⎯σ for some arguments assignments thereby we prove that yi
is the constant σ.

International Book Series "Information Science and Computing"

209

x1 x2 x3 x4 x5 z1 z2 y1
1 1 – 1 1 1 1 1
– 0 – 1 1 0 1 1
0 – – 1 1 0 1 1
1 1 – 0 – 1 0 1
1 1 – – 0 1 0 1

Figure 4: CNF partial assignments of the circuit CNF (Fig. 2,b) appended by the unit clause y1

Such proving is known as proving by contradiction, often it is very convenient when using SAT solver. Thus to
show that circuit primary output yi is the constant σ using prove by contradiction we suppose it is not. At the first
step we add to the circuit CNF the unit clause yi

⎯σ and search using SAT solver for a satisfying assignment a to
CNF formula for which yi(a) =⎯σ is true. Such an assignment a ∪{yi =⎯σ} is called as a counter-example. If there
exists no counter-example then the circuit implements the constant σ on the output yi.

SAT-Based Model of Testing of Multiple-Output Cubes of ISF System

Assume we have some CNF formula C describing a circuit and a system f (x) of ISFs the arguments and the
functions of which correspond to primary inputs and outputs of the circuit. Hereinafter let us consider as an
example the system f (x) and the circuit (and CNF specifying it) shown in Figures 1, 2.
A problem under discussion is verifying if the given circuit implements the ISF system f (x). It is right if it takes
place for each pair of ISF fi(x) ∈ f (x) and the appropriate circuit output yi(x). The global CSF yi(x), realized by the
i-th circuit output, implements a function fi(x) ∈ f (x) iff (1) takes place.
A multiple-output cube (ui, ti) of ISF system imposes conditions on values of some functions fj: fj(ui) = tij for all j for
which tij ∈ {1, 0}. Further, we are interested in only those components of ti which are not don’t-care. The truth of
the conditions (1) guarantees the circuit has the same functionality as the ISFs system: for every input stimulus
implied by input part of any multiple-output cube (ui, ti) the Boolean vector of values of the circuit outputs is
covered by the output part ti. In terms of circuit CNF the conditions (1) could be reformulated as follows. For every
multiple-output cube (ui, ti) ∈ f (x) a partial value assignment ui ∪ ti of input and output variables should be
satisfying assignment for circuit CNF. Below, cubes (ui, ti) will be checked if they are implemented by CNF one by
one, with no particular order.
Let us consider in more details the procedure of SAT-solving for an elementary cube (ui, tij) ∈ (ui, ti), where tij =
fj(ui) = σ and σ ∈ {1, 0}. At the first step, keeping in mind the prove by contradiction, we assign fj(ui) to be⎯σ
(where σ = tij) i.e. we suppose (ui, yj

⎯σ) takes place and reduce the circuit CNF C making a set of assignments
setting all literals of ui ∪ yj

⎯σ to 1 obtaining C(ui ∪ yj
⎯σ).

For instance, the set of initial assignments for (u6, t62) (Fig. 1) will be x2 = x4 = x5 = 1, y2 = 0. This means that all
clauses of C having at least one of the literals x2, x4, x5,⎯y2 are discarded and literals ⎯x2,⎯x4,⎯x5 and y2 are
removed from all clauses having them. After making these assignments we search for a satisfying assignment a
to the obtained CNF C(ui ∪ yj

⎯σ). In our case for CNF C(x2 = 1, x4 = 1, x5 = 1, y2 = 0) there exists such an
assignment, for instance, x1 = z1 = z2 = z3 = y1 = 1 (1 – – – – 1 1 1 1 –). That proves that there exists a counter-
example for (u6, t62), proving that the global function y2(x) of the circuit does not implement f2(x) for some input
pattern from u6: f2(u6) ≠ y2(u6). This conflicting input pattern in our case is 1 1 – 1 1.
The above procedure is applicable for the case when the output part ti of a multiple-output cube (ui, ti) consists of
the only component having definite value (0 or 1). But in general case the output part ti = yi1

σ1 yi2
σ2 ... yik

σk of a
multiple-output cube (ui, ti) consists of more than one component, for instance k, having definite values. Proof by
contradiction which tries to find a counter-example forces to test the following assignment:

Artificial Intelligence and Decision Making

210

ui ∪⎯ti = ui ∪ ¬(yi1
σ1 yi2

σ2 ... yik
σk) = ui ∪ (yi1

⎯σ1 ∨ yi2
⎯σ2 ∨ ... ∨ yik

⎯σk). (2)
So in this case we make initial assignments setting only literals of ui to 1, then add to CNF C(ui) the clause
yi1

⎯σ1 ∨ yi2
⎯σ2 ∨ ... ∨ yik

⎯σk (yij
⎯σj = 0, 1). Or, it is the same, only add to CNF l + 1 clauses (where l is the number of

literals in ui): l unit clauses of the type xj (xj ∈ ui) and a clause yi1
⎯σ1 ∨ yi2

⎯σ2 ∨ ... ∨ yik
⎯σk of size k.

For example the cube (u2, t2) implies three clauses: x1, x2, ⎯y1 ∨ y2 to be added to CNF. For the extended CNF
there exists no satisfying assignment, that fact proves the values of the global functions y1(x) and y2(x) are equal
correspondingly to f1(u2) and f2(u2) for all input patterns from u2: f1(u2) = y1(u2), f2(u2) = y2(u2).

Conclusion

In this paper, we propose the following contributions to the problem of combinational verification.
1. We consider a case when one of the compared descriptions is incompletely specified.
2. We show how it is possible to use SAT tools for the considered case.
3. We suppose the method of checking whether multiple-output cubes of ISF are implemented by circuit
conventional CNF.

Bibliography

[Drechsler, 2000] R. Drechsler. Formal Verication of Circuits. Kluwer Academic Publishers, 2000.
[Kropf, 1999] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.
[Mishchenko, 2006]. A. Mishchenko, S. Chatterjee, R. Brayton, N. Een. Improvements to Combinational Equivalence

Checking. In: Proc. ICCAD’06, Nov. 5–9, 2006, San Jose, CA, 2006.
[Ganai, 2002]. M.K. Ganai, L. Zhang, P. Ashar, A. Gupta, Malik S. Combining strengths of circuit-based and CNF-based

algorithms for a high-performance SAT solver. In: Proc. ACM/IEEE Design Automation Conference, 2002, pp. 747–750.
[Kuehlmann, 2002] A. Kuehlmann, A.J. van Eijk Cornelis: Combinational and Sequential Equivalence Checking. In: Logic

synthesis and Verification. Ed. S.Hassoun, T.Sasao and R.K.Brayton. Kluwer Academic Publishers, 2002, pp. 343–372.
[Kunz, 2002] W. Kunz, J. Marques-Silva, S. Malik. SAT and ATPG: Algorithms for Boolean Decision Problems. In: Logic

synthesis and Verification. Ed. S.Hassoun, T.Sasao and R.K.Brayton. Kluwer Academic Publishers, 2002, pp. 309–341.
[Goldberg, 2002] E. Goldberg, E. Novikov. BerkMin: A fast and robust SAT-Solver. In: Proc. European Design and Test

Conference, 2002, pp. 142–149.
[Cheremisinova, 2008] L. Cheremisinova, D. Novikov. Simulation-based approach to verification of logical descriptions with

functional indeterminacy. In: Information Theories & Applications (IJ ITA), 2008, Vol. 15, No. 3, pp. 218–224.

Authors' Information

Liudmila Cheremisinova – Principal Researcher, The United Institute of Informatics Problems of National
Academy of Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail: cld@newman.bas-net.by
Dmitry Novikov – Post graduate student, The United Institute of Informatics Problems of National Academy of
Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail: yakov_nov@tut.by

