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CHAIN SPLIT AND COMPUTATIONS IN PRACTICAL RULE MINING 

Levon Aslanyan, Hasmik Sahakyan 

Abstract: A novel association rule mining algorithm is composed, using the unit cube chain decomposition 
structures introduced in [HAN, 1966; TON, 1976]. [HAN, 1966] established the chain split theory. [TON, 1976] 
invented an excellent chain computation framework which brings chain split into the practical domain. We 
integrate these technologies around the rule mining procedures. Effectiveness is related to the intention of low 
complexity of rules mined. Complexity of the procedure composed is complementary to the known Apriori 
algorithm which is defacto standard in rule mining area. 
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Introduction 

Association rule mining (ARM) is a part of data mining theory. Data Mining is known as a non-trivial process of 
identifying valid, novel, potentially useful, and ultimately understandable patterns or knowledge in data. Existing 
algorithms are complex computationally, and efficency vs. accuracy issue of algorithms is still open. In 
association rule mining rules are logical implications of the form YX → . The mining problem is to generate all 
implications that have several property estimates greater than the user specified minimum. One of the most used 
algorithms is Apriori [KOT, 2006].  

Let we are given a set },...,{ 1 nxxI =  of n  different items. IX ⊆  is itemset and X  is k -itemset when 

kX = . Given a database D  with records (transaction, itemset), and we say that DT ∈  supports X , if 

TX ⊆ . We consider the standard concepts of support and confidence  

DTXDTXsupp /}|{)( ⊆∈= , and 

)(/)()( XsuppYXsuppYXconf ∪=→ . 

 
As a rule ARM processes the rule mining in 2 tasks; first is to find frequent subsets (that have transaction support 
above minimum) and second one is to generate association rules themselves. Several ARM construct the 
frequent subsets by growing. Theoretically, while growing, it constructs not only the maximal elements of 
hierarchy but may also construct all their subsets. An alternative approach to accelerate the rule mining is 
considered in this paper, intending to implement the known research results on n-cube geomrtry and algorithmic 
recognition of Monotone Boolean Functions to the rule mining area.  

Constrained Monotone Boolean Reconstruction 

ARM, and its frequent subsets generation (FSG) stage in particular can be described in terms of Monotone 
Boolean functions. Consider unit cube nB  of dimension n  which consists of all binary n -vectors. We apply 
to n -cube geometry terms – layer, neighbor vertices, chain, etc. [AS, 1979]. Each cube vertex 
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( )nαααα ,...,, 21=  can be viewed as transaction, where 1=
jiα  indicates that item ji  involved in the 

transaction, otherwise 0=
jiα . Boolean Function, formed in this way, equals 0 if the vertex-subset is frequent, 

and 1, if not.  

Practically all frequent subsets in a typical application problem are placed on very low layers of nB . We may 
suppose that a value k is known so that all frequent subsets belong to layers lower than k . A different question 
is how precise is the known boundary k , but being given k , FSG applies for effective solutions of reconstruction 
of monotone Boolean functions with 0’ below the k -th layer. Regular ARM starts work from the 0 layer and 
continues it till some k -th layer. The alternative way of solving FSG uses chain split of nB . It is that nB  below 
the  k -th layer can be split into the k

nC  disjoint chains providing some special characteristics [HAN, 1966]. 
Chains are related through the property of conditional complements and as consequence - if values of function 
are known on  12 −− pn ( [ ]20 np ≤≤ ) chains then applying monotonity on n-2p+1 chains we receive on 
them at most 2 new undetermined vertices of function. Second valuable component that enforced our algorithm is 
that the chain system allows calculations in virtue without archiving and search over the chains [TON, 1976]. 
Being short we formulate a typical result and then explain the algorithm informally: 
Theorem 1. Minimal number )(nϕ of “example” type operations required for recognizing arbitrary monotone 

Boolean functions  ),...,,( 21 nxxxf  with 0’s only below the k -th layer, [ ]20 nk ≤≤ , equals 
1−+ k

n
k
n CC . 

The statement considers a specifically constrained set of Boolean functions achieving in this way more precise 
and lower estimate for complexity of reconstructing algorithms. Theoretically, the use of this concept requires the 
set of all k

nC  chains of considered area of nB , which is computationally hard, requiring large memory areas and 
recursions. Resolving this trade off we engage the [TON, 1976] approach which does not require to keep the 
chains in memory and calculating, instead, the necessary information having the vertex given by its coordinates. 

Chain Computation Algorithm 

This part explains the FSG tasks of ARM by the chain technique. The memory and computational resource 
reductions as mentioned are the results achieved. If the base algorithm - Apriori may require 

01 ... n
k
n

k
n CCC +++ −  steps to restore the Constrained Monotone Boolean Function, then the steps required by 

alternative algorithm will be not grater than 1−+ k
n

k
n CC .  

Large data volumes which appear in data mining applications require low computaional algorithms for composite 
optimisation problems where data mining is the recurrent task of the total algorithmic solution. Apriori alternative 
algorithm by this work uses the specific theoretical know-how which reduces required computations. The system 
is developed and applied in solving pratical problems – network intrusion detection by LOG records of application 
software systems is an example of applications. 
Now let us stay on description of chain computation framework. Imagine a set of vertical chains connected to 
each other through the special set of horizontal passes through sets of vertices. These are the chains splitting 

nB . The procedure working on this set of chains produces a knowledge system which finally becomes the result 
of algorithm. In our case this will be partial values of function on chains. Vertices in which function is yet unknown 
might occupy some middle intervals of chains because of monotonity. This structure in its size is smaller than the 
considered area of nB  with its chain split. We intend to generate the same resulting knowledge by computations 
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which involve the chain split elements and their coordinates. The rules about chains and passes properties are 
also simply applied. This work style guarantees the minimal possible memory use of algorithm. Chain 
computation on considered area of nB  is through the following set of procedures: 
(1) computation of the consecutive number of a given vertex on its chain; 
(2) computation of consecutive numbers of all neighbor vertices for the given one;  
(3) characterization of chain lengths adjoint to the neighbor vertices for the given one;  
(4) computation of consecutive number of the next upper vertex to the given one on its chain;  
(5) computation of consecutive number of the next vertex below to the given one on its chain;  
(6) enumeration of all minimal vertices of all chains of given length;  
(7) enumeration of all maximal vertices of all chains of given length;  
(8) computation of conditional compliment and its parameters;  
(9) computation of all down neighbor vertices to the given one. 
 
It is to mention that the set (1)-(9) is just one example set of chain computation style procedures. These are 
simple computational tasks. The scenario of FSG we consider is not the unique and several modifications and 
extensions are possible and useful concerning the application problem conditions. Discuss several characteristic 
fragments of chain computation rule mining algorithm by procedures (1) - (9). 
In our approach it is important that the Boolean function describing itemset frequencies equals 1 above the layer 
k  (the best estimate, given by applied problem). Consider all vertices of layer k . For each vertex compute the 
chain length passing through this vertex and the consecutive number of this vertex on its chain. Working 
instrument is (1) in this stage and let nR denotes the chain split of nB . Firstly, procedure computes some values 

( )α~nK  for each vertex α~  of k -th layer, and then (1) states that vertices nRLL ∈∈ ,~α  are ( )α~nK -th 

consecutive vertices on their chains L . After this, length of chain L  is computed taking into consideration 
properties of chain split. Described fragment is recursive part of total algorithm. 
In a later stage, among the vertices of k -th layer we separate all those that are the last vertices of their chains. 
The chain length of all these vertices equals lknkkn =−=−− 2 . Ask operator fA  (“example” operator) for 

the values of considered function on these vertices. After this we apply to the chains of length 2+l  and extend 
the results received from fA  to these chains. Determination of all last vertices of the chains of length 2+l  is by 

procedure (6), )2/2(~~{)3,2,( −−=∈=++ lnBllnR n αα and α~ obeys a property }C , where C  is a 

simple checkable property. Next is to apply ( )1
~

+α  (down by the chains) 2+l  times to each vertex 

)3,2,(~ ++∈ llnRα  which constructs the first vertex β~  of an 2+l  chain.  

On the general step - a chain of length ml +  is considered. The first and last vertices of this chain are found 
and, then the first vertex of a chain of length 2−+ ml  is computed, and the same way the last vertex of this 
chain, which is the compliment to the pre-final vertex of the chain of length ml + . All the values for vertices of 
chains of length 2−+ ml  are known at this stage, and extension by monotonity to the chains of length ml +  
and computation on reminder vertices by the operator fA  is to be applied. 
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Conclusion 

Frequent subset generation is always based on computations on monotone Boolean functions. Monotone 
function domain is known as complex although the optimal algorithms of recognition are known. Monotone 
recognition in data mining appears with constrains, which helps to construct less complex tasks and the way to 
this is through a set of simple computational tasks on the chains mentioned above. The concepts were effectively 
implemented in intrusion detection analysis by the set of LOG files of applied software systems. 
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