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AND ITS ONLINE LEARNING ALGORITHM 
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Abstract: in the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural 
Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the 
Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of 
artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning 
procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its 
operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as 
compared with conventional neural networks. Using of online learning algorithm allows to process input data 
sequentially in real time mode. 
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Introduction 

Nowadays artificial neural networks (ANNs) are widely applied for solving a large class of problems related with 
the processing of information given as time-series or numerical “object-property” tables generated by non-
stationary, chaotic or stochastic systems. However in real conditions data processing often must be performed 
simultaneously with the plant functioning and therefore weight adaptation must be executed in a sequential mode 
as well. So called “optimization-based networks” such as Multilayer Perceptron, Radial Basis Functions Network 
(RBFN), Normalized Radial Basis Functions Network (NRBFN) in most cases cannot be effective during solving 
mentioned above problems because of their low convergence rate, curse of dimensionality, and impossibility to 
learn in on-line mode. 
In the papers [Bodyanskiy, 2008a, Bodyanskiy, 2008b, Bodyanskiy, 2008c] we have introduced various 
modifications of so called cascade artificial neural networks [Fahlman, 1990; Schalkoff, 1997; Avedjan, 1999], 
which have variable growing architecture and differs by the type of nodes – artificial neurons. It was shown that 
using of neo-fuzzy neurons [Yamakawa, 1992; Uchino, 1997; Miki, 1999] as elementary structural components of 
the cascade networks gives such valuable advantages as high learning rate, low size of the learning sample, and 
possibility to describe overall artificial neural network functioning process by the fuzzy linguistic “if-then” rules, 
what provides transparency of received results and therefore increases the range of applications for this 
architecture. It should be noticed that listed advantages are common for entire class of hybrid neo-fuzzy systems 
[Jang, 1997]. 
But as it was stated above possibility to adjust synaptic weight coefficients of the network is quite attractive and 
even necessary in some cases technique. So at this paper an attempt of synthesis of such procedure which 
possesses both smooth and filtering properties is taken. 

The Neo-Fuzzy Neuron 

Neo-fuzzy neuron is a nonlinear multi-input single-output system shown in Fig.1. 
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It realizes the following mapping: 
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where ix  is the i-th input (i = 1,2,…,n), ŷ is a system output. Structural blocks of neo-fuzzy neuron are nonlinear 
synapses NSi which perform transformation of i-th input signal in the from 
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Each nonlinear synapse realizes the fuzzy inference 
IF ix  IS jix  THEN THE OUTPUT IS jiw  

where jix  is a fuzzy set which membership function is jiμ , jiw  is a singleton (synaptic weight) in consequent 
[Uchino, 1997]. As it can be readily seen nonlinear synapse in fact realizes Takagi-Sugeno fuzzy inference of 
zero order. 
Conventionally the membership functions )( iji xμ  in 
the antecedent are complementary triangular functions. 
For preliminary normalized input variables ix  (usually 

10 ≤≤ ix ), they can be expressed in the form: 
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where jic  are arbitrarily selected centers of 
corresponding membership functions. Usually they are 
equally distributed on interval [0, 1]. This contributes to 
simplify the fuzzy inference process. That is, an input 
signal ix  activates only two neighboring membership 
functions simultaneously and the sum of the grades of 
these two membership functions equals to unity 
(Ruspini partitioning), i.e. 

.1)()( ,1 =+ + iijiji xx μμ  

Thus, the fuzzy inference result produced by the Center-of-Gravity defuzzification method can be given in the 
very simple form 

).()()( ,1,1 iijijijijiii xwxwxf +++= μμ  

By summing up )( ii xf , the output ŷ  of Eq. (1) is produced. 

The Cascade Neo-Fuzzy Neural Network Architecture 

The Cascade Neo-Fuzzy Neural Network architecture shown in Fig.2 and mapping which it realizes has the 
following form: 

 

ŷ

 
Figure 1. The Neo-Fuzzy Neuron 
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• neo-fuzzy neuron of the first cascade 
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• neo-fuzzy neuron of the second cascade 
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• neo-fuzzy neuron of the third cascade 
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• neo-fuzzy neuron of the m-th cascade 

 
.)ˆ()(ˆ

1

1 1

][][

1 1

][][ ∑∑∑∑
−+

+= =

−

= =

+=
mn

nl

h

j

nl
jl

m
jl

n

i

h

j
iji

m
ji

m ywxwy μμ
 

(2) 
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of them are linearly included in the definition (2). 
Let us define 1)1( ×−+ mnh  membership functions vector of m-th neo-fuzzy neuron 
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dimensionality. Then we can represent expression (2) in vector notation: 
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 3ŷ
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Figure 2. The Cascade Neo-Fuzzy Neural Network Architecture. 
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The Cascade Neo-Fuzzy Neural Network Sequential Learning Algorithm 

Learning algorithm for the cascade neo-fuzzy architecture in general form can be found in [Bodyanskiy, 2008c]. It 
is said there that network’s growing process (increasing quantity of cascades) continues until we obtain required 
precision of the solved problem’s solution, and for adjusting weight coefficients of the last n-th cascade following 
expressions are used: 
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in a batch mode or 

 
⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
+++

++
−=+

+
+++
+−+

+=+

IP
kkPk

kPkkkPkPkP

k
kkPk

kkwkykPkwkw

m
mmTm

mTmmm
mm

m
mmTm

mTmm
mm

β
μμ

μμ

μ
μμ
μ

)0(,
)1()()1(1

)()1()1()()()1(

),1(
)1()()1(1

))1()()1()(()()1(

][
][][][

][][][][
][][

][
][][][

][][][
][][

 (4) 

or 
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in a serial mode. 
It should be noticed that in general case algorithms (3) and (4) are not coincident since in (3) 
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][][ )()( μμ  is singular or ill-conditioned, algorithm (4) becomes nonoperatable. And in 

case we use adjusting additions IP m β=)0(][ , synaptic weight coefficients estimations can be significantly 
inaccurate and biased. Using Greville’s theorem in pseudoinversion procedure allows to write algorithm (4) in 
more general form [Albert, 1972]: 
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where ( 1)kε +  - nonnegative threshold which defines degree of vectors [ ] ( 1)m kμ +  multi-collinearity and 
designates appropriate processing method. 
Advantages of procedure (6)-(9) are numerical stability and possibility to perform network learning when number 
of observations N is lesser then number of parameters which should be estimated ( 1).h n m+ −  
In case we have deal with nonstationary data, when parameters of required solution unpredictably vary with time, 
algorithms with exponential reducing of information value can be used, for example gradient procedure (5). If 
tracking speed of gradient algorithm isn’t sufficient, second order procedures can be utilized as well, for example 
exponentially weighted recurrent least squares method in form [Ljung, 1987]: 
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It should be noticed that usage of algorithm (10) can lead to so called covariance matrix )1(][ +kP m “parameters 
blow-up”, i.e. exponential growth of its elements. This can be avoided using valid forgetting parameterα , which 
usually selected in short range 0.95 0.99α≤ ≤ . Decreasing α  value results in rapid matrix 

1[ ] 1 1 [ ] [ ]
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=+ = ∑  degeneration and therefore “parameters blow-up”. Usage of 

pseudoinverse procedure based on Greville’s theorem in algorithm (10) gives learning procedure 
[Bodyanskiy, 1985, Bodyanskiy, 1996, Bodyanskiy, 1998]: 
 ( ) ),1()1()()1()1()()1( ][][][][][][ ++−+++=+ kkkwkykkwkw mmmmmm μμγ  (11) 
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(here )1(),( ][ +kQkQ mm  are defined by expression (8)). Proposed procedure is stable in any value of 
forgetting parameter. It can be seen that procedure given by equations (8), (11)-(13) is a generalization of 
algorithms (4), (6)-(9), and (10). 

Simulation Results 

In order to confirm the performance of the proposed architecture the prediction of time-series is examined. We 
applied the proposed algorithm which allows to perform Cascade Neo-Fuzzy Neural Network learning in 
sequential mode for the forecasting of a chaotic process defined by the Mackey-Glass equation [Mackey, 1977]: 

 10

0,2 ( )( ) 0,1 ( ).
1 ( )

t ty t y t
y t

τ
τ

−′ = −
+ −

    (14) 

The signal defined by (14) was quantized with step 0.1. We took a fragment containing 700 points. The goal was 
to predict time-series value on the next step k+1 using its values on steps k-3, k-2, k-1, and k. To bring into 
obtained set of signal values additional nonstationarity to several intervals different positive or negative numbers 
were added. First 500 points were used to adjust weight coefficients of the cascade architecture in sequential 
mode. It means that during learning procedure artificial neural network already performed time-series prediction 
beginning from the first element which was fed to it. Remaining 200 points were processed by cascade 
architecture without adjusting its weight coefficients. 
For simulation modeling cascade network which consists of three cascades was synthesized. Each cascade 
contained single neo-fuzzy neuron with three activation functions. Overall quantity of parameters which should be 
determined was 45. We used 985.0=α  during weight adaptation procedure in algorithm (8), (11)-(13). 
For estimation of received results normalized mean square error (NRMSE) as well as mean square (MSE) error 
was used. Obtained results of Mackey-Glass time-series prediction are shown in Fig. 3. 

 
Figure 3. Mackey-Glass time-series prediction: 

original signal – solid line; network output – dashed line; prediction error – chain line. 
 

Calculated on described dataset errors were the following: MSE = 0.008, NRMSE = 0.3. As it can be readily seen 
from the figure signal changed its y-coordinate center four times. At each such case temporary prediction error 
burst occurred. Its magnitude depended on the nonstationarity power, and it’s obviously that the more drastic 
changes of predicted signal take place the greater error burst is happen. But after several examples are fed to 
network input and synaptic weight coefficients became adjusted according to changed time-series, further 
prediction process flows quite well. 
In whole, proposed algorithm for Cascade Neo-Fuzzy Neural Network gives very close approximation and 
prediction quality of sufficiently nonstationary processes in online mode. 
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Conclusion 

The new algorithm for Cascade Neo-Fuzzy Neural Network which allows to perform synaptic weight adaptation in 
sequential mode is proposed. It gives opportunity to start the prediction process from the first element which was 
fed to network’s input irrespectively from the quantity of parameters which should be determined. Theoretical 
justification and experiment results confirm the efficiency of developed approach. 
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