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THE CASCADE GROWING NEURAL NETWORK USING QUADRATIC NEURONS 
AND ITS LEARNING ALGORITHMS FOR ON-LINE INFORMATION PROCESSING 

Yevgeniy Bodyanskiy, Yevgen Viktorov, Iryna Pliss 

Abstract: New non-conventional system of the computational intelligence is proposed. It has growing structure 
similar to the Cascade-Correlation Learning Architecture designed by S. E. Fahlman and C. Lebiere but differs 
from it in type of artificial neurons. Quadratic neurons are used as nodes in introduced architecture. These simple 
elements can be quickly adjusted using high-speed learning procedures. Proposed approach allows to reduce 
time required for weight coefficients adjustment and to decrease training dataset size in comparison with 
conventional neural networks. Also on-board realization of quadratic neuron is quite simple and therefore 
implementation of entire cascade architecture in hardware is very easy. 

Keywords:  artificial neural networks, constructive approach, quadratic neuron, real-time processing, online 
learning. 
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Introduction 

Nowadays artificial neural networks (ANNs) are widely applied for solving a large class of problems related with 
the processing of information given as time-series or numerical “object-properties” tables generated by the non-
stationary, chaotic or stochastic systems. The most attractive ANNs properties are their approximating 
possibilities and learning capabilities. 
Conventionally “learning” is considered as process of the neural network’s synaptic weights adjustment 
accordingly to selected optimization procedure of accepted learning criterion [Cichocki, 1993; Haykin, 1999]. But 
during learning procedure not only weight coefficients but also network’s architecture (quantity of nodes) can be 
adjusted for the purpose of increasing quality of received results. There are two basic approaches for the neural 
network architecture adjustment: 1) “constructive approach” [Platt, 1991; Nag, 1998; Yingwei, 1998] — starts with 
simple architecture and gradually adds new nodes during learning; 2) “destructive approach” [Cun, 1990; 
Hassibi, 1993; Prechelt, 1997] — starts with initially redundant network and simplifies it throughout learning 
process. 
Obviously, constructive approach needs less computational resources and within the bounds of this technique the 
cascade neural networks (CNNs) [Fahlman, 1990; Schalkoff, 1997; Avedjan, 1999] can be marked out. The most 
efficient representative of the CNNs is the Cascade-Correlation Learning Architecture (CasCorLA) 
[Fahlman, 1990]. This network begins with the simplest architecture which consists of a single neuron. 
Throughout a learning procedure new neurons are added to the network, producing a multilayer structure. It is 
important that during each learning epoch only one neuron of the last cascade is adjusted. All pre-existing 
neurons process information with “frozen” weights. The CasCorLA authors, S. E. Fahlman and C. Lebiere, point 
out high speed of the learning procedure and good approximation properties of this network. But it should be 
observed that elementary Rosenblatt perceptrons with hyperbolic tangent activation functions are used in this 
architecture as nodes. Thus an output signal of each neuron is non-linearly depended from its weight coefficients. 
Therefore it is necessary to use gradient learning methods such as delta-rule or its modifications, and 
optimization an operation speed becomes impossible. In connection with the above it seems to be reasonable to 
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synthesize the cascade architecture based on the elementary nodes with linear or quadratic dependence of an 
output signal from the synaptic weights. It allows to increase a speed of synaptic weights adjustment and to 
reduce minimally required size of training set. 
In [Bodyanskiy, 2007] ortho-neurons were proposed as such nodes. Also it was shown how simply and effectively 
an approximation of sufficiently non-linear function can be performed using this technique. But it should be 
noticed that on-board realization of the ortho-neuron is quite complex due to its functional specificities. At this 
paper we propose to use quadratic neurons as basic elements for the cascade architecture. They have simple 
structure and therefore their realization in hardware is simple too.  

The Quadratic Neuron and Its Gradient Learning Procedure 

The quadratic neuron is a nonlinear in inputs but linear in synaptic weights multi-input single output system shown 
on Fig. 1. It realizes the following mapping: 
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where ix  is the i-th input (i=1,2,…,n); ŷ  is an output; jθ  is a bias in the j-th quadratic neuron; jiw  is a weight 

coefficient connected to i-th input in the j-th quadratic neuron; jplw  is a weight coefficient connected to 
composition of p-th and l-th inputs in the j-th quadratic neuron. 
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Figure 1. The Quadratic Neuron – QN 
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Let us define additional designations )()(0 kkw jj θ= , 
T
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is block ))1()1(( +×+ nn -matrix. 

Weight coefficients matrix )(kW j  adjustment can be performed by minimization of the quadratic learning 
criterion 
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(where )(ky  is an external learning signal) using gradient algorithm: 
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For the purpose of evaluation parameter )(kη  which provides optimal rate of convergence to algorithm (3) let us 
define values deviation matrix 
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where jW  is unknown matrix of optimal coefficients values, )(kW j  (2) is its estimate on the k-th learning 
iteration. 
Then solving the differential equation 
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(where )(•Tr  is trace of matrix) optimal value of the step parameter can be obtained in the form 
[Bodyanskiy, 1987; Bodyanskiy, 1997]: 
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Using evaluated step parameter, expression (3) can be rewritten as 
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Learning procedure (4) is Kaczmarz-Widrow-Hoff [Kaczmarz, 1937; Kaczmarz, 1993; Widrow, 1960] optimal 
algorithm extension for quadratic neuron. 
As it can be readily seen the quadratic neuron is a generalization of the well known N-Adaline widely used in 
GMDH Neural Networks [Pham, 1995]. 
Quadratic neuron provides quite high precision of approximation and extrapolation of significantly non-stationary 
non-linear signals and processes but further we use it as an elementary node in the cascade architecture. 
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The Cascade Neural Network Based On Quadratic Neurons 

The architecture of cascade neural network based on quadratic neurons is shown on Fig. 2 

 
Figure 2. The Cascade Neural Network based on Quadratic Neurons 

and mapping that it realizes has the following form: 
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− third cascade quadratic neuron 
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− m-th cascade neuron 
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where m is quantity of cascades. 

Thus the cascade neural network based on quadratic neurons contains ∑∑∑
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parameters and it is important that all of them are linearly included in the description (5). 

The Cascade Neural Network Based On Quadratic Neuron Learning Procedure 

The cascade neural network learning can be performed in both the batch mode and the mode of sequential 
information processing using global learning criterion (6) 
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Firstly, let us consider situation when the training data set is defined a priory, i.e. we have a set of points 
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Then using direct minimization of the learning criterion (6) vector of synaptic weights can be evaluated in the form 
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where +•)(  denotes the Moore-Penrose pseudoinversion. 

In the case of sequential data processing recurrent form of the least squares method can be used instead of 
procedure (7): 
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where β  is a large positive number and I  is a unity matrix of corresponding dimensionality. 
Using of adaptive algorithms (3) or (4) is also possible and leads to reducing of computational complexity of 
learning process. But utilization of learning procedure (7) or (8) essentially reduces a learning time in comparison 
with gradient algorithms underlying delta-rule and backpropagation. 
After the first cascade learning completion, the synaptic weights of the quadratic neuron QN[1] become “frozen”, 

all values ))(ˆ),...,(ˆ),...,2(ˆ),1(ˆ( ]1[]1[]1[]1[ Nykyyy  are evaluated and the second cascade of the network 
which consists of a single quadratic neuron QN[2] is generated. It has one additional input for the output signal of 
the first cascade. Then the procedure (7) or (8) is again applied for adjusting a vector of weight coefficients ]2[w , 
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The neural network growing process (increasing quantity of cascades) continues until we obtain required 
precision of the solved problem solution, and for the adjusting weight coefficients of the last m-th cascade 
following expressions are used: 
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Simulation Results 

In order to confirm efficiency of introduced architecture we have solved a dynamic plant identification problem. 
Proposed dynamic plant [Patra, 2002; Narendra, 1990] can be defined by the equation: 
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There was generated a sequence which contained 1500 values of signal for k=1,2,…,1500. On training set signal 

250/2sin)( kku =  (k=1,…,500) have been used and on the testing set 250/2sin)( kku =  (k=501,…,1000), 
25/2sin5.0250/2sin5.0)( kkku +=  (k=1001,…1500). It means that on testing set sinusoidal component of 

the dynamic object changes and therefore output signal changes its form too. Obtained set was normalized on 
interval [-1 1]. 
For estimation of received results we have used normalized mean square error: 
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where σ  is a mean square deviation of the predicted process on the training set. 
During simulation modeling we have used least squares method as well as adaptive algorithm (4) for the purpose 
of adjusting synaptic weight coefficients inside quadratic neurons. Also, the same problem had been solved using 
conventional multilayer perceptron. Obtained results are given in table 1 and on figure 3. 

Table 1. Results of the dynamic object identification. 

Artificial Neural Network NRMSE 
Multilayered perceptron (50 epochs using Levenberg-Marquardt procedure) 0.0011 
Cascade architecture – 3 cascades (batch mode using LSM) 0.0009 
Cascade architecture (mode of sequential real-time data processing using adaptive algorithm (4) – 1 epoch) 0.0015 
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Figure 3. Dynamic object identification using cascade architecture trained with LSM: object output – solid line; network output 

– dashed line; identification error – chain line. 

Conclusion 

The Cascade Neural Network based on Quadratic Neurons is proposed. It differs from the known cascade 
networks in increased speed of operation, real-time processing possibility and simplicity of its on-board 
realization. Theoretical justification and experiment results confirm the efficiency of developed approach to 
cascade systems synthesis. 
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