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IDENTIFICATION AND PREDICTION  
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Abstract: Identification and prediction problem of nonlinear time-series generated by discrete dynamic system is 
considered via Kernel Method approach. A unified approach to recurrent kernel identification algorithms design is 
proposed. In such a way a recurrent modification of initial Kernel Method with growing windows is considered. In 
order to prevent the model complexity increasing under on-line identification, the reduced order model kernel 
method is proposed and proper recurrent identification algorithms are designed along with conventional 
regularization technique. Such an approach leads to a new type of Recursive Least-Square Kernel Method 
identification algorithms. Finally, the recurrent version of Sliding Window Kernel Method is also developed along 
with suitable identification algorithms. The proposed algorithm has tracking properties and may be successfully 
used for on-line identification of nonlinear non-stationary time-series. 
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Introduction 

The problems of time-series identification and prediction are of a great importance in different applications, such 
as signal processing, automatic control, econometrics etc. Most efficient methods based on classical identification 
approaches [Ljung, 1999] were developed for linear time-series, described by autoregressive - moving average 
(ARMAX) or, in most general case, by discrete-time state-space dynamic model. With respect to the nonlinear 
time-series, for instance, discrete-time chaotic processes, the most difficult problem is the admissible model 
selection and a model structure choice [Dorffner, 1996]. At that the complex dynamic nonlinear mapping recovery 
using the sample data in the classical framework of parameterized model application leads to the multi-parameter 
estimation problem which becomes very complicated due to «curse of dimension» difficulties. It’s stipulated the 
expedience of nonparametric methods and intelligent data analysis approaches such as artificial neural networks 
and machine learning, which usually needs a long sample for training. Most efficient under the short training 
sample are Support Vector Machine (SVM) [Vapnik, 1998] and Kernel Methods (KM) [Scholkopf, Smola, 2002] 
approaches, which produce non-linear and non-parametric versions of conventional identification algorithms.  
Kernel identification methods, based on the idea of input data implicit nonlinear transformation into high-
dimensional (theoretically infinite) feature space, ensure the possibility of complex nonlinear model high quality 
approximation. Using the Mercer’s theorem, the feature vectors are chosen so that its scalar products in feature 
space are the positive definite kernel functions. At that the identified model may be represented in a 
nonparametric form as linear combination of kernel function, though the weighting coefficients (auxiliary variables) 
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may be computed without making direct reference to feature vectors ("kernel trick") [Scholkopf, Smola, 2002]. 
Such an idea is proved to be very effective for non-linear identification [Espinoza, Suykens, De Moor, 2005]. 
In the initial version of Kernel Method the dimension of auxiliary variables vector as well as estimated model 
complexity increases proportionally to the training sample length, which make it unsuitable for on-line application. 
In order the model complexity restriction and simplification of computations, it is desirable to use the auxiliary 
vector of fixed dimension along with recurrent version of identification algorithm [Kivinen, Smola, Williamson, 
2004]. Moreover, the recurrent on-line learning successfully used for non-stationary time-series identification.  
In [Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle, 2002] the SVM approach to Recursive Least-
Square Kernel Method (RLSKM) has been considered. Sequential sparsification procedure was proposed in 
[Engel, Mannor, Meir, 2004], which may be viewed as a form of regularization and ensure the restriction of the 
rate of model complexity increasing. In this way the resulting RLSKM algorithm reduces the order of the feature 
space. Another approach, known as a Sliding Window Kernel Method (SWKM) [Vaerenbergh, Javier, Santamar, 
2007], used at any time instant only fixed size subset of training sample.  
In this paper a unified approach to recurrent kernel identification algorithms design is proposed. At first, we 
consider a recurrent modification of initial KM with “growing” windows. In order to fix the auxiliary vector 
dimension, the reduced order model KM is proposed and proper recurrent identification algorithms are designed. 
Finally, the full recurrent version of SWKM regarding to auxiliary variables, is also developed along with suitable 
sliding kernel matrix updating algorithms. 

Problem Statement 

Consider the time-series ,}{ 1
n
kkx = generated by nonlinear discrete dynamic system 

                                                           ...,0,)(1 =ε+=+ kxfx kkk                                                                    (1) 

where )(⋅f is unknown nonlinear function and kε  is a noise discrete random process, .}{,0}{ 22 σ=ε=ε kk EE  
The problem is the nonlinear time-series (1) identification and prediction using the observed sequence 

,},{ 0
n
kkk xy = where .1+= kk xy  In the KM framework the parameterized time-series identification model is: 

                                                   ,,0)()(ˆ ,
T nkwxxfy kkkk =ε+ϕ==                                                         (2) 

where )(ˆ xf - model approximation, M1: RR →ϕ  is a nonlinear feature map, which transform the original 

inputs into high-dimensional feature vector ,)( MR∈ϕ x and MRw∈ is an unknown coefficient vector.  

Equation (2) may be represented in matrix form as ,T
1 nnn εwΦy += − where T

10 )...( nn yyy=y - observation 

vector, T
10 )...( nn εεε=ε  - noise vector, and feature matrix ( ).)(...)()( 1101 −− ϕϕϕ= nn xxxΦ  

In according with Mercer’s theorem, feature vectors are taken hereby that its scalar products in feature space will 

be positive definite kernel functions .,1,),,()()(T njixxxx jiji =κ=ϕϕ  Commonly used polynomial kernels 
pxxxx )(),( ′⋅+μ=′κ of degree p  or Gaussian kernels },)(exp{),( 2xxxx ′−μ−=′κ  where μ,p – tuning 

parameters of kernel model. 

 In accordance with KM technique introduce further the kernel matrix ,T
nnn ΦΦK =  which may be computed 

directly without reference to the feature vectors, because ,,1,),,(, ,, njixxkk jijijin =κ==K  and also 

taking into consideration the auxiliary (dual) variables vector n
n Rλ ∈ , such as .1 nnn λΦw −=  At that the 

nonlinear time-series (1) model estimation and one step prediction may be represented as 
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                                                  ,)()()(ˆˆ T
11

T
1 nnnnnnnk xxxfx λkwΦ −−+ =ϕ==                                          (3) 

where 1ˆ +kx - one step ahead time-series prediction, )),(...),(),(()( 110
T
1 −− κκκ= nnnnnn xxxxxxxk - kernel 

vector and nλ  is an auxiliary variables vector estimate at instant k , which should be obtained by the training 
sample ,},{ 1

0
−
=

n
kkk xy and in accordance with "kernel trick" express in terms of only kernel matrix .1−nK  

The purpose of this paper is the recurrent KM identification algorithms design, which ensures on-line nλ  
estimates. We will consider the following alternatives of recurrent KM identification: 

−  Recurrent KM identification with growing window ),,,( 111 nnnn yF Kλλ +++ = which use the 

complete training sample n
kkk xy 0},{ =  for dual variable nλ  estimation.  

−  Recurrent KM reduced order model identification ),~,,~(~
,111 rnnnn yF Kλλ +++ =  which also use the 

complete training sample but with respect to fix dimension dual variables r
n Rλ ∈
~

 and kernel matrix .,rnK   

−  Recurrent KM identification with sliding widow ,),,,( s
,111 RλKλλ ∈= +++ nsnnnn yF  which uses 

the sliding window training sample n
snkkk xy −=},{ and kernel matrix ,,snK  built up on the respective 

observations. 

Recurrent Kernel Identification with Growing Window 

In accordance with general SVM approach [Vapnik, 1998] nonlinear time-series (1) identification problem using 
the complete training sample (growing window) may be reduced to the following constrained optimization problem 
with regularized estimation cost function with regularization parameter :0>γ  

                                         .,minγ
2
1

2
1)( T

1
TT

nnnnJ εwΦyεεwww
εw,

+=→⋅+= −                                       (4) 

The optimization problem (4) is solved using Lagrange function with dual multipliers nRλ∈ : 

                                         ).(γ
2
1

2
1),( T

1
TTT

nnnnL εwΦyλεεwwλw −−+⋅+= −                                         (5) 

In such a way, using well-known condition of optimality, the solution may be obtained in the explicit 

form ,1 nnn λΦw −= ,γ 1
nn λε −=  therefore the dual variables estimate nλ takes the form of ridge regression: 

                                                   ( ) ,)(γ 1
1

1
1

1
nnnnnn yKyKIλ γ=+= −

−
−

−
−                                                        (6) 

where nI  is an identity nn×  matrix, and )(1 γ−nK is a regularized kernel matrix.. 

The recurrent estimation for dual variables 1
1

1 )( +
−

+ γ= nnn yKλ  at instant 1+n  may be easily obtained using 
Sherman-Morrison-Woodbury formula [Golub, Van Loan, 1998] for the regularized kernel matrix )(γnK : 
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where ).()()(γ 1
1
1

T
1,

1
nnnnnnnn xxk −

−
−−

− γ−+=δ kKk  
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Consequently the recurrent algorithm for dual variables estimates may be represented as 

                                     ,
)]([

)()()]([

1
1

1
1
11

1
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω−δ
γω−δ−=

+
−

−
−
−+

−

+
nnnn

nnnnnnnn
n

y
xy

λ
kKλλλ                                               (9) 

where ,)()( T
1 nnnnn x λkλ −=ω along with regularized kernel matrix )(γnK updating procedure (8).  

As a result the time-series model estimate and one-step ahead prediction may be obtained as (3). It is obvious 
that the dimension of dual variables estimates nλ and thereafter the estimated model )(ˆ xf complexity grows 
proportionally to the training sample length, which make the considered scheme unsuitable for on-line application. 

Reduced Kernel Model Recurrent Identification  

From the computational point of view for on-line application it is desirable to limit the number of data vectors from 
which the kernel matrix is calculated. It allows both to reduce the order of the feature space (which prevents 
overfitting) and to keep the complexity of model bounded. In order to limit the size of the kernel matrix a 
sparsification process was proposed [Engel, Mannor, Meir, 2004], in which an input sample is only admitted into 
the kernel matrix if its image in feature space cannot be sufficiently well approximated by combining the 
previously admitted samples. We consider another approach in which the reduced order model is formed from the 
pre-established linear independent feature vectors, corresponding to the fixed input vectors. In such a way the 
size of kernel matrix is fixed in advance so the model complexity doesn’t growing under identification process. 

Consider the reduced order feature matrix rΦ~  consist of r  constant linear independent basic (support) feature 

vectors ( ) ,)(~)(~)(~~ T
21 rr xxx ϕϕϕ= …Φ  whish has been initially constructed from pre-established input vectors 

,,1,~ rixi =  selected in such a way, that rr =)~rang(Φ . In practice, such a “feature” condition may be easily 

verified using equivalent “kernel” condition rr =)~rang(K  using appropriate kernel matrix .~~~ T
rrr ΦΦK =   

Any feature vector from training sample may be represent as linear combination of basic (support) feature 

vectors ,)~()(
1

∑
=

ϕ=ϕ
r

j
jiji xax ___

,1 ni = , or, in matrix form, as T~= nrn AΦΦ , where ijn a=A  is a matrix of 

corresponding expansion coefficients, which may be obtained by the minimum least-squares approximation : 

                                                       .min~ 2T

n
nrn

A
A AΦΦ →−=Δ                                                                   (10) 

The solution of (10) may be easily obtained in the explicit form as ,~~ 1
,

−= rrnn KKA  where .~~ T
, rnrn ΦΦK =  At 

that the attainable approximation accuracy are determined by
2T

,
1

,A
~~min rnrrnn KKKK −−=Δ . 

Furthermore, the model parameters vector may be express from reduced order dual variables r
n Rλ ∈
~

 

                                                ,~~ T
11 nrnnrnn-n λΦλAΦλΦw === −                                                               (11) 

where .~ T
1 nnn λAλ −=  Corresponding reduced order identified model and prediction function are 

                ,~)(~)(=)(ˆˆ TT
1 nnrnrnnnn xxxfx λkλΦ =ϕ=+  ( ) .)~,()~,()( T

1 rnnnr xxxxx κκ= …k                    (12)  

In such a way reduced order vector of dual variables estimate nλ
~

may be obtained via SVM approach as a 
solution of suitable optimization problem. 
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1.  Non-regularized case 1γ 0− = . Using representation (11), the appropriate cost function takes the 
form 

                                         .min~~~
2
1

2
1

~
2

1
T

1
2T

1
λ

λΦΦAywΦy →−=−= −−− nrnnnnnJ                               (13) 

The solution of (12) is ( ) ,~~
1 nrnn yKAλ +
−=  where “+” denotes Moor-Penrose generalized inversion. Taking into 

account that ,~~ 1
,11

−
−− = rrnn KKA  due to the generalized inversion properties, the reduced order dual variables 

estimate may be obtained as ( ) ( ) nrnnnrn yKyAKλ +
−

+
−

− == ,11
1 ~~~

.  

In the following way a recurrent algorithm for ( )1 1n n,r n
+

+ +=λ K y� �  updating may be easily derived.  

As far as ( ))(~~ T
,1

T
, nnrnrn xkKK #−= , one can use the known Greville formula [Ben-Israel, Greville, 2003] for 

reduced order Moor-Penrose inverse kernel matrix updating: 

                                                       ( )nrnnnnrrn x qKkqIK #+
−

+ −= ,1
T

,
~))((~

                                                       (14) 

where ( ) ),()~()()~()( ,1
1

,1
T

nrrnnrrnnrnn xxx kKZkKZKq −
−

−+α=  ,~~)~( ,1,1,1 rnrnrrn −
+
−− −= KKIKZ  

( ).)()~()(sgn1 ,1
T

nrrnnrn xx kKZk −−=α  

Thereafter recurrent identification algorithm for dual variables estimates is 

                                                        ).~)((~~ T
11 nnrnnnn x λkyqλλ −+= ++                                                         (15) 

The proper initial conditions at instant n r=  are .~~~,~~ T
,

1
,, rrrrrrrr ΦΦKKK == −+   

2.  Regularized case 0>γ . Using the introduced representation for unknown model parameters vector 
,w the regularized estimation cost function for reduced order model will be taken in the form: 

                         .min~~~γ~~
2
1γ

2
1

~
T12

,1
T12T

1
λ

λKλλKywwwΦy →+−=+−= −
−

−
− rrnnnnnJ                  (16) 

The explicit solution is nrnrqnn yKPλ T
,1

1
,

~
−

−
−= , where .~~~γ ,1

T
,1

1
, rnrnrrqn −−

−
− += KKKP  

As far as ),()(~~~~ T
,1

T
,1,

T
, nrnrrnrnrnrn xx kkKKKK += −− the recurrent form for reduced order dual vector 

estimate 1,
1
,1
~~

+
−

+ = nrnrnn yKPλ may be represented as 

               ( ),~)()(γ~~ T
1+n

1
,11 nnrnrrnnnn xx λkykPλλ −+= −

−+   ( ) .)()(1γ
11

,1
T −−

−+= nrrnnrn xx kPk               (17) 

Using the matrix inversion lemma [Haykin, 1996], the recurrent procedure for inverse matrix 
)()( T

,1, nrnrrnrn xx kkPP += −  updating takes the following form: 

                                          .)()( 1̀
,1

T1̀
,1

11̀
,1

1̀
,

−
−

−
−

−−
−

− γ−= rnnrnrrnnrnrn xx PkkPPP                                                    (18) 

Thereby equations (15), (16) may be treated as RLSKM version for nonlinear time-series identification based on 
reduced order model.  
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Recurrent Kernel Identification with Sliding Window 

Sliding window KM approach consider for estimation at instant n  only last sn −  observations, so observation 

vector is .)...( T
1, nsnsn yy +−=y Consequently, the kernel matrix snsnsn ,

T
,, ΦΦK =  has a fixed dimension 

)( ss× and observation equation takes the form ,,,1,
T
,1, snnsnsnsnsn ελKεwΦy +=+= −− where .sRλ ∈n  

Consider the “sliding” estimation cost function includes at any instant 1+n  a priori information term determined 
by previously estimate at instant .n  Using the representation ,, λΦw sn=  the optimization problem is defined as: 

                                    .min)()(γ ,
T12

,,1,
λ

λλKλλλKy →−−+−= −
+ nsnnsnsnsnJ                               (19) 

Condition of optimality leads to the following normal equations: 

                                           ( ) .γγ ,
1

,1
T
,,

1
,

T
, nsnsnsnnsnsnsn λKyKλKKK −

+
− +=+                                         (20) 

Using the identity ( ) ( ) ,γγ
11111 −−−−− +=+ AIAAIA ss the recurrent dual vector estimate takes the form: 

                                                   ( ) ( ).γγ 1
11

,
1

1 +
−−−

+ ++= nnsnsn yλKIλ                                                        (21) 

At last, it is necessary to put forward the updating algorithm for inverse regularized sliding kernel matrix 
).(1, γ−

snK Using the approach, proposed by [Vaerenbergh, Javier, Santamar, 2007], consider two step inverse 

regularized kernel matrix updating algorithm ),()()( 1
,

1
1,1

1
,1 γ→γ→γ −−

−−
−
− snsnsn KKK  which use auxiliary  

“downsizing” matrix ),(1,1 γ−− snK determined from the sliding kernel matrix representation: 

                                          ,
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1,11,1

T
1,1,
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⎟
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⎞
⎜
⎜
⎝

⎛

γ
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−
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snsnsnsn
sn x

xk
Kk
k

K                                                (22) 

where kernel vector ( ) .)()()( T
111,1 snsnsnnsnsn xxx −+−−−−−− κκ= …k  

Then at 1-st step of the algorithm including the “downsizing” matrix inverse is: 

                        ,)e(eK T1
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T
11

1
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T
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T1
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1
1,1 ssnsnssnssnssn RKeeKRKRRK −

−
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−
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−

−
−

−
−− −=                                (23) 

where ( ),0 1−= sss IR # .)01( T
1 …=e  

Using the regularized sliding kernel matrix )(1, γ−
snK representation 
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where ( ) ,)()()( T
111,1 nsnnnnsn xxx +−−−− κκ= …k the 2-nd step of ).(1, γ−

snK updating is the following: 

     ,1)(T
1,1)(1
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)(T
1,1)(1

1,1
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−−−−γ−

−−
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kK

kKKkkKK
K     (25) 

where ).()()( 1,1
1

1,1
T

1,1,
1

nsnsnnsnnnn xxk −−
−

−−−−
− γ−+γ=δ kKk  

Finally, expressions (21), (23), (25) produce a recurrent form of SWKM for nonlinear time-series identification. 
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Conclusion 

Recurrent KM approach for nonlinear time-series identification and prediction combining with model reduction 
technique leads to identification algorithms efficiency improvement. The advantage of such an approach consists 
not only in computing difficulties reducing and amount of calculation restriction but also in the possibility of on-line 
operating in non-stationary environments. The key feature of proposed algorithms is that the identified model 
complexity does not increase as the number of samples increases and time-varying model may be on-line 
estimated, so recurrent KM algorithms may be successfully used for non-stationary time series identification. 
Another preference connected with the sufficiently simple possibility of robust modification recurrent KM 
algorithms design using suitable nonlinear estimation function. 
Further inquiry and improvement of proposed approach should be connected with identified model optimization 
methods development. The most important problem is the model parameters optimization, namely, regularization 
parameter and kernel tuning parameter. The cross-validation technique is seemed to be the most suitable 
approach to model parameters optimization. Such issue is closely connected with the general problem of model 
optimization in compliance with available information via structural risk minimization approach. Dynamic approach 
to model optimization may be considered as one of the most important directions of further investigation. 
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