
International Book Series "Information Science and Computing"

107

Computing

SAT-BASED METHOD OF VERIFICATION USING LOGARITHMIC ENCODING

Liudmila Cheremisinova, Dmitry Novikov

Abstract: The problem under discussion is to check whether a given combinational network realizes a system of
incompletely specified Boolean functions. SAT-based procedure is discussed that formulates the overall problem
as conventional conjunctive normal form (CNF) on the basis of encoding of multiple-output cubes the Boolean
functions are specified on and checking whether the combinational network realizes them using a SAT solver.
The novel method is proposed that speeds up the SAT-based procedure due to suggested efficient procedure of
logarithmic encoding multiple-output cubes that allows reducing the number of variables to be additionally
introduced into the CNF under construction.

Keywords: design automation, verification, simulation, CNF satisfiability.

ACM Classification Keywords: B.6.2 [Logic Design]: Reliability and Testing; G.4 [Mathematical Software]:
Verification; B.6.2 [Reliability and Testing]: Error-checking.

Conference: The paper is selected from XVth International Conference “Knowledge-Dialogue-Solution” KDS-2 2009,
Kyiv, Ukraine, October, 2009.

Introduction

The role of combinational verification becomes more and more important with the rapid increase of the complexity
of designs synthesized by modern CAD (computer-aided design) tools. Today, verification is a bottleneck in the
overall VLSI design cycle as it consumes up to 70% of design effort [Drechsler, 2000], [Kuehlmann, 2002]. The
objective of verification is to ensure that implemented and specified behaviors are the same. In a typical scenario,
there are two structurally similar circuit implementations of the same design, and the problem is to prove their
functional equivalence. In contrast to that, in the paper the verification task is examined for the case, when
desired functionality of the system under design is incompletely specified. Such a case usually occurs on early
stages of designing when assignments to primary inputs of designed device exist which will never arise during a
normal mode of the device usage. Thus when hardware implementing this device, its outputs in response of
these inputs may be arbitrary specified. In this case verification methodologies must consider only possible input
scenarios to the design under verification and verify that every possible output signal of the implemented behavior
has its intended (described in initial specification) value.
We consider the verification problem for the case, when 1) desired incompletely specified functionality is given in
the form of a system of incompletely specified Boolean functions (ISF system); 2) functions of the system are
specified on intervals (cubes) of values of Boolean input variables and these intervals are large enough; 3) the
ISF system is implemented in the form of a combinational circuit. Efficient methods for equivalence checking were
proposed [Drechsler, 2000], [Kuehlmann, 2002], [Kropf, 1999] most of them can be organized into two major
categories: simulation and SAT based equivalence checking. Both these techniques have in our case some
peculiarities following from incompletely specified functionality of one of the compared descriptions.

15 – Knowledge – Dialogue - Solution

108

At present, logic simulation is the most widely used technique for ensuring the correctness of digital integrated
circuits in industry because of its scalability and predictable run-time behavior. This technique is based on
verifying a digital system by stimulating inputs of the circuit with binary signal values that propagate in the circuit
leading to a corresponding activation of its outputs, whose values must be consistent with the expected ones. In
our case a special type of simulation could be applied: guided simulation, when inputs are assigned based on
certain information, provided by the design specification. This could reduce in some cases the search space of
the simulator. However though the specification of the designed circuit with n inputs would be specified with a
small number of multi-output cubes, the overall size of Boolean space covered by them can contain up to 2n
combinations of n input variables. That is why simulation is infeasible for state-of-the-art designs.
In a modern combinational equivalence checking flow based on formal verification approach, both circuits to be
verified are transformed into a single circuit called a miter derived by combining the pairs of inputs with the same
names and feeding the pairs of outputs with the same names into EXOR gates, which are ORed to produce the
single output of the miter. The miter is a combinational circuit with the same inputs as the original circuit and there
is constant 0 on its output if and only if the two original circuits produce identical output values under all possible
input assignments. To check whether it takes place usually SAT solvers are used requiring their input to be in
conjunctive normal form (CNF). This type of solvers can be applied to circuits by converting them into CNF form.
Majority of SAT applications derived from circuit representation rely on some version of Tseitin transformation
[Tseitin, 1983] for producing CNF of the circuit called as conventional CNF. A circuit-to-CNF conversion has a
linear complexity and introduces as many variables as there are primary inputs and gates in the circuit.
In our case when we have a circuit and a system of incompletely specified Boolean functions we cannot construct
a miter. The key idea proposed is how to organize testing of all multiple-output cubes whether they are realized
by the given circuit. We present a novel SAT based verification method of testing if the given circuit implements
all the multiple-output cubes representing the system of incompletely specified Boolean functions based on
encoding its multiple-output cubes. The proposed method speeds up the SAT-based procedure due to suggested
efficient procedure of logarithmic encoding multiple-output cubes that allows reducing the number of variables to
be additionally introduced into the CNF under construction.

Basic definitions

A system F(X) = { f1(X), f2(X), …, fm(X) } (where X = (x1, x2, …, xn)) of incompletely specified Boolean functions is
represented as mapping of n-dimensional Boolean space En into m-dimensional space {0,1,–}m, i.e. F(X):
En → {0,1,–}m, where the symbol “–” denotes don’t-care condition, such a function is not defined over the whole
Boolean space En. In the case of ISF don’t-care points in En may differ for different functions. A completely
specified Boolean function f (X) realizes an ISF g(X) iff f (X) can be derived from g(X) by assigning either 0 or 1 to
each don’t-care point of En.
An ISF is specified by off-set, on-set and dc-set as subsets of En, i.e. sets Uf0, Uf1 and Ufds of cubes (Uf1 ∪ Uf0 ∪
Ufds = En). Let us specify a system F(X) of ISFs as a set SF of multiple-output cubes. A multiple-output cube
(u, t) ∈ SF is a pair of row ternary vectors u and t (or conjunctions) of dimensions n and m that are called further
as its input and output parts. The input part u represents a cube in En or a conjunction of some literals (variables
xi ∈ X or its inversions). The output part t is a ternary vector of values of functions for the cube u or a conjunction
of some literals fj ∈ F. For each fj ∈ F the j-th entry t j of t is 1 or 0 (t j = 1, 0) if all the minterms of the cube u are
in the on-set Ufj1 or in the off-set Ufj0 correspondingly; otherwise t j is don’t-care. Representation of a function with
multiple-output cubes has the following distinctive feature: cubes ui and uj can intersect each other and don’t-care
value of an element ti j of the output part of (ui, ti) means that either the function fj is don’t-care on the whole cube
ui or fj does not take the same definite value on the whole interval ui, i.e. there exist at least two minterms
covered by the cube ui on which fj has different definite values.
The system F(X) of ISFs given by the set SF of multiple-output cubes (ui, ti) can be represented in matrix form by
a pair of ternary matrices U and T of the same cardinalities. The matrix U contains input parts of multiple-output

International Book Series "Information Science and Computing"

109

cubes from SF as its rows; similarly matrix T specifies output parts as its rows. For example, ISF system F(X)
specified by SF= {(x3 x4 x5, f1), (x1 x2, f1⎯f2), (⎯x2

⎯x3
⎯x4,⎯f1 f2), (⎯x2 x3

⎯x4,⎯f2), (⎯x2 x4
⎯x5, f2)} is represented as follows:

 x1 x2 x3 x4 x5 f1 f2
 – – 1 1 1 1 – 1
 1 1 – – – 1 0 2
 U = – 0 0 0 – T = 0 1 3 (1)
 – 0 1 0 – – 0 4
 – 0 – 1 0 – 1 5

A CNF represents a completely specified Boolean function as conjunction of one or more clauses, each being in
its turn a disjunction of literals. CNF representation is popular among SAT algorithms because each clause must
be satisfied (evaluated to 1) for the overall CNF to be satisfied. The SAT problem is concerned with finding a truth
assignment of CNF literals, which simultaneously satisfies each of its member clauses. If such an assignment
exists the CNF is referred to as satisfiable, and the assignment is known as a satisfying assignment.
Matrix representation of CNF formula C containing k clauses and p distinct variables is a ternary matrix C having
k rows and p columns. The entry cij of the matrix in the i-th row and the j-th column is 1, 0 or “–” depending on in
what a form (xj or ⎯xj) the variable xj appears or does not appear in the i-th clause of C.

SAT-based verification of logical descriptions with functional indeterminacy

The conventional CNF of a combinational network specifies all combinations of signal values of its terminals that
can take place when it functions. The procedure of derivation of conventional CNF is known, it associates a CNF
formula with each network gate that captures the consistent assignments between gate inputs and its output. All
such gate local CNFs are joined then in the overall network conventional CNF by using the conjunction operation.
CNF for a gate representing a local function y = f (z1, z2, …, zk) is based on defining and representing in a CNF
form a new Boolean function ϕ (y, f) = y ∼ f (z1, z2, …, zk) [Kunz, 2002] that is true in the only case when both
functions y and f (z1, z2, …, zk) assume the same value.
When we have conventional CNF C of a combinational network and a system F(X) of ISFs, the arguments and
the functions of which correspond to primary inputs and outputs of the network, a problem under discussion is to
check whether a given network implements the ISF system. It is true if it takes place for each multiple-output cube
of the system. In terms of the network CNF this condition could be reformulated as follows. For every
multiple-output cube (ui, ti) ∈ SF a value assignment satisfying the conjunction ui ∧ ti must satisfy the network
CNF. Or, this condition could be reformulated in the form more suitable for the task of SAT solving: a network
realizes an ISF system F(X) iff for every multiple-output cube (ui, ti) ∈ SF a value assignment contradicting to it
and satisfying the conjunction ui ∧⎯ti is unsatisfying assignment for a network CNF. If ui = x1i x2i… xini and ti =
f1i f2i… fmii then the CNF Pi specifying the contradiction of the multiple-output cube (ui, ti), called as the cube-
prohibitive CNF, consists of the following ni + 1 clauses regarding the set X ∪ F of variables:

Pi(X, F) = x1i x2i… xini (⎯f1i ∨⎯f2i ∨… ∨⎯fmii).
For example, the cube-prohibitive CNF for the multiple-output cube s2 = (x1 x2, f1⎯f2) of the mentioned ISF system
F(X) (1) contains three clauses: P2(X, F) = (x1) (x2) (⎯f1 ∨ f2). And all cube-prohibitive CNFs for the ISF system are
shown in the third column of Table 1.
Appending clauses of Pi to the network conventional CNF C results in CNF СPi = С ∧ Pi. It is not difficult to prove
that CNF СPi is satisfiable iff the network does not realize the i-th multiple-output cube. As to the whole ISF
system it is not realized by the network iff it does not implement at least one of its multiple-output cubes, i.e. if the
following formula is satisfiable:
СP = С ∧ P = С ∧ (P1 ∨ P2 ∨… ∨ Pl), (2).

15 – Knowledge – Dialogue - Solution

110

where P is the ISF system prohibitive formula that, in general, is not in the form of CNF.

Table 1
Encoding cube-prohibitive CNFs Pik(X, F, W)of the ISF system (1)

№ Pi(X, F) cube-prohibitive CNFs Pi(X, F) unary codes logarithmic
codes

logarithmic
codes

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

P1

P2

P3

P4

P5

Q(W)

x1 x2 x3 x4 x5 z1 z2 z3 f1 f2
– – 1 – – – – – – –
– – – 1 – – – – – –
– – – – 1 – – – – –
– – – – – – – – 0 –
1 – – – – – – – – –
– 1 – – – – – – – –
– – – – – – – – 0 1
– 0 – – – – – – – –
– – 0 – – – – – – –
– – – 0 – – – – – –
– – – – – – – – 1 0
– 0 – – – – – – – –
– – 1 – – – – – – –
– – – 0 – – – – – –
– – – – – – – – – 1
– 1 – – – – – – – –
– – – 1 – – – – – –
– – – – 1 – – – – –
– – – – – – – – – 0

w1 w2 w3 w4 w5
0 – – – –
0 – – – –
0 – – – –
0 – – – –
– 0 – – –
– 0 – – –
– 0 – – –
– – 0 – –
– – 0 – –
– – 0 – –
– – 0 – –
– – – 0 –
– – – 0 –
– – – 0 –
– – – 0 –
– – – – 0
– – – – 0
– – – – 0
– – – – 0
1 1 1 1 1

w1 w2 w3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0
0 1 1
0 1 1
0 1 1
0 1 1
1 0 0
1 0 0
1 0 0
1 0 0
1 1 –
1 – 1

w1 w2 w3
0 0 0
0 0 0
0 0 0
0 0 0
– 0 1
– 0 1
– 0 1
– 1 0
– 1 0
– 1 0
– 1 0
– 1 1
– 1 1
– 1 1
– 1 1
1 – –
1 – –
1 – –
1 – –

Encoding of cube-prohibitive CNFs

Converting the formula P = P1 ∨ P2 ∨… ∨ Pl (from 2) into a CNF form could be done always, but that can be hard
problem. We propose the method of construction of ISF system prohibitive CNF P that has linear complexity. It is
based on encoding multiple-output cubes and their prohibitive CNFs using some coding variables wi ∈ W. After
encoding, cube-prohibitive CNFs Pi(X, F) are transformed into encoded cube-prohibitive CNFs Piк(X, F, W) and
the formula (2) into
СкP = С ∧ (P1k ∧ P2k ∧… ∧ Plk) ∧ Q(W), (3)

where Q(W) provides that the CNF СкP will be satisfiable iff at least one CNF СPi = С ∧ Pi is satisfiable. From now
on Q(W) is called as alternative CNF.
When transforming the formula (2) to the CNF form (3) each cube-prohibitive CNF Pi is encoded by a code in the
form of a clause di = wi1

σi1 ∨ wi2
σi2 ∨…∨ wir

σir (σir ∈ {0,1} and wir1 = wir, wir0 =⎯wir) where wij ∈ W. As Pi(X, F) =
x1i x2i… xini (⎯f1i ∨⎯f2i ∨… ∨⎯fmii) then

Pik(X, F, W) = (x1i ∨ di) … (xini ∨ di) (f1i ∨ …∨ fmii ∨ di).

All used codes should differ from each other. To formulate the conditions the alternative CNF Q(W) in (3) must
satisfy for the chosen encoding of cube-prohibitive CNFs, let us denote by fQ and fdi functions defined by Q(W)
and di(W) and by UQ1 and Udi1 – their on-sets that are subsets of the Boolean space E r of all different minterms of
Boolean variables wi.
Assertion 1. Codes d1(W), d2(W), …, dl(W) of cube-prohibitive CNFs and the appropriate alternative CNF Q(W)
must satisfy the following conditions:

International Book Series "Information Science and Computing"

111

1) (
i
∧ fdi) ∧ fQ = 0 or (

i
∩Mdi1) ∩ MQ1 = ∅;

2) (
ji≠

∧ fdi) ∧ fQ ≠ 0 or (
ji≠

∩ Mdi1) ∩ MQ1 ≠ ∅ for all j ∈ {1,2,…,r}.

The first condition ensures the CNF P(X, F, W) = (P1k ∧ P2k ∧… ∧ Plk) ∧ Q (the part of the CNF СкP) be
unsatisfiable when the analyzed ISF system is realized by the network, i.e. when all cube-prohibitive CNFs
Pi(X, F) (not coded) are unsatisfiable with respect to the network CNF С. If the first condition takes place then
there exists no value assignment of variables of the set W that can ensure all Pik and Q(W) be true. The second
condition ensures the CNF P(X, F, W) be satisfiable when the analyzed ISF system is not realized by the circuit,
i.e. there exists at least one multiple-output cube, for example the j-th one, that is not realized by it. Thus, a
variable value assignment can be found satisfying the j-th cube-prohibitive CNF Pj(X, F) (and thus Pjk(X, F, W)
too). The fulfillment of the second condition guaranties that there exists at least one assignment of coding
variables that ensures satisfiability of Q(W) and all cube prohibitive CNFs Pik except the j-th one (that is satisfiable
by the assumption).

Encoding by codes of unit length

The method of unary encoding has been proposed in [Cheremisinova, 2008], that introduces as many coding
variables wi as there exist multiple-output cubes in the ISF system specification. According to the method the
following encoded cube-prohibitive CNF is generated for each multiple-output cube (ui, t i) = (x1i x2i… xini,
f1i f2i… fmii):

Piк(X, F, W) = (x1i ∨ wi)(x2i ∨ wi) … (xini ∨ wi)(⎯f1i ∨ …∨⎯fmii ∨ wi),

and the following alternative CNF Q satisfying the Assertion 1 is (see the forth column of Table 1):

Q(W) = ⎯w1 ∨⎯w2 ∨ … ∨⎯wl.
Such an alternative CNF Q satisfies the conditions of the Assertion 1 proposed above:

fdi = wi, fQ = ⎯w1 ∨⎯w2 ∨ … ∨⎯wl ,
i
∧ fdi = w1 w2 … wl , so (

i
∧ fdi) ∧ fQ = 0;

ji≠
∧ fdi = w1 w2 … wj-1 wj+1 … wl , so (

ji≠
∧ fdi) ∧ fQ = w1 w2 … wj-1⎯wj wj+1 … wl ≠ 0.

In [Cheremisinova, 2008] it has been proven that an ISF system is realized by the network with functional
description specified by CNF C iff the following CNF is unsatisfiable:

С ∧ (P1к ∧ P2к ∧… ∧ Plк) ∧ (w1 ∨ w2 ∨ … ∨ wl).

Encoding by codes of logarithmic length

The unary encoding of cube-prohibitive CNFs introduces too many additional variables into the CNF that is the
input for a SAT solver. The considerable reduction of the number of coding variables and accordingly the
reduction of the complexity of resulting CNF can be achieved when to encode cube-prohibitive CNFs with codes
of logarithmic length. In that case the minimal number of coding variables could be introduced, it is r = ⎡log2l⎤,
where l is the number of multiple-output cubes. In this method cube-prohibitive CNFs are encoded with different
elementary dizjunctions di = wi1

σi1 ∨ wi2
σi2 ∨ … ∨ wir

σir of size r. Accordingly, the following encoded cube-
prohibitive CNF is generated for each multiple-output cube (ui, t i) = (x1i x2i… xini, f1i f2i… fmii):

Piк = (x1i ∨ di)(x2i ∨ di) … (xini ∨ di)(⎯f1i ∨ …∨⎯fmii ∨ di),

An alternative CNF Q(W) for the given encoding of cube-prohibitive CNFs could be found on the grounds of the
following assertion, that follows from the Assertion 1.

15 – Knowledge – Dialogue - Solution

112

Assertion 2. If cube-prohibitive CNFs are encoded with codes d1(W), d2(W), …, dl(W) then the appropriate
alternative CNF Q(W) is specified by the function fQ = di

i
f∧ , where fdi is the function defined by di(W).

Indeed, two conditions mentioned in the Assertion 1 are satisfied:

1) (
i
∧ fdi) ∧ (

di
i

f∧
) = 0;

2) (
ji≠

∧ fdi) ∧ di
i

f∧ = (fd1 … fdj-1 fdj+1 … fdl)) (⎯fd1 ∨ … ∨⎯fdj-1 ∨⎯fdj ∨⎯fdj+1 ∨ … ∨⎯fdl) = fd1 … fdj-1⎯fdj fdj+1 … fdl ≠ 0.

In conformity with the Assertion 2 the alternative CNF Q(W) will be:
 Q(W) = ¬((w11

σ11 ∨ w12
σ12 ∨ … ∨ w1r

σ1r) ∧ … ∧ (wl1
σl1 ∨ wl2

σl2 ∨ … ∨ wlr
σlr)) =

 = ¬(w11
σ11 ∨ w12

σ12 ∨ … ∨ w1r
σ1r) ∨ … ∨ ¬(wl1

σl1 ∨ wl2
σl2 ∨ … ∨ wlr

σlr) =
 = ⎯w11

σ11⎯w12
σ12 … ⎯w1r

σ1r ∨ … ∨ ⎯wl1
σl1⎯wl2

σl2 ∨ … ∨⎯wlr
σlr . (4)

Thus alternative CNF Q(W) will consists of 2l – l clauses that correspond to those combinations of variable wi
values that are not used for encoding of cube-prohibitive CNFs. For example, when using codes

{(⎯w1 ∨⎯w2 ∨⎯w3), (⎯w1 ∨⎯w2 ∨ w3), (⎯w1 ∨ w2 ∨⎯w3), (⎯w1 ∨ w2 ∨ w3), (w1 ∨⎯w2 ∨⎯w3)}

for encoding five cube-prohibitive CNFs there are three free codes

{(w1 ∨⎯w2 ∨ w3), (w1 ∨ w2 ∨⎯w3), (w1 ∨ w2 ∨ w3)}

that generate alternative CNF Q(W) = (w1 ∨ w2) (w1 ∨ w3) (the fifth column of Table 1).
To simplify the alternative CNF Q(W), it to have less clauses and literals, the task arises to choose such 2l – l
clauses that would be free from encoding of cube-prohibitive CNFs and could generate simpler CNF Q(W) (if to
apply the identical transformations to them).

The method of encoding by codes of logarithmic length

The idea of the proposed method of logarithmic encoding of cube-prohibitive CNFs is to take constant 1 as an
alternative CNF Q(W). So we should to select such codes for cube-prohibitive CNFs that 1) they satisfy the
conditions of the Assertion 1 and 2) the on-sets of the functions fdi corresponding to them cover the whole
Boolean space E r :

1)
i
∧ fdi = 0 or

i
∩Mdi1 = ∅;

2)
ji≠

∧ fdi ≠ 0 or
ji≠

∩ Mdi1 ≠ ∅ for all j ∈ {1,2,…,r};

3)
i
∨ fdi = 1 or

i
∪ Mdi1 = E r.

Let us call a clause containing the literals corresponding to all variables from W as a complete one, its size equals
r = |W |. The function fdi(W) specified by a complete clause di(W) = wi1

σi1 ∨ wi2
σi2 ∨ … ∨ wir

σir takes the value 0 on
the only minterm that is wi1

⎯σi1 wi2
⎯σi2 … wir

⎯σir. And the function fdi(W) specified by an arbitrary clause di(W) =
wi1

σi1 ∨ wi2
σi2 ∨ … ∨ wip

σip, p < r, takes value 0 on 2r–p minterms. Let us denote the set of these minterms as I(di).
Assertion 3. Clauses d1(W), d2(W), …, dl(W) may be chosen as codes of cube-prohibitive CNFs, allowing an
alternative CNF Q(W) =1, if they satisfy the following conditions:

1)
i
∪ I(di) = Er;

2) each I(di) contains at least one minterm (concerned with the clause di) which enters into no other set I(dj).

International Book Series "Information Science and Computing"

113

These conditions follow from three ones sited above. From the Assertion 3 follows that any i-th minterm
concerned with one of l codes of cube-prohibitive CNFs belongs to the only set I(di) but each of 2r – l free
minterms belongs to one or more sets I(di).
The following method of encoding l cube-prohibitive CNFs by codes of logarithmic length results from the
Assertion 3.
1. Find r = ⎡log2l⎤.
2. Take l different minterms from Er as ones concerned with codes, they are accepted as initial codes.
3. Form the set M of free minterms of Er that are concerned with no code.
4. For each initial code di(W) having initially the size r find the maximal interval in the set I(di) ∪ M. That could be
done using Quine–McCluskey method [Zakrevskij, 2008]. The clause corresponding to the found maximal interval
will be the code of the i-th cube-prohibitive CNF satisfying the second condition of the Assertion 3.
Let us consider the above example of ISF system consisting of five multiple-output cubes. Here three variants of
encoding cube-prohibitive CNFs are shown (minterms concerned with codes are on the left from them, free
minterms are below the set of concerned minterms):
 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3
 P1 0 0 0 0 0 0 0 1 0 0 – 0 0 0 0 0 0 –
 P2 0 0 1 – 0 1 0 1 1 0 – 1 0 1 0 0 1 –
 P3 0 1 0 – 1 0 1 0 0 – 0 0 1 0 0 1 0 –
 P4 0 1 1 – 1 1 1 0 1 – 0 1 1 1 0 1 1 0
 P5 1 0 0 1 – – 1 1 0 1 1 – 1 1 1 – – 1
 1 0 1 0 0 0 0 0 1
 1 1 0 0 0 1 0 1 1
 1 1 1 1 1 1 1 0 1
The first encoding variant is shown in the sixth column of Table 1 and the functions fdi(W) realized by the clauses
di(W) corresponding to the codes of this variant are specified by the following truth table:

w1 w2 w3 fd1 fd2 fd3 fd4 fd5
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

One could compare cods shown in the fifth and the sixth columns of Table 1 that are received by simple
logarithmic encoding and by the proposed improved method. It should note too that it is better to encode cube-
prohibitive CNFs with more clauses by codes with less definite components.
The optimality criterion when searching for the encoding of cube-prohibitive CNFs is the total number of literals of
all codes. It should be noted that from the point of view of the complexity of the encoding searched for, in some
cases it is not indifferent which of the minterms will be concerned with some code and which are free. That can
influence on the encoding complexity. The matter is each minterm is adjacent to as many minterms as its size is,
and it can be merged only with each of them. Thus the upper bound of the number of don’t cares in codes is
equal to the sum of sizes of free minterms minus the number of pairs of adjacent free minterms. So it is desirable
to choose 2r –l free minterms to minimize the number of adjacent among them.
From the procedure of constructing codes of cube-prohibitive CNFs and the Assertion 3 follows that the proposed
method can ensure finding optimal codes of logarithmic length. The more is the number of free minterms the less
is the size of constructed codes. In the worth case when we have 2r multiple-output cubes (and correspondingly
2r cube-prohibitive CNFs) the number of free minterms equals to 0 and the codes are of size r.

15 – Knowledge – Dialogue - Solution

114

Results of computer experiments

Two encoding methods have been implemented on C++ programming language: one based on unary encoding
and the other based on the proposed here logarithmic encoding. Two similar programs of verification using these
methods of encoding cube-prohibitive CNFs were compared on the same set of pseudo-random pairs of
descriptions: ISF system and combinational network implementing it. MiniSat solver [MiniSat] has been used to
check whether the CNF СкP = С ∧ (P1k ∧ P2k ∧… ∧ Plk) is satisfiable.
The experiments have shown that the considerable reduction of variables (when using logarithmic encoding) did
not bring about substantial speedup of the solution of SAT problem. This fact could take place because of two
antagonistic impacts on the efficiency of SAT-solver. On one hand, the reduction of variables should to speed up
SAT-solver. For example, if verified ISF system consists of l = 32000 multiple-output cubes then it is necessary to
introduce 15 coding variables using logarithmic encoding compared with 32000 using unary encoding. But on the
other hand, the increment of the sizes of clauses in the case of logarithmic encoding (in comparison with the
unary encoding) complicates SAT-solving.

Acknowledgements

The paper is published with financial support by the project ITHEA XXI of the Institute of Information Theories and
Applications FOI ITHEA Bulgaria www.ithea.org and the Association of Developers and Users of Intelligent
Systems ADUIS Ukraine www.aduis.com.ua.

Bibliography
[Cheremisinova, 2008] L. Cheremisinova, D. Novikov. SAT-Based Approach to Verification of Logical Descriptions with

Functional Indeterminacy. In: Proc of 8th International Workshop on Boolean Problems, Freiberg: September 18–19,
2008, pp. 59–66.

[Drechsler, 2000] R. Drechsler. Formal Verication of Circuits. Kluwer Academic Publishers, 2000.
[Kropf, 1999] T. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.
[Kuehlmann, 2002] A. Kuehlmann, A.J. van Eijk Cornelis: Combinational and Sequential Equivalence Checking. In: Logic

synthesis and Verification. Ed. S.Hassoun, T.Sasao and R.K.Brayton. Kluwer Academic Publishers, 2002, pp. 343–372.
[Kunz, 2002] W. Kunz, J. Marques-Silva, S. Malik. SAT and ATPG: Algorithms for Boolean Decision Problems. In: Logic

synthesis and Verification. Ed. S.Hassoun, T.Sasao and R.K.Brayton. Kluwer Academic Publishers, 2002, pp. 309–341.
[MiniSat] The MiniSat Page / http://minisat.se/MiniSat.html.
[Tseitin, 1983] G.C. Tseitin. On the Complexity of Derivation in Propositional Calculus. In: Studies in Constructive

Mathematics and Mathematical Logic, part 2, 1968, pp. 115–125. Reprinted in J.Siekmann and G.Wrightson, eds.,
Automation of Reasoning, vol. 2, 1983, Springer-Verlag, pp. 466–483.

[Zakrevskij, 2008] A. Zakrevskij, Yu. Pottosin, L. Cheremisinova. Optimization in Boolean space. TUT Press, 2008, 241 p

Authors' Information

Liudmila Cheremisinova – Principal Researcher, The United Institute of Informatics Problems of National
Academy of Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail: cld@newman.bas-net.by
Dmitry Novikov – Post graduate student, The United Institute of Informatics Problems of National Academy of
Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail: yakov_nov@tut.by

