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ON THE COMBINATORIAL SET OF POLYARRANGEMENTS 

Natalia Semenova, Lyudmyla Kolechkina 

Abstract: The multicriterion problem of discrete optimization on the feasible combinatorial set of 
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Introduction 

The multicriteria problems of optimization on different sets continue to attract attentions of many researchers [ 1-
10 ]. The models of discrete combinatorial optimization are widely used at the decision of important problems of 
the geometrical planning, economy, placing of objects, control process of treatment of information, acceptance of 
decisions and others. Lately in the area of research of different classes of combinatorial models, developments of 
new methods of their decision great attention is paind to the methods which are based on the use of structural 
properties of combinatorial sets [2, 8-15]. 
A new and actual problem which unites multicriterion of alternatives and feasible sets of decisions having different 
combinatorial characteristics is formulated and is explored in this work.  
It is of common knowledge, most combinatorial optimization problems can be taken to the problems of the integer 
programming, but it is not always justified, as an opportunity account of combinatorial properties of problems [2] is 
lost here. 
The systematic study of properties of Euclidean combinatorial sets and their research is described in many works 
Along with well - known Euclidean combinatorial sets of transpositions, placing, combinations, breaking up more 
complicated structures are polycombsnatorial sets are selected. Interest to such sets is conditioned by the 
different applied problems, as their certain number is well described by polycombinatorial constructions [12, 14]. 
t should be noted that problems of Euclidean combinatorial optimization on the polycombinatorial sets are 
combined with combinatorial polyhedrons and their properties which are the protuberant shells of such sets. The 
promoted interest to combinatorial and polycombinatorial configurations is conditioned by researches of the last 
years in the area of computer technologies at creation of modern algorithms and programs for solution of 
optimization problems. So polycombinatorial criteria is fated by the necessities of practice. The paper continues 
the studies of multicriterion problems over combinatorial and polycombinatorial sets presented in [8, 9]. The 
interrelation established between multicriterion problems over combinatorial sets and optimization problems over 
a continuous feasible set is used to study some structural properties of the feasible domain and to formulate and 
prove a number of theorems on the optimality conditions for different types of efficient solutions of the problems 
considered. We propose a polyhedral approach to solving vector combinatorial problems over a set of 
polyarrangements. It is based on the methods of principal criterion, cutting planes, and relaxation. 
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1.Problem statement. Basic definitions 

The multicriterion problems are examined: 

{ }( , ( , )) : max ( ) | ( , )ns ns
qk qkZ Ф P A H Ф a a P A H∈ , 

consisting of maximization of vectori criterion ( )Ф a  on the Euclidean combinatorial set of polyarrangements, 

where ( )Ф a 1: , .n
i lФ R R i N→ ∈  

For statement of material we use the concept of multiset А , which is determined by foundation ( )S А  and 
multiple of elements ( )k a .  

Let a multiset { }1 2, ,..., qА a a a= , its base { }1 2( ) , ,..., kS А e e e= , where 1
je R∈ nNj∈∀ , and the 

multiplicity of elements 1 2( ) , , ...j j k kk e r j N r r r q= ∈ + + + = , be given.  

Take an arbitrary qn N∈ . Call the ordered n-selection from the multiset А  as the set  

( )1 2, ,..., ni i ia a a a= ,      (1) 

where 
jia А∈  ,j ni N∀ ∈  ,nj N∀ ∈ ,s ti i≠  if  ts ≠  ns N∀ ∈ . 

Let ( )n
qkP A be a general combinatorial set of n-arrangements, induced by q>n elements from the multiset A , k 

its elements being different. Denote by ( )E A  the image of the set ( )n
qkP A  mapped into nR . Any point 

( )x E A∈  is such that its coordinates take different values from the multiset A  of real numbers, i.e., 

( )1 2, ,..., nx x x x= , where 
jj ix a=  

jia A∈ , ni j N∀ ∈ .  

Let us represent a set qN  as an ordered partition into s (where s<q) nonempty pairwise disjoint subsets 

1,..., ,sJ J i.e., such that i jJ J∩ =∅ , ,iJ ≠ ∅ ,jJ ≠ ∅ , ,si j N∀ ∈  and an ordered decomposition of the 

number n into s terms 1 2, ,..., sn n n , that satisfies the condition 1 i in q≤ ≤ , ,s i ii N J q∀ ∈ = . Obviously, 

1 2 ... sq q q q+ + + =  and 1 2 ... sn n n n+ + + = . 

Denote by H a set of elements of the form 1( (1),..., ( )) ( ,..., )sh h h n h h= = , where ( ) ,nh j N∈  nj N∈ , а, and 
ih  is an arbitrary permutation of elements of the set i sJ i N∀ ∈ . 

Let a submultiset iA of the multiset А  consist of the elements of А  whose numbers belong to the set iJ : 

1{ ,..., }
i

i i i
nA a a= , i iJ n= .  

Definition 1. [12] A set  

{ }(1) ( ) ( )( , ) ( ,..., ) ,ns n
qk h h n h i nP A H a a a A i N h H R= ∈ ∀ ∈ ∀ ∈ ⊂  

is called a general set of polyarrangements. 
Without loss of generality, let us arrange elements of the multiset А  in nondecreasing order: 

1 2 na a a≤ ≤ ≤… . Obviously, this arrangement also remains for each submultiset iA  si N∈ , of A . 
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2. Properties of Euclidean set of polyarrangements 

The convex hull of a set of polyarrangements ( )n
qkP A  is a polyhedron of polyarrangements 

( , ) conv ( , ),ns ns
qk qkA H P A HΠ = whose set of vertices consists of elements of the set of polyarrangements: 

vert ( , ) ( , )ns ns
qk qkA H Р A HΠ = . 

Theorem 1. A polyhedron of polyarrangements ( , )ns
qk A HΠ  is defined by the set of all solutions of the following 

system of inequalities: 

1 1

1
1 1

, ,

, , ,

i i

i i

j i

n n
i

j j s
j j
m m

i
j i q j i s

j j

x a i N

x a m N J i Nα α

= =

−
= =

⎧
⎪ ≤ ∈
⎪⎪
⎨
⎪

≥ ∈ ∈ ∀ ∈⎪
⎪⎩

∑ ∑

∑ ∑
    (2) 

, , , .j t ij t j t Jα α≠ ∀ ≠ ∀ ∈  

Let us consider some properties of the polyhedron ( , )ns
qk A HΠ  and its relationship with the general set of 

polyarrangements. 

Obviously, s subsystems of linear inequalities describing polyhedra of arrangements i
i i

n i
q kП ( A ) , being convex 

combinations of the sets of arrangements ,i sha i N∈ , can be separated out from the system of linear 

inequalities (2). 
Therefore, 

1 1 1 1

i i i i
i i

ji i i

n n m m
n ni i i

j jq k q j
j j j j

П ( A ) x R x a , x aα−
= = = =

⎧ ⎫⎪ ⎪= ∈ ≤ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑ , 

1, , , , , , .ii q j i j t i sm N J j t j t J i Nα α α−∈ ∈ ≠ ∀ ≠ ∀ ∈ ∀ ∈  

The product of polyhedra 1,..., sM M , is known to be a set 

{ }1 ...
11

| ( ,..., ),s
S

d d
i s i i si

M x R x x x x M i N+ +

=
⊗ = ∈ = ∈ ∀ ∈ , where iM  is an id -dimensional polyhedron. 

Lemma. 1) The product of polyhedrons is a polyhedron; 

2)
1 1

dim( ) dim
SS

i ii i
M M

=
=

⊗ =∑ , where dimM  is dimension of set M ; 

3) k -measured the verges of polyhedron 
1

S

ii
M

=
⊗  form the set with the elements of kind 

1

s

ii
F

=
⊗ , where iF – ik  is 

the measured verge of polyhedron iM  and 1 ... sk k k+ + = . 

By Statement 3.2 [12], 

{ }1 ...
1

1
( ) | ( ,..., ), ( )i is

i i i i

s n nd di i
s i sq k q ki

П A x R x x x x П A i N+ +

=
⊗ = ∈ = ∈ ∀ ∈ , 
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i.e., a point 
1

( )i
i i

s n i
q ki

x П A
=

∈ ⊗  satisfies each of s subsystems of the system (2). Hence, we may state that if ih
a  

is a vertex of the polyhedron i
i i

n i
q kП ( A ) , then 

1
( ) i

s

hi
a h a

=
= ⊗ , 1( )= sh ha h a ,...,a , where ( ) ( )ns

qka h P A,H∈ . 

Next theorems are just [14]. 

Theorem 2. 
1

( , ) ( )i
i i

s nns i
qk q ki

П A H П A
=

= ⊗ . 

Theorem 3. For n<q, the polyhedron of polyarrangements ( , )ns
qkП A H  is combinatorially equivalent to the 

polyhedron of polypermutations ( , )s
qkП A H  of dimension n. 

The vertices of the polyhedron ( , )ns
qkП A H  are elements of the set of polyarrangements ( , )ns

qkР A H . 

Theorem 4. A vertex ( ) vert ( , )ns
qka h A HΠ∈  is adjacent to a vertex ( ) vert ( , )ns

qka z Π A H∈  if and only if 

( )a z  can be formed from ( )a h  by a permutation of two unequal components i
ia  и 1, ,

i
i
j q sa j J i N−∈ ∈ . 

Note that the total number p of linear inequalities appearing in the system (2) and describing the polyhedron of 
polyarrangements ( , )ns

qk A HΠ  is very high. It can be reduced in some cases. 

Statement 1. If only k out of n coordinates ,j nx i N∈ , of a point nx R∈  are different, then the number of 

inequalities of the system that describe the convex polyhedron ( , )ns
qk A HΠ  can be reduced by excluding 

1

s
i

i
N N

=
=∑  inequalities, where 

1
1

i

i

q
j

i i q
j i

N q C
= +

= + + ∑ . 

Proof. Let us call an aggregate of inequalities of the subsystem for a subset ,i sJ i N∈ , of the system (2), 

having equal values im  of the upper limit of summation, the im th group of inequalities of this subsystem. Each 

mi im th group includes i
i
m
qC  inequalities. Hence, the total number of inequalities describing the polyhedron 

i
i i

n i
q kП ( A )  is 

0
2 ,

i
i i
i

q
m q

i sq
i

p C i N
=

= = ∈∑ . Since there are ik  different coordinates ,ij ia j J∈ , out of iq , 

then some inequalities can be excluded from the ith subsystem of inequalities (2). In view of the condition 

1 2 qa a a≤ ≤ ≤…  for any 1, ,
i i i smj N m q i N−∈ ≤ ≤ , the following equality holds: 1

i i
j ja a += . Therefore, if 

the inequalities of the first group in the subsystem (2) hold, the inequalities of the second, third, … im th, 

si N∈ , groups will also hold. Indeed, since 1 , ,i
j i sx a j J i N≥ ∈ ∈ , the condition 1

1

i

j

m
i

i
j
x m aα

=
≥∑  is 

satisfied for any i nm N∈ . Hence, the inequalities of the second, third, …, im th, si N∈ , groups can be 

excluded from each subsystem of system (2) describing the polyhedron of polyarrangements ( , )ns
qk A HΠ , and 

the total number of inequalities in the im th subsystem will be 
1

1
i

i

q
j

i i q
j i

N q C
= +

= + + ∑ . If the set of numbers 
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( )1 2, ,...,i i i
na a a  possesses the property 1 1 \ ,i i i

i i
j j n n m sa a j N N i N+ − −= ∀ ∈ ∈ , the reasoning may be 

similar. Then it will suffice to leave only the inequalities of the first, second, …, ( )im j− th group in the 

subsystem of the system (2). Therefore, 
1

s
i

i
N N

=
=∑  inequalities can be excluded from the system (2). 

Let a set of polyarrangements ( , )ns
qkР A H  be mapped into the Euclidean space nR  and let us formulate the 

problem ( , )Z F X  of maximizing a vector criterion ( )F x  on a feasible set X: 

{ }( , ) : max ( ) |Z F X F x x X∈ . 

To each point a ( , )ns
qka P A H∈ , there corresponds a point x X∈  such that ( ) ( )F x Ф a= , where 

1 2( ) ( ( ), ( ),..., ( ))lF x f x f x f x= , 1: , ,n
i lf R R i N→ ∈  X  is a nonempty set defined as follows: 

X = vert ( , )ns
qk A HΠ , where ( , ) conv ( , )ns ns

qk qkA H P A HΠ Π= = . Let the problem ( , )Z F X  contain also 

convex constraints that form a convex closed set nD R⊂  of the form { | }nD x R Bх d= ∈ ≤ . Then the feasible 

set vert ( , )ns
qkX П A H D= ∩ . 

In multicriterion optimization problems, the traditional concept of optimality is replaced with Pareto optimality 
(efficiency), weak efficiency (Slater optimality), and strong efficiency (Smale ptimality). Thus, by solutions of the 
problem ( , )Z F X  we will mean elements of the following sets: ( ),P F X  of efficient (Pareto optimal) solutions, 

( ),Sl F X of weakly efficient (Slater optimal), and ( ),Sm F X  of strongly efficient (Smale optimal) solutions. 
According to [4–7], the following statements are true for each feasible x X∈ : 

( ) ( ) ( ){ }, |x Sl F X y X F y F x∈ ⇔ ∈ > =∅                                   (3) 

( ) ( ) ( ) ( ) ( ){ }, | ,x P F X y X F y F x F y F x∈ ⇔ ∈ ≥ ≠ =∅                 (4) 

( ) ( ) ( ){ }, | ,x Sm F X y X y x F y F x∈ ⇔ ∈ ≠ ≥ =  ∅.                         (5) 

( ) ( ) ( ), , ,Sm F X P F X Sl F X⊂ ⊂ . 

Since | X | < ∞ , the set ( ),P F X ≠ ∅  and is externally stable [15]. 

3. Structural properties and optimality conditions of different sets of efficient solutions 

Theorem 5. The elements of set ( ),Sm F X  - strictly efficient, ( ),P F X  - Pareto-optimal, and ( ),Sl F X - 
weakly efficient solutions of a multicriteria combynatorial problem over polyrranqements of the form ( , )Z F X  

are located at the vertices of polyhedron of polyrranqements ( , )ns
qkП A H . 

Proof. Taking into account correlation (6) between the introduced sets of efficient solutions and also according to 
fact that the set of feasible solutions X  is a subset of the set of vertices of the general polyhedron of 

polyrranqements, that ( , )ns
qkП A H , and vert ( , )ns

qkx A HΠ⊂  we come to vert ( , )ns
qkx A HΠ⊂  the justice of 

inclusions ( ) ( ) ( ), , , vert ( , )ns
qkSm F X P F X Sl F X A HΠ⊂ ⊂ ⊂  takes place. The theorem is proved. 

Let the functions of vectorial criterion ( ), ,i lf x i N∈  are linear, that is ( )F x  Structural properties of feasible 
region and sets of different types of efficient decisions, marked in the theorem 5, and also linear of functions of 
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vectorial criterion allows to take the decisions of problem ( ) , , .i i lf x c x i N= ∈  X to the X decision of the 

problem ( , ) .ns
qkG П A H D= ∩  

Statement 2. The following inclusions are true for sets of optimal solutions of the problem ( , ) :Z F X  

( ) ( ) ( ), , , vert ( , )ns
qkSm F X P F X Sl F X A HΠ⊂ ⊂ ⊂ . 

Let us represent the polyhedron as ( ) { | , , }ns ns n
qk qk i i pA x R x i NΠ Π π γ= ∈ ≤ ∈ . 

Introduce a set ( ) { , }, 0 ( ) { | 0, ( )}n
q i i iN y i N y Q y x R x i N yπ γ π+= ∈ = = ∈ ≤ ∈  is a cone that can be 

constructed for all points vert ( , )ns
qky П A H∈ . Obviously, if ( )N y =∅ , then 0 ( )X y yΠ+⊆ + . 

The structural properties of the feasible domain X  and of the sets of various types of efficient solutions 
mentioned in Statement 3 and the linearity of the functions of vector criterion allow reducing the problem 

( , )Z F X  to the problem ( , )Z F G  defined on the continuous feasible set ( )ns
qkG П A D= ∩ . 

Theorem 6. The following inclusions are true: ( , ) vert ( , ) ( , ),ns
qkP F G П A H P F X⊂∩  

( , ) vert ( , ) ( , )ns
qkSl F G П A H Sl F X⊂∩ , and ( , ) vert ( , ) ( , )ns

qkSm F G П A H Sm F X⊂∩ . 

Proof. Since vert ( , ) ,ns
qkП A H D G⊂∩  we have  

( , ) vert ( , ) ( , vert ( , ) ) ( , )ns ns
qk qkP F G П A H D P F G П A H D P F X⊂ =∩ ∩ ∩ ∩ . 

Similarly, we can prove the relationships 

( , ) ( , vert ( , )) ( , ) vert ( , )ns ns
qk qkSm F X Sm F D П A H Sm F G П A H= ⊃∩ ∩ . 

( , ) ( , vert ( , ) ) ( , ) vert ( , )ns ns
qk qkSl F X Sl F П A H D Sl F G П A H= ⊃∩ ∩ . 

Let the functions ( ),i lf x i N∈ , of the vector criterion ( )F x  be linear, i.e., ( ) , , , n l
i i lf x c x i N C R ×= ∈ ∈  is 

a matrix and a linear mapping : n lC R R→ , and ic  is its row vector, li N∈ . Denote by 

{ }0nK x R Cx= ∈ ≥  the cone of perspective directions [4] of the problem ( , )Z F X , { }0 0nK x R Cx= ∈ =  

is the kernel of the mapping C , and { }int 0nK x R Cx= ∈ >  is the interior of the cone K . 

As follows from (3)–(5), the statements below are true x X∀ ∈ : 

( ) ( ), int ,x Sl C X x K X∈ ⇔ + ∩ =∅        (7) 

( ) ( )0, \x P C X x K K X∈ ⇔ + ∩ =∅             (8) 

( ) ( ) { }, \x Sm C X x K X x∈ ⇔ + ∩ =∅ .      (9) 

 
Theorem 7. If the feasible set X  of the problem ( , )Z F X  contains no constraints that describe the convex 

polyhedral set D , or ( , )ns
qkП A H D⊆ , i.e., vert ( , )ns

qkX П A H= , then the following equalities are true 
nx R∀ ∈ : 

( , ( , )) vert ( ) ( , ), ( , ( , )) vert ( , ) ( , ),ns ns ns ns
qk qk qk qkSl F П A H П A Sl F X P F П A H П A H P F X= =∩ ∩  
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( , ( )) vert ( ) ( , )ns ns
qk qkSm F П A П A Sm F X=∩  

Proof. As follows from Theorem 6 and conditions of this theorem, the statements below are true nx R∀ ∈ : 

( , ( , )) vert ( , ) ( , ),ns ns
qk qkx Sl F П A H П A H x Sl F X∈ ⇒ ∈∩  

( , ( , )) vert ( , ) ( , ),ns ns
qk qkx P F П A H П A H x P F X∈ ⇒ ∈∩   

( , ( , )) vert ( , ) ( , ).ns ns
qk qkx Sm F П A H П A H x Sm F X∈ ⇒ ∈∩  

Let us prove inverse implications. Let ( , ),x Sl F X∈  whence vert ( , )ns
qkx П A H∈ by Statement 3. Suppose by 

contradiction that ( , ( , )).ns
qkx Sl F П A H∉  Since functions ( ), ,i lf x i N∈  of the vector criterion ( )F x  are 

linear, the condition int ( ( ) )K x xΠ − ≠∅∩  is satisfied by Theorem 5 [6], i.e., the cone ( int )x K+  contains 

some points of the boundary of the polyhedron ( , )ns
qkП A H . Therefore, there exists a vertex ( )ns

qkП A  belonging 

to this cone. By virtue of (7), this means that ( , )x Sl F X∉ , which leads to a contradiction with the condition of 
the theorem. Other statements of the theorem can be proved similarly. 
Corollary 1. Under the conditions of Theorem 7, the following statements are true x X∀ ∈ : 

( , ) ( , ( , )) vert ( , ),ns ns
qk qkx Sl F X x Sl F П A H П A H∈ ⇔ ∈ ∩   

( , ) ( , ( , )) vert ( , ),ns ns
qk qkx P F X x P F П A H П A H∈ ⇔ ∈ ∩   

( , ) ( , ( , ) vert ( , ).ns ns
qk qkx Sm F X x Sm F П A H П A H∈ ⇔ ∈ ∩  

If the feasible domain vert ( , )ns
qkX П A H= , then the necessary and sufficient optimality conditions obtained in 

[6] for all the above-mentioned types of efficient solutions are true for any point vert ( , )ns
qkx П A H=  of the 

problem ( , )P F X . If ( ) ( )ns ns
qk qkП A D П A≠∩ , then only sufficient optimality conditions are true. 

Theorem 8. For an arbitrary vert ( )ns
qkx П A= , 

( , ( )) ( , )ns
qkx P F П A D x P F X∈ ⇒ ∈∩ , 

( , ( )) ( , )ns
qkx Sl F П A D x Sl F X∈ ⇒ ∈∩ , 

( , ( )) ( , )ns
qkx Sm F П A D x Sm F X∈ ⇒ ∈∩ . 

Proof. Since ,G DΠ= ∩  the following implications are true: 

vert ( , ) : ( , ( , )) ( , ( , ) ) ( , ) ( , ),ns ns ns
qk qk qkx П A H x P F П A H D x P F П A H D P F G x P F X∀ ∈ ∈ ⇒ ∈ = ⇒ ∈∩ ∩  

( , ( , )) ( , )ns
qkx Sl F П A H D x Sl F X∈ ⇒ ∈∩ , ( , ( , )) ( , )ns

qkx Sm F П A H D x Sm F X∈ ⇒ ∈∩ . 

Thus, Theorems 5 – 8 establish an interrelation between the problem ( , )Z F X  and the problem ( , )Z F G  
defined over a continuous feasible set. It enables to apply the classic methods of continuous optimization to the 
decision of vectorial combinatorial problems on polyrrangements and on this basis develop new original methods 
of decision, using properties of combinatorial sets and their protuberant shells. 
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If the problem ( , )Z F X  does not contain linear limitations forming a convex polyhedral set nD R⊂ , or if we 
have DΠ ⊆ , i.e. vertX Π= , then, taking into account necessary and sufficient optimality conditions 
(theorem 7), the process of its solution is reduced to the search for efficient solutions of the problem ( , )Z F G  

over the continuous feasible set ( , )ns
qkG П A H=  with the subsequent choice of only the solutions thatf are 

vertices of the permutable polyhedron of polyrrangements ( , )ns
qkП A H .  

Analyzing theorems 6 and 8, we obtain the following relationships between the problems ( , )Z F X  and 

( , )Z F G : if we have ( , ) ( , ),ns
qkx R F G vertП A H∈ ∩ then ( , ),x R F X∈  and if we have 

( , ) ( , ),ns
qkx R F G vertП A H∉ ∩  then this does not imply that ( , )x R F X∉ , where ( , )R F X  denotes the set 

set ( , ), ( , )P F X Sm F X  or ( , )Sl F X . 

4. Main approach of the task contains additional linear limitationds, the following approach its 
decision is offered.  

If the problem ( , )Z F X  contains additional linear constraints, then the following approach to its solve is 
proposed.  

1. We find the efficient solutions of the problem ( , ( , ))ns
qkZ F П A H . 

2. We check their membership in the set D . If we have ( , ( , )) ,ns
qkx P F П A H D∈ ∩  then ( , ).x P F X∈  

3. We will consider feasible solutions x X∈  to the problem ( , )Z F X  that are inefficient in the problem 

( , )Z F П , i.e. \ ( , ( , ))ns
qkx X P F П A H D∈ ∩ , and check them for efficiency. To this and, use the necessary 

and sufficient conditions formulated in [15]. 

Statement 3. A feasible solution 0x  is efficient if and only if it is an optimal solution of the following problem:  

1 0

1
( , ) : max ( ) | , ( ) ( ), .

m
i i i m

i
Z F X f x x X f x f x i N

=

⎧ ⎫⎪ ⎪∈ ≥ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

If the solution 0x  is inefficient, then, as a result of solution of this problem, we find an efficient solution *x  that is 

more preferable than 0x , i.e., we have * 0( ) ( ).F x F x≥   

Continuing investigations and developing the results of [1, 5, 6, 8-13], we propose an approach to the solution of 
the problem ( , )Z F X  on the basis of linear convolution (aggregation) of its partial criteria and the further 
reduction of the search for solutions of the initial problem to the solution of a series of scalar (one-criterion) 
problems and the check of the obtained solutions for optimality. The method of solution of one-criterion problems 
is based on the ideas of decomposition, Kelly ’s cutting-planes, and relaxation.  
Next, we consider a method whose realisation takes into account the fact that the number of constraints is 
sufficiently large. Then it is expedient to use a relaxation procedure or temporary rejection of some constraints 
and the solution of a problem over a wider domain, i.e., under remained constraints. 
At the initial stage of construction of the sought-for algorithm, we should determine the initial point. We will 
consider a one-criterion problem without constraints that describe a polyhedron D and call them additional 
constraints. 
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Statement 4. If, for the elements of the multiset A and coefficients ,j nc j N∈ , of the objective function of the 

problem a maximum functions ( )f x , conditions 
1 2

...
ni i iс c с≤ ≤ ≤  and 1 2 na a a≤ ≤ ≤… , respectively, are 

satisfied, on the admissible set is attained at a point 
1

* * *( ,..., ) vert ( , )
n

ns
i i qkx x x П A H= ∈  that is specified as 

follows: 
*
ji j nx a j N= ∀ ∈ ,     (10) 

and its minimum is accordingly attained at a point 
1 2

( , ,..., ),
ni i iy y y y=  where  

{ }1 1 0
ji n j ny a j N
+ − −= ∀ ∈ ∪ . 

 
For description and basing of method of decision of the problem we will introduce next denotations. We write 

down the feasible region of the problem ( , )Z F X  in the form { | }nG x R Hx g= ∈ ≤ , 1 2( , ,..., )qg g g g= is 

matrix, which is used for the matrix-vectorial form of record of limitations of the form (2) and linear inequalities 
describing a polyhedron D , where all limitations are taken to one ≤  kind of inequalities. We will designate qN  

the set, the elements of which determine the numbers of limitations of the system (2) and additional limitations 
describing the protuberant many-sided set D : = qN .  

 

We define sets { , },n
i i i qG x R h x g i N= ∈ ≤ ∈  and, for an arbitrary s nx R∈ , define sets 

( ) { , }a
q i iN x i N h x gν ν= ∈ =  − accordingly active and nonactive limitations in the point; xν - accordingly 

qi N∈ the vector-line of matrix and i component of vector H .  

We will submit a problem in to consideration, the problem where { }( , ) : max ( ) |Z F G F x x Gν ν∈  is set of 

indexes of limitations, describing the feasible region of problem { }, , ,n
i i qG x R h x g i Q Nν

ν= ∈ ≤ ∈ ⊂ , 

which is solved on м step of algorithm, ( , )Z F Gν , is set of numbers of limitations which were not included in this 
problem on м step. 

Definition 5. We call the quantity ( ) , ,i i i qr x h x g i N= − ∈ , a deviation of point nx R∈  from the boundary of 

a set iG  and the quantity ( ) max{ ( ) }i qr x r x i N= ∈  a deviation of point nx R∈  from the boundary of the set 

G . It is obvious that, for pi N∈ , we have  

1 1
( )

j

i i
i

i j
j j

r x x aα
= =

= −∑ ∑ ,                                                         (11) 

and for \q pi N N∈ , we have 

( ) ,i i ir x b x d= − ,                                                             (12) 

where ib is the i th row vector of the matrix , iB d R∈ . 
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Theorem 9. An efficient (Pareto-optimal, weakly efficient, and strictly efficient) solution 0x  of problem 

( , )Z F Gν  is an efficient (in the same sense) solution of the problem ( , )Z F G  if and only if the condition 
( ) 0r x ≤  is true. 

Proof. The necessity of this statement is obvious since the feasible solution 0x  of the problem ( , )Z f Gν  is a 
feasible solution of the problem ( , )Z F G  if and only if the condition ( ) 0r x ≤  is satisfied. The sufficiency of this 
statement follows from the construction of the problem ( , )Z F G  and the definition of ( )r x .  

The approach to solving the class of vector problems proposed here is to reduce the original multicriterion 
problem to an optimization problem with one criterion ( ),r lf x r N∈ , which is declared principal or basic 
provided that the values of all other criteria should be no less than some prescribed (threshold) values 

, \{ }i lt i N r∈ . Thus, we have the problem  

{ }( , ( )) : max ( ) ( ) , \ { },r i r i i lZ f X t f x f x t i N r x X≥ ∈ ∈ . 

The optimal solution 0x  of this problem is always weakly efficient, and if it is unique (up to equivalence f∼  ), it 

is also efficient. If the solution 0x is efficient, then it is a unique (up to equivalence f∼  ) solution of the problem 

( , ( ))r iZ f X t  for any fixed lr N∈  and 0( ), \ { }i i lt f x i N r= ∈ . Choosing a criterion as the principal one does 
not limit the choice of the optimal solution. To determine the threshold values , \ { }i lt i N r∈ , Statement 4 can 
be used, which makes it feasible to establish the upper and lower bounds for the criteria ( ),i lf x i N∈ , on a set 
of polyarrangements. We propose two approaches to solve the original problem ( , )Z F X . The first approach 
assigns the minimum values of criteria ( ), ,i lf x i N∈  on the set of polyarrangements to the thresholds 

\ { }i lt N r∈  followed by the reduction of the feasible set of the problem ( , )rZ f X  by choosing the values of 
thresholds \ { }i lt N r∈ , arranged in increasing order, next to the minimum values of the criteria. The second 
approach searches for the optimal solution of the problem ( , )rZ f X  by assigning the greatest feasible values to 
the criteria ( ),i lf x i N∈ , and then expanding its feasible domain if the original problem appears inadmissible; if 
it is admissible, an efficient or weakly efficient solution is found. 

The procedure of assigning constraints to a series of threshold values it  is simple in both approaches. Using 
Statement 4 and ordering the coefficients of the criteria, we reduce this procedure to computing the scalar 
product of two vectors, i.e., to finding values of linear criteria. Taking into account the structural features of the set 
of polyarrangements, it is feasible to compute it  more efficiently, using permutations of the elements of each i th, 

si N∈ , subset of the multiset A . 

The general idea of the method proposed to solve the problem ( , )Z F X  consists in successive inclusion of 
constraints of the problem that describe the feasible region. 
1. Reduce the multicriterion problem ( , )Z F G  to a one-criterion problem ( , )Z f G  using the principal-criterion 

method. Put 0ν = . 

2. Select constraints of the original system of linear inequalities that describe the feasible set G Gν ⊂  of the 

problem ( , )Z f Gν  and use the simplex method to find its optimal solution xν . 
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3. If the optimal solution xν  is an element of the set of polyarrangements, then, at the point xν , check the 
constraints that have not been taken into account. Obviously, they can only be constraints that describe the 
convex closed set D . If the solution xν  does not satisfy some constraints, then supplement constraints of the 

feasible region of the problem ( , )Z f Gν , with the worst-satisfied constraint from the convex closed set D. If the 

solution xν  satisfies the above-mentioned constraints, it is an efficient solution of the problem ( , )Z F G  and, 
hence, of the problem ( , )Z F X . 

4. If the solution xν  is not a point of the set of polyarrangements, make a cutoff through adjacent vertices that 
cuts off a vertex not being feasible (i.e., polyarrangement). Add this cutoff to constraints of the problem 

( , )Z f Gν . 

5. Compare the value ( )f xν  of the objective function with its value found at the previous step. If it decreases, 

reject the constraints insignificant at the point xν . If the value of ( )f xν  does not change, do not reject the 

constraints. Use the changed feasible region go to Step 2 to solve the problem ( , )Z f Gν . 

Obviously, the algorithm results in an efficient solution of the problem ( )f xν  or establishes its unsolvability by 

solving a finite number of subproblems of the form ( , )Z f Gν . 

Conclusions 

A vector combinatorial problem has been analyzed using the information about the convex hull of the feasible 
region and the properties of polyhedra whose vertices determine a prescribed combinatorial set of 
polyrrangements. A method to solve complex multicriterion problems over this combinatorial set have been 
developed and substantiated. Using the structural properties of combinatorial polyhedra makes it possible to 
develop efficient algorithms to solve new classes of vector combinatoria optimization problems.  
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