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Decision Making 

PROCEDURES OF SEQUENTIAL ANALYSIS AND SIFTING OF VARIANTS 
FOR THE LINEAR ORDERING PROBLEM 
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Abstract: This paper investigates the procedures of sequential analysis and sifting of unpromising variants after 
restrictions and after the restriction on the goal function. On the basis of the modified procedure W and the 
general scheme of sequential analysis, the algorithm of solving the linear ordering problem is developed for the 
problems of discrete optimization. 
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Introduction 

The linear ordering problem (LOP) is NP-hard combinatorial optimization problem with wide application: in 
collective decision making, economics, archaeology and scheduling [Reinelt, 1985]. Many works are devoted to 
the development of efficient algorithms for solving this problem [Grotschel, 1984], [Chanas, 1996], [Laguna, 
1999], [Campos, 2001]. 

Problem formulationa 

LOP can be formulated as follows. Consider a set of alternatives }A,...,A{A n1=  and permutation AA: →π . 
Each permutation ),...,( n1 ππ=π  uniquely determines some linear ordering of alternatives. Denote by ije , 

}n,...,1{Nj,i =∈  the cost of disposition of alternative iA  to alternative jA  in linear order, and by E  the n-square 

matrix of costs. Then LOP consists in finding such permutation π , in which the maximum total cost is achieved 

∑∑
−

= +=
ππ=π

1n

1i

n

1ij
ji

e)(E  (1) 

Evidently, that (1) is the sum of elements above the main diagonal of matrix P, its’ elements ijp  are the result of 

permutation of π lines and columns of matrix E, that is TXEXP = , where X is the matrix, that corresponds to the 
permutation π  [Reinelt, 1985]. 
As in most combinatorial optimization problems, LOP has many alternative formulations. In the paper [Grotschel, 
1984] the linear ordering problem is considered in the equivalent raising of linear programming problem with 
Boolean variables.  
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1xxx ikjkij ≤−+ , nkji1 ≤<<≤ , (3) 

0xxx ikjkij ≤+−− , nkji1 ≤<<≤ , (4) 

ijij Xx ∈ , nji1 ≤<≤ , (5) 

where jiijij eed −= , }1,0{Xij =  are the set of possible variants of values of component ijx , ∏
>

=
ij

ijXX  is the set 

of all possible variants. 

Approach to solve the problem 

The basis for developing an algorithm to solve the problem (2) – (5) is the method of sequential analysis, 
elimination and creation of variants [Mikhalevich, 1965], [Volkovich, Voloshin, 1978, 1984,1993]. 

Procedures of sequential analysis 

For the discrete optimization problems the basis of schemes of sequential analysis and elimination of variants 
without step-by-step constructing solution is the procedure W of consistent elimination (exclusion from the 
consideration, generally speaking, on the current step) of values of variables. The procedure W, in its turn, 
consists of two procedures 1W and 2W . Specify them for our case.  

Let’s choose any indexes Nk,j,i ∈ , but such as ijk >> . Following the general scheme of sequential analysis and 
elimination of variants for the problem with linear restriction, we receive the following criteria of elimination after 
the restrictions (procedure 1W on the s-step, }s,...,1{s 0∈  ):  

for fixed ij > , if 
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at least for one ijk:k >> , then the component ijx of permissible solution of problem (2) – (5) can’t take the 

value equal to )s(
ijij Xx ∈ ,where )s(

ijX is the set of possible variants of component ijx  on the step s , }s,...,1{s 0∈ ; 

for fixed jk > , if 
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at least for one ijk:i >> , then the component jkx  of permissible solution of problem (2) – (5) can’t take the 

value equal to )s(
jkjk Xx ∈ ; 

for fixed ik > , if 
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at least for one ijk:j >> , then the component ikx  of permissible solution of problem (2) – (5) can’t take the 

value equal to )s(
ikik Xx ∈ . 

1) Let 4XXX )s(
ik

)s(
jk

)s(
ij ≥⋅⋅ . Realized the selection of all possible situations and analysed them by relevant 

criteria (6) − (8), it is easy to make sure, that the elimination won’t be in this case. 

2) Let 2XXX )s(
ik

)s(
jk

)s(
ij =⋅⋅ . Let 2X )s(

ij = . It is easy to see, when }0{X )s(
jk =  і }1{X )s(

ik = , we’ll have the 

elimination of value 0xij = . Similarly if }1{X )s(
jk =  and }0{X )s(

ik = , we’ll have the elimination of value 1xij = . In 

case when 2X )s(
jk =  and if }0{X )s(

ij = , }1,0{X )s(
jk = , }1{X )s(

ik = , the value 0x jk =  will be eliminated, and in case 

}1{X )s(
ij = , }1,0{X )s(

jk = , }0{X )s(
ik =  the value 1x jk =  will be eliminated. At 2X )s(

ik = , when we have }0{X )s(
ij = , 

}0{X )s(
jk = , }1,0{X )s(

ik = , the value 1xik =  will be eliminated after the criterion (8), and if }1{X )s(
ij = , }1{X )s(

jk = , 

}1,0{X )s(
ik = , then 0xik = will be eliminated. Like to the previous case, realized the selection of all other possible 

situations (related to the case examined by us), it is easy to make sure, that the elimination after the criteria (6) − 
(8) will never be. 

3) Let 1XXX )s(
ik

)s(
jk

)s(
ij === . If }0{X )s(

ij = , }0{X )s(
jk =  and }1{X )s(

ik = , then, after the proper criterion of 

elimination, we receive ∅=)s(
ijX . If }1{X )s(

ij = , }1{X )s(
jk =  and }0{X )s(

ik = , then we’ll also receive ∅=)s(
ijX . Such 

variants make it impossible to build any allowed variant of problem (2) - (5) and describe the situation, when on 
the s-step we have an abnormal end of procedure 1W . In all other cases, evidently, it won’t be the elimination. 

From the total scheme follows that the criteria of elimination after the restriction on the objective function 
(procedure 2W  on the s-step ( 0s,...,1s =  )) will be: 

If 
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then the component ijx of permissible solution of problem (2)-(5) can’t take the value equal to ijx , where *
se some 

value taken from the interval )]x(Emax),x(Emin[
)1s()1s( XX −−

. 

The follow cases are possible during the application of procedure 2W . 

Case 1. It wasn’t any elimination. Then the contraction of set of possible variants may occur, if reinforce the 
inequality (9), which, evidently, can be done only by increasing restrictions on the objective function, selecting, for 
example, the value *

1se +  by the method of dichotomy from the interval ]e,e[ )s(
max

*
s , where  
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is the maximum possible value of objective function on the step s . 

Case 2. It was the elimination, but the reduced set of possible variants )s(X  is empty or ∅≠)s(X , but there is no 
allowable variant of problem (2) - (5). In this case, the abnormal end of procedure 2W is carried out. It is also 
known [Volkovich, Voloshin, 1978] that, in this case, any allowable variant of problem (2) - (5) satisfies the 
conditions *

sD e)x(E < . Then the extension of set )s(X can be obtained by reducing the value *
se , thus weakening 

the further restriction on the objective function, by choosing *
s

*
1s ee <+  after the rule of dichotomy from the interval 

]e,e[ *
s

)s(
min , where ∑

>
−

=
ij

ijijX

)s(
min }xd{mine

)1s(
ij

 is the minimum possible value of objective function on the step s . 

Statement 1. The value }xd{maxargx ijij
X

(max)
ij )1s(

ij
−

= , ∀  Nj,i ∈ , ij >  and ∀  }s,...,1{s 0∈  can’t be eliminated for LOP 

as a result of procedure 2W  work  

Proof. Suppose the opposite. Let }s,...,1{S 0⊆  is the set of all steps for which our supposition is correct. And let 
sminargs~

Ss∈
=  is the first of these steps (exactly at this step 2W  the elimination will be firstly done after the 

supposition), on which at least one pair of indexes ij >  will be found such that 
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Let )s~(
iN , )s~(

jN  are the sets that completely describe all pair of indexes ij > , )s~(
iNi∈ , )s~(

jNj∈  for which on the step 

s~  is executed (10). At first, let take the first of these pairs s~s~ ij >  (exactly for this pair 2W  the elimination will be 

firstly done after the supposition), that is iminargi
)s~(

iNi
s~

∈
=  and jminargj

)s~(
jNj

s~
∈

= . In this case the rule of choice s~  and 

pair s~s~ ij >  gives an opportunity to rewrite the inequality (10) in the following equivalent form: 
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from where we get correlation 
*
s~

)s~(
max ee < . (11) 

But (11) contradicts the rule of choice on any step s of value *
se from the interval ]e,e[ )s(

max
)s(

min . By analogical 
reasoning, through the finite number of steps firstly we are convinced of the impossibility of our assumption for 
the step s~ , and then after a similar reasoning for the other steps we arrive at the correctness of statement. The 
statement is proved. 
Corollary 1. For LOP the first situation described in case 2 can’t arrise. 
Corollary 2. For LOP the elimination of values of the component ijx  after the restriction on the objective function 

can occur only when 2X )1s(
ij =− , thus the values }xd{minargx ijijX

(min)
ij )1s(

ij
−

= , ∀  Nj,i ∈ , ij >  and ∀  }s,...,1{s 0∈  can 

only be eliminated. 
Corollary 3. For LOP the condition of elimination through the objective function can be rewritten in the following 
equivalent form: 
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then the component ijx  of permissible solution of problem (2) - (5) can’t take value equal to (min)
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Of the form (13) follows that for a given value *
se  if the value (min)

ji 11
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then the value (min)
ji 22

x  will be also eliminated. Then in order not to have the second situation of case 2, evidently, it 

is necessary to permit the elimination of all values (min)
ji **x ,  

where 

}}xd{max}xd{min{minArg)j,i( ijij
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ij
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Remark 1. Note that the elimination of all such values can be obtained by using strict limit on the objective 
function *

se)x(E >  and by choosing 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

−−<
}xd{max}xd{minminee ijij

X
ijijXji:)j,i(

)s(
max

*
s )1s(

ij
)1s(

ij

. 

Algorithm  

Step 1. Calculation of values )s(
maxe and *

se .  

Go to the next step. 

Step 2. Application of procedure 2W , that is the elimination of all values (min)
ji **x , where  

|ee|maxArg)j,i( jiij

2|X|
ji

:)j,i(

**

)1s(
ij

−∈

⎩
⎨
⎧

=
<

−

. 

Step 3. Application of procedure 1W .  

At the abnormal end of procedure 1W  the restoring of all eliminated on a current and previous step values and 
the end of algorithm work are realized.  

Otherwise, if 1|X|
ij

)s(
ij =∏

>

,  

then it is the end of algorithm, otherwise it is the passage to the step 1. 

Acknowledgements 

The paper is parttially financed by the projectITHEA XXI of the Institute of Information Theories and Applications 
FOI ITHEA and the Consortium FOI Bulgaria (www.itea.org, www.foibg.com). 



15 – Knowledge – Dialogue - Solution 
 

 

154 

Conclusion 

From point of view of realization the proposed algorithm is simple. If the found variant of solution x~  satisfies the 
condition *

s0
e)x~(E > , it is an optimum variant [Volkovich, Voloshin, 1978, 1984, 1993]. The variant x~  can be taken 

as an approximate solution if *
s0

e)x~(E ≤ . In case of abnormal end of procedure 1W  we receive the reduction of set 

of possible variants. The algorithm work efficiency is investigated on the real test dataset containing 49 matrices 
«production cost» from the previous years of some European countries and is popular in Internet [LOLIB]. For 10 
of 49 examples an optimum value was found. 
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