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OPTIMAL FORECASTING BASED ON CONVEXCORRECTING PROCEDURES 

Oleg Senko, Alexander Dokukin  

Abstract: Properties of convex correcting procedures (CCP) on ensembles of predictors are studied. CCP 
calculates integral solution as convex linear combination of predictors’ prognoses. Structure of forecasting 
squared error and generalized error are analyzed. At that generalized error is defined as mean of squared error at 
Cartezian product of forecasted objects space and space of training sets. It is shown that forecasting squared 
error, bias and variance component of generalized error have similar structure. Search of optimal CCP 
coefficients is reduced to quadratic programming task which is solved in terms of ensemble superfluity. Ensemble 
is considered superfluous if some members can be removed without loss of forecasting ability. Necessary and 
sufficient conditions of superfluity absence are proven. A regression method based on the described principles 
has been developed. Its concepts as well as testing results are shown revealing CCP’s significant superiority over 
stepwise regression. 

Keywords: forecasting, bias-variance decomposition, convex combinations, variables selection 

ACM Classification Keywords: G.3 Probability and Statistics - Correlation and regression analysis, Statistical 
computing  

Introduction 

Goal of this work is study of correcting procedures for sets of forecasting algorithms calculating integral solution 
as convex linear combination of prognoses, given by each algorithm from the set. Let's suppose that we have set 

of L  algorithms, forecasting some variable Y  by set of explanatory variables 1,...., nX X  at objects that are 

elements of probability space  . Prognosis that is calculated by i-th algorithm for some   will be further 

denoted as ( )iz  . Let 1( , , )Lc cc   is vector of real nonnegative coefficients satisfying 
1

1
L

i
i

c


 . 

Convex correcting procedures (CCP) are discussed in the paper that calculate collective solution ( , )Z  c  as 

1

( , ) ( )
L

ccp i i
i

Z c z 


c . Using of average by set of prognoses is special case of CCP. 

Convex correcting procedures are rather often used in theory of pattern recognition or forecasting by empirical 
data. Neural networks ensembles, methods of weighed combining, boosting and bagging methods, pattern 
recognition methods based on voting by systems of regularities [1, 2] are well known examples of optimal convex 
solutions. Last years some new techniques were suggested that are based on searching balance between 
accuracy of data approximation and diversity of ensembles [5]. Our approach is based on analysis of generalized 
error structure.  

Forecasting error for CCP  

We begin with discussing of mean squared error of CCP forecasting. Mean squared error of Y forecasted by 

some predictor Z  will de denoted as ( )Z . So, 2( ) ( )Z E Y Z   . It is easily to show that 
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2[ ( ) ( )]i ic Y z   2

1

[ ( ) ( , ) ( , ) ( )]
l

i ccp ccp i
i

c Y Z Z z   


    c c  

2

1

[ ( ) ( , )]
L

i ccp
i

c Y Z 


   c 2

1

[ ( , ) ( )]
L

i ccp i
i

c Z z 


  c  

2 2

1

[ ( ) ( , )] [ ( , ) ( )]
L

i ccp i
i

Y Z c Z z   


   c c  

So CCP error in case of forecasting of Y  for object   that is equal 2[ ( ) ( , )]ccpY Z  c  can be presented as 

difference 

2 2

1 1

[ ( ) ( )] [ ( , ) ]
L L

i i i ccp i
i i

c Y z c Z z  
 

    c  (1) 

Decomposition (1) was received in [4].  

Task of optimal CCP search may be discussed as task of minimization of mathematical mean of error 
2[ ( ) ( , )]Y Z  c  in space of forecasted objects. It is evident that 

2

1

( ) { [ ( ) ( )]
L

ccp i i
i

Z E c Y z  


   2

1

[ ( , ) ] }
L

i ccp i
i

c Z z


  c
1

( )
L

i i
i

c z


  

2

1

[ ( , ) ] }
L

i ccp i
i

c Z z


  c . 

It follows from non-negativeness of variation component 
2

1

{ [ ( , ) ( )] }
L

i ccp i
i

E c Z z 


 c  that error 

( )ccpZ  never exceed weighed with 0ic   mean of individual prognostic algorithms errors. Mathematical 

mean 
2[ ]i jE z z  , characterizing discrepancy of i -th and j -th forecasting algorithms will be denoted as 

2[ ] e
i j ijE z z    . Let note that 

2 2 2

1 1

[ ( , ) ] [ ( , )] [ ( )]
L L

i ccp i i i
i i

c Z z E Z c E z   
 

     c c  

2

1 1 1

[ ( ) ( )] [ ( )]
L L L

i i i i i i
i i i

c c E z z c E z      
   

   . 

Taking into account that  
2 2 21

2 { ( ) ( ) ( ) }i i i i i iz z z z z z          , we receive that  

2

1 1 1

[ ( ) ( )] [ ( )]
L L L

i i i i i i
i i i

c c E z z c E z      
  

   21
2

1 1

[ ( ) ( )]
L L

i i i i
i i

c c E z z    
 

  
2 2 21

2
1 1 1 1 1

{ [ ( )] [ ( )] } [ ( )]
L L L L L

i i i i i i i i
i i i i i

c E z c c E z c c E z         
     

         
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2 2 2

1 1 1 1 1

[ ( )] } [ ( )] [ ]
L L L L L

i i i i i i i i i
i i i i i

c E z c c E z c c E z z         
       

          

1 1
i i

L L
e

i i
i i

c c 
  

  

   (2) 

So, error of CCP forecasting may be written as 

1
2

1 1 1

( ) ( )
i i

L L L
e

ccp i i i i
i i i

Z c z c c  
  

   

    (3) 

Generalized forecasting error of CCP 

Generalized error. Forecasting error ( )Z  describes exactness of forecasting algorithm (predictor) Z that was 

previously trained by some fixed training set t . But training set often may change during process of training. In 

these cases predictor Z is function of   and t . Effectiveness of training procedure is better characterized with 

help of generalized error that is mathematical mean of error ( )Z  by space of various training sets t . The 

generalized error for predictor Z  will be denoted as ( )Z . The mean value Z  at point of nx R by space 

t  will be denoted as ˆ ( )Z x . The following decomposition is true for generalized error ( )Z : 

var( ) ( ) ( )noise biasZ Z Z       , 

where 2{ [ | ( )]}noise E Y E Y    x  is irreducible noise component that characterize only random process 

associated with each specific forecasting task and is not related to forecasting algorithm, component 
2( ) { [ ( )] [ | ( )]}bias Z E Z E Y    x x


 describes deviation of ˆ ( )Z x from conditional means 

[ | ( )]E Y  x , 2
var { [ ( )] [ ( , )]}

t tE E Z Z     x x


 describes variation of [ ( , )]tZ  x  at Cartesian 

product t  . At that bias component is related to inconsistency between type of used model and 

dependency that really exists in training data set, while variance component is related to inconsistency between 
complexity and dimension of model and training data set size. Variance component describes variation of 
forecasting function at relatively small and statistically admissible changes in training data. So, it may be also 
referred to as instability component. The bias component may be improved by using more complicate families of 
functions that are tried for data approximation. While high complexity of models often leads to increase of 
variance component. Such contradiction between two components is known as bias/variance dilemma [6]. 

Bias component structure. Let's consider structure of CCP generalized errors components. Calculation of 

bias  mostly repeats calculation of ( )ccpZ  structure. It is evident that 
1

[ ( ), ] [ ( )]
L

ccp i i
i

Z c z 


x c x
 

 and it 

is easy to show that 2{ ( | ) [ ( ), ]}ccpE Y Z  x x c


 may be written as difference  

2 2

1 1

{ ( | ) [ ( )]} { ( , ) [ ( )]}
L L

i i i ccp i
i i

c E Y z c Z z  
 

   x x c x
 

. 
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So,  

2 2

1 1

( ) { ( | ) [ ( )]} { [ ( ), ] [ ( )]}
L L

bias ccp i i i ccp i
i i

Z c E E Y z c E Z z    
 

      x x x c x
 

 

2

1 1

( ) { [ ( ), ] [ ( )]}
L L

i bias i i ccp i
i i

c z c E Z z 
 

     x c x
 

. 

It is easy to get similar calculations from (2), showing that   

2

1 1 1

{ [ ( ), ] [ ( )]}
L L L

bc
i ccp i i i i i

i i i

c E Z z c c     
   

  x c x
 

, 

where 
2{ [ ( )] [ ( )]}bc

i i i iE z w z w     x x
 

. Thus,  

1
2

1 1 1

( ) ( )
i i

L L L
b

bias ccp i bias i i i
i i i

Z c z c c 
  

   

      (4) 

Variance component structure. 

2
var

1 1

( ) { [ ( )] [ ( , )]}

{ [ ( )] [ ( , )]}{ [ ( )] [ ( , )]}

t

t

ccp ccp ccp t

L L

i i i i t i i t
i i

Z E E Z Z

c c E E z z z z

  

     

 

      
  

   

  

x x

x x x x



 
 

It is evident that 

{ [ ( )] [ ( , )]}{ [ ( )] [ ( , )]}i i t i i tz z z z          x x x x
 

 

2 21 1
2 2{ [ ( )] [ ( , )] [ ( )] [ ( , )]} { [ ( )] [ ( , )]}i i t i i t i i tz z z z z z                    x x x x x x
  

 

21
2 { [ ( )] [ ( , )]}i i tz z   x x


. 

However, 
2

var{ [ ( )] [ ( , )]} ( )
t i i t iE E z z z        x x


, 

2
var{ [ ( )] [ ( , )]} ( )

t i i t iE E z z z        x x


. 

Let's denote 

[ ( , )] [ ( )] [ ( , )]
i

vс
t i i tz z z    

   x x x


, [ ( , )] [ ( )] [ ( , )]
i

vc
t i i tz z z    

   x x x


, 

2{ [ ( , )] [ ( , )]}
t

vc vc vc
i i i t i tE E z w w z w w      x x . 

Then 

1 1

{ [ ( )] [ ( , )]}{ [ ( )] [ ( , )]}
t

L L

i i i i t i i t
i i

c c E E z z z z           
  

   x x x x
 

 

1
var var2

1 1

{ [ ( ) ( )] }
L L

vc
i i i i i i

i i

c c z z      
  

     . 
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Thus, 

1
var var 2

1 1 1

( ) ( )
L L L

vc
ccp i i i i i i

i i i

Z c z c c    
   

      (5) 

So, structure of generalized error components bias and var  for CCP forecasting practically coincides with the 

structure of mean squared error. At that both components are always lower then corresponding components for 
single predictors. In other words convex combining allows to improve both contradictory constituents of bias- 
variance dilemma.  

Variance of CCP 

Let's consider structure of CCP squared variance. Let ˆ ( )ccp ccpZ E Z  and 2ˆ( )ccp ccp ccpV E Z Z  . 

Variance ccpV  may be written as 
1 1

ˆ ˆ[ ( )][ ( )]
L L

i i i i i i
i i

c c E z z z z      
  

  . Further calculations repeat 

calculations made for variance component structure evaluating:  

ˆ ˆ[ ( )][ ( )]i i i iz z z z        

2 2 21 1 1
2 2 2ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( )] [ ( )]i i i i i i i iz z z z z z z z                   . 

Let's denote ˆ( ) ( )v v
i i iz w z z w     and 

2[ ( ) ( )]v v v
i i i iE z w z w      . Then 

1
2

1 1 1

( ) ( )
L L L

v
ccp i i i i i i

i i i

V Z cV z c c    
   

   . 

Thus, it is shown that variance of CCP forecasting is always lower than the same convex combination of 
forecasting variances related to single predictors. It must be noted that decrease of prediction variance leads to 
loss of forecasting ability. So, additional transformation of convex forecasting function must be done with the help 

of uni-dimensional linear regression: t
ccp ccp ccp ccpZ Z   , where t

ccpZ  is transformed forecasting, t  and 

t  are real regression coefficients that may be found by training information with the help of least squares 

method. It is evident that any linear combination of predictors 0
1

L

i i
i

z 


  with 0i   ( 1,i L ) may be 

constructed by successive execution of convex correcting and uni-dimensional linear transformation.  

CCP optimization 

Optimal CCP may be found by minimization of forecasting error. As it seen from expression (3) task of ( )ccpZ  

minimization may be reduced to quadratic programming task:  

1
2

1 1 1

( ) min
L L L

i i i i i i
i i i

c z c c    
   

     (6) 

1

1
L

i
i

c


 , 

0, 1, ,ic i L   . 
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The quadratic programming task (6) is difficult NP complete problem. But solving (6) may be facilitated with the 
help of procedure evaluating whether all predictors from initial set give optimal CCP or some predictors are 
nuisance variables and may be removed. The problem will be discussed further in terms of predictors superfluity. 

Subsets LR , LD  and LD  are defined as 

1

{ | 1, 0, 1, }
L

L i i
i

c c i L


   D c , 

1

{ | 1, 0, 1, }
L

L i i
i

c c i L


   D c . 

A set of predictors will be called not superfluous or satisfying conditions of superfluity absence (CSA) if there 

exists a point Lc D  such that [ ( )] [ ( )]ccp ccpZ Z c c , \L L c D D .  

CSA actually mean existing of CCP that uses all predictors and has forecasting error that is lower than error of 
any CCP that does not use all predictors. The necessary and sufficient conditions for CSA correctness that are 
formulated by theorem 1. 

Theorem 1 . Let matrix of mutual distances between predictors || ||i i L L    is not singular and || ||i i L L
    is 

matrix inverse to || ||i i L L    . Then simultaneous correctness of inequalities  

1
2

1 1

1

1 1

( )

{ ( ) } 0

L L

j j jL
j j

i i i i iL L
i

j j
j j

z

z

 
  




  

   
  


 

  


 





 

 for 1,i L  and positiveness of quadratic form 1
2

1 1

L L

j j j j
j j

     
  

   for each real vector 1, , L  , such that 

1

0
L

j
j




 is necessary and sufficient condition for CSA correctness. 

Method of CCP optimization based on CSA conditions. A method for solving quadratic programming task (6) 
is proposed. It is based on gradual raising of predicates set meeting superfluity condition. First, a set of all 

possible predictor pairs 2
irrP  is considered. A set of all irreducible pairs 2

irrP  is then extracted using Theorem 1 

results. Subsequently, a set of triplets 3
irrP  is formed using 2

irrP . The process is going on until step i in which 

irr
iP  becomes empty. After that an optimal aggregate is chosen, which is one from 1

irr
iP  with minimum error 

estimate. 

Experiments with CCP over uni-variate linear regressions 

CCP multiple linear model. The goal of studies is performance evaluation of multiple linear regression model 
that is convex combination of simple regressions. At the initial stage parameters of simple linear regression 

models i i i iY X      are evaluated by training set with least squares method (LS) for each independent 

variable from initial set . So, a set of  predictors is received: 
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{ ( ) ( ) | 1, }i i i iZ X i l      . 

After that generalized errors of single predictors and discrepancies between predictors are estimated using leave-
one-out technique. Then optimal CCP is searched as solution of quadratic programming task (1). Let 

 are optimal CCP coefficients. That gives a solution 

0

1 1

( , ) ( )
l l

i i i i i
i i

Z c c X   
 

  c . 

Usually a majority of coefficients  in high-dimensional tasks is equal to zero. So, task of CCP optimization also 

naturally incorporates another important task of regression analysis — significant variables selection. 

CCP prognoses  may strongly correlate with  but at the same time forecasting errors may be great due to 

low variance of . So, additional linear transformation of  is necessary. Parameters of linear 

regression models  are evaluated by training information with LS. As a result 

the final CCP multiple linear model is received: 

0

1 1

( , ) ( )
l l

cpp i cpp i i cpp i i cpp
i i

Z c c X       
 

    c . 

It must be noted that methods of regression models optimization based on quadratic programming became rather 
popular last years. The known Lasso technique [3] may be mentioned thereupon. 

Scenarios for experiments . In all studies dependent variable Y  and regression variables X  are stochastic 

functions of 3 latent variables 1U , 2U , 3U . The vector levels of variables U  are independently distributed 

multivariate normal with mean 0 and standard deviation 1. The value of dependent variable jy  in j-th case is 

generated by formula 
3

1

y
j jk j

k

y u e


   where jku  is value of latent variable kU and y
je  is random error term 

distributed (0,1)N .  

The values of relevant variable iX  were generated by binary vector 1 2 3( , , )i i i i  β  In j-th case 

3

1

i ix
ij k jk j

k

x u e


   where jku  is value of latent variable kU , 
3

1

2jk
k

u


 , ix
je  is random error term 

distributed (0,0.05)N  The levels of irrelevant variable iX  in j-th case is generated by formula ix
ij jx v  where 

ix
jv  is random error term distributed (0, )ixN d . 

In each experiment 100 pairs of data sets were calculated by the random numbers generator according to the 
same scenario. The only exclusions are simulated tasks with size 50 and dimension 100. In these experiments 
too great amount of calculations was necessary for SR method. So only 50 pairs of data sets were generated 
(these results are marked asterisk in tables). Variables were selected and optimal regressions were calculated on 
one set from a pair and forecasting ability was evaluated on another. 

First scenario. In all experiments number of relevant variables reln  was fixed and equal 5: 2 were generated at 

(1,1,0)β , 2 at (1,0,1)β , 1 at (0,1,1)β . Number of irrelevant variables irreln  varied and was equal 5, 

20, 45, 95. 
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Second scenario. In experiments by this scenario number of relevant variables reln  was proportional to full 

number of variables fulln . Numbers fulln , reln  and numbers of relevant variables generated by different β  

levels are given in Table 3. Tables 4 and 5 has similar structure as Tables 1 and 2 respectively. 

 

 

Table 1. Simulations parameters. 

 
irreln  (1,1,0)β  (1,0,1)β  (0,1,1)β  

fulln  = 25  13 5 5 2 

nfull = 50  25 10 10 5 

nfull = 100 50 20 20 10 

 

 

Results. Results of experiments of the first scenario are given in Tables 1-2. In Table 1 for each pair of sample 

size m  and full number of variables fulln 3 values are represented in corresponding cells: mean values of 

correlation coefficients between forecasted and true values of Y  for CCP (upper left) and SR (upper right); 
fractions of tables where prognostic ability estimates for CCP regression was better than estimates for SR 
(bottom). In Table 2 numbers of correctly (top) and mistakenly (bottom) selected variables are represented both 
for CCP and SR.  

 

 

Table 2. Results for the first scenario. Comparison of CCP and SR prognostic abilities. 

 
m = 20 m = 30 m = 50 

CCP SR CCP SR CCP SR 

Nfull = 10  
0.75 0.75 0.77 0.79 0.80 0.82 

0.43 0.30 0.36 

nfull = 25 
0.78 0.64 0.78 0.72 0.79 0.77 

0.76 0.65 0.57 

nfull = 50 
0.73 0.5 0.77 0.57 0.80 0.69 

0.83 0.90 0.84 

nfull = 100 
0.75 0.5 0.76 0.53 0.79* 0.57* 

0.92 0.95 0.98* 
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Table 3. Results of the second scenario expiriments. Numbers of correctly and mistakenly selected variables 

 
m = 20 m = 30 m = 50 

CCP SR CCP SR CCP SR 

nfull = 10  
235 246 258 275 290 303 

3 60 1 47 0 52 

nfull = 25 
236 233 255 272 287 300 

11 272 3 239 0 197 

nfull = 50 
227 211 259 265 279 303 

28 603 4 719 0 565 

nfull = 100 
218 172 244 230 139* 153* 

37 725 6 1185 0* 946* 

 

 

Table 4. Results of the second scenario experiments. Comparison of CCP and SR prognostic abilities  

 
m = 20 m = 30 m = 50 

CCP SR CCP SR CCP SR 

nfull = 25 
0.78 0.68 0.79 0.74 0.80 0.79 

0.79 0.61 0.51 

nfull = 50 
0.75 0.6 0.78 0.62 0.80 0.73 

0.82 0.87 0.78 

nfull = 100 
0.75 0.5 8 0.77 0.59 0.80* 0.57* 

0.86 0.95 0.98* 

 

 

 

Table 5. Results of the second scenario experiments. Numbers of correctly and mistakenly selected variables. 

 
m = 20 m = 30 m = 50 

CCP SR CCP SR CCP SR 

nfull = 25 
253 294 288 3111 332 348 

3 171 2 156 0 120 



New Trends in Classification and Data Mining 
 

71

nfull = 50 
283 391 326 498 368 451 

9 335 1 397 0 307 

nfull = 100 
281 448 319 670 196* 529* 

11 440 2 666 0* 510* 

 

It is seen from tables that effectiveness of SR decrease dramatically when full number of regressor variables 

significantly exceeds number of cases in datasets. Prognostic ability of SR decreases from 0.75-0.82 for fulln  = 

10 to 0.50-0.56 for fulln  = 100 in first scenario experiments and from 0.78-0.79 for fulln  = 25 to 0.57-0.59 for 

fulln = 100 in second scenario experiments. Fraction of irrelevant variables in selected set exceed 50% in all first 

scenario experiments with 50fulln   At the same time CCP regression keeps efficiency in all datasets. There is 

only slight decrease of prognostic ability for both scenarios: from 0.75-0.80 for fulln  = 10 to 0.75-0.795 for fulln  

= 100 in first scenario experiments and from 0.78-0.80 for fulln  = 25 to 0.75-0.8 for fulln  = 100 in second 

scenario experiments. Fraction of irrelevant variables in selected set is small in all experiments. 

Conclusion 

So it is shown that squared error of forecasting for CCP, CCP variance, bias and variance components of 

generalized error have the same structure: *1
2

1 1 1
i i

L L L

i i i i
i i i

c t c c 
  

   

  , where it  is corresponding term for 

-thi  single predictor, *

i i


 
 is non-negative distance function between predictors iz  and iz   that is equal 0 when 

predictors coincide and increase when correlation between predictors at spaces  or t diminishes. Thus CCP 

procedures allows to improve both components of bias variance decomposition. On the other hand CCP 
decrease also full variance of predicting functions. So additional linear transformation of CCP collective solutions 
is necessary.  

Problem of CCP optimization was discussed. It was shown that search of optimal CCP coefficients is reduced to 
quadratic programming task which is solved in terms of superfluity. Concept of ensemble superfluity in CCP was 
discussed in details. An ensemble of predictors is called superfluous if at least one of them may be removed 
without loss of prediction accuracy. Necessary and sufficient conditions of superfluity absence are given in 
Theorem 1. A method for solving quadratic programming task using Theorem 3 has been developed. A linear 
regression method based on CPP optimization was considered that inherently incorporates variables selection. 
Testing results reveal CCP's significant superiority over stepwise regression in high-dimensional task. Method 
preserves effectiveness of variables selection and prognostic ability in tasks where number of potential regressor 
variables is several times greater than number of cases in datasets. The described results can be used in 
different tasks of regression analysis, forecasting or recognition. 

Acknowledgment 

The work was supported by Russian Foundation for Basic Research grants 08-07-00437-a, 08-01-00636-a and 
President's grant Scientifiic Schools 7950.2010.1. 



I T H E A 
 

72

Bibliography 

[1] Zhuravlev Yu.I., Kuznetsova A.V., Ryazanov V.V., Senko O.V., Botvin M.A. The Use of PatternRecognition Methods in 
Tasks of Biomedical Diagnostics and Forecasting // Pattern Recognition and Image Analysis, MAIK Nauka/Interperiodica. 
2008, Vol. 18, No. 2, pp. 195-200. 

[2] Zhuravlev Yi.I., Ryazanov V.V., Senko O.V. RECOGNITION. Mathematical methods. Program System. Applications. -
Moscow: Phasiz, 2006, (in Russian). 

[4] Tibshirani R. Regression shrinkage and selection via the lasso // J.Roy.Stat.Soc..1996. Vol. 58,p.267–288. 

[5] A. Krogh, J. Vedelsby. Neural network ensembles, cross validation, and active learning. NIPS, 7:231–238, 1995. 

[6] Gavin Brown, Jeremy L. Wyatt, Peter Tino. Managing Diversity in Regression Ensembles. Journal of Machine Learning 
Research 6: 1621–1650. 

[7] S. Geman, E. Bienenstock, R. Doursat. Neural networks and the bias/variance dilemma. NeuralComputation, 4(1):1–58, 
1992. 

Authors' Information 

Oleg Senko – Leading researcher in Dorodnicyn Computer Center of Russian Academy of Sciences, Russia, 
119333, Moscow, Vavilova, 40, senkoov@mail.ru 

Alexander Dokukin– researcher in Dorodnicyn Computer Center of Russian Academy of Sciences, Russia, 
119333, Moscow, Vavilova, 40, dalex@ccas.ru  




