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REFERENCE-NEIGHBOURHOOD SCALARIZATION FOR MULTIOBJECTIVE 
INTEGER LINEAR PROGRAMMING PROBLEMS 

Krassimira Genova, Mariana Vassileva 

Abstract: Various real problems can be modeled as multicriteria optimization problems (MOP). In the general 
case, there is no single solution that optimizes all the criteria, but there is a set of solutions where improvement in 
the value of one criterion leads to deterioration in the value of at least another criterion. This set is known as a 
Pareto optimal set and any element of this set could be the final solution of the MOP. In order to select the final 
solution, additional information is necessary and it is supplied by the so-called decision maker. The quality of the 
interactive algorithms for solving MOP depends mainly on the scalarizing problems they are designed and based 
on. The scalarizing problems of the reference neighborhood, which are presented in the paper, are especially 
appropriate for solving multiobjective linear integer programming problems.  

Keywords: Multicriteria Linear  Integer Optimization, Scalarizing  problem. 

ACM Classification Keywords: G.1.6. Optimization – Integer Programming 

Introduction 

Several criteria (or objective functions) are simultaneously optimized in the feasible set of solutions (or 
alternatives) in the problems of multicriteria optimization (MO). In the general case, there is no single solution that 
optimizes all the criteria. Instead, there is a set of solutions where improvement in the value of one criterion leads 
to deterioration in the value of at least another criterion. This set is known as a Pareto optimal set. Any element of 
this set could be the final solution of the multicriteria optimization problem. In order to select the final solution, 
additional information is necessary and it is supplied by the so-called decision maker (DM). The information that 
the DM gives reflects his/her global preferences with respect to the quality of the solution obtained. Generally, 
multicriteria optimization has to combine two aspects: optimization and decision support. 

There are two main approaches in solving MO problems: a scalarizing approach and an approximation approach. 
The major representatives of the scalarizing approach are the interactive algorithms. Scalarization means 
transformation of the multicriteria optimization problem into one or several single-criterion optimization problems, 
called scalarizing problems. . The quality of the interactive algorithms depends mainly on the scalarizing problems 
they are designed and based on. The main property of every scalarizing problem is that each optimal solution 
generated is a Pareto (or weakly Pareto) optimal solution of the original MO problem. The properties of the 
scalarizing problems of the reference neighborhood, presented in the paper, make them especially appropriate in 
realizing a “continuous-integer” approach in interactive algorithms for solving a general multiobjective linear 
integer programming problem /MOILP/. Instead of generating integer solutions for evaluation at each iteration, the 
DM may evaluate linear continuous solutions at most of the iterations. In the criteria space the PO integer 
solutions are placed relatively close to PO continuous solutions. Thus, in the learning phase, the DM could be 
trained on the basis of linear continuous solutions, instead on the basis of integer solutions, which is particularly 
important for MOILP problems with large dimensions. In addition, the DM may also learn on the basis of 
approximate weak PO solutions, found relatively near to a weak PO surface. 

The present paper describes scalarizing problems of the reference neighborhood, called RNP1, RNP1e, RNP1-L, 
RNP1-Le, RNP1-L and RNP3. The rest of rest of the paper is organized as follows: the second section describes 
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the scalarizing problems of the reference neighborhood, called RNP1, RNP1e, RNP1-L, RNP1-Le, RNP1-L and 
RNP3. The third section presented the basic properties of the scalarizing problems of the reference 
neighborhood. Finally, the conclusions are given in the last section. 

Description of the scalarizing problems 

Let us consider the multiobjective integer linear programming (MOILP) problems:  

})({max"" xcxf k
k  , Kk   (1) 

s.t. bAx   (2) 

dx 0  (3) 

x  integer (4) 

where x  is an n-dimensional vector of variables, d  is an n-dimensional vector of variables upper bounds, A is 

an m x n matrix, b is the RHS vector and the vector ),.....1( kici   represents the coefficients of the objective 

functions. Constraints (2)-(4) define the feasible set of the variables (solutions) 1X . Problem (1)-(3) is a 

multiobjective linear programming (MOLP) problem, which is the weakened problem of a MOILP problem. The 
feasible set of the continuous solutions will be denoted by 2X . 

Let Z denotes the feasible region in the criteria space, i.e. the set of points kz  such that 

1,,...,1),( Xxkixfz ii  . 1
* Xx   is an efficient or Pareto optimal solution if there is no 1Xx such that 

*xcxc ii  for all i and *xcxc ii  for at least one j.  1
** Xx   is said to be weakly efficient / Pareto optimal solution 

if there is no 1Xx such that **xcxc ii  for all i . Although the term “efficient” is more often used for points x and 

the term Pareto optimal (PO) � for points z, they can be used interchangeably. 

Reference neighborhood is the area around the currently preferred solution in the feasible criteria space of 
MOLP/MOILP problems, determined by the local preferences of the DM, in which the next currently preferred 
solution will be sought. 

When solving a MOILP problem, the DM evaluates and compares the currently found (weak) PO solutions. In 
case he wants to look for a better solution, he/she sets his/her preferences for desired or feasible alterations of 
the values of a part or of all the criteria. Depending on these preferences, the criteria set can be implicitly divided 

into seven or less than seven classes: .and,,,,,, 0KKKKKKK  Every criterion Kkxfk ),(  may 

belong to one of these classes: K - improvement as a desired direction of change; K  - improvement by 

desired (aspiration) values hj ; K  - to either preserve or improve the current value of the criteria; K  - 

acceptable deterioration as a desired direction of change; K  - acceptable deterioration by no more than hj ; 

K  - the criteria value to lie within an interval, (   hjhjhjhjhj taata ) around the current value hja ; 0K  - 

the DM is indifferent about the value of these criteria and as such they may be altered freely. 

On the basis of this criteria division by the DM, the following scalarizing problem, denoted as RNP1, is suggested 
for finding a PO solution of MOILP problem: 
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s.t. ,
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)( kk fxf     KKKKk  (6) 

,
~~

)( kk fxf   Kk  (7) 

,1Xx  (8) 

where δ is an arbitrary small number, kf  is the value of the criterion with an index  Kk   for the current 

preferred solution, kkk ff   is the desired (aspiration) level of the criterion with an index Kk , 
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The current preferred solution of MOILP problem is a feasible solution of the current scalarizing problem RNP1, 
i.e., the scalarizing problem RNP1 has an initial feasible solution. This is a very important feature, because finding 
a feasible solution of integer problems is also a NP-problem. In addition, the feasible solutions of the scalarizing 
problem RNP1 are located near to the non-dominated surface of the multicriteria problem in the criteria space Z. 
They belong to the reference area, defined by DM’s preferences.  

Theorem 1: The optimal solution of the scalarizing problem RNP1 is an efficient/PO solution of MOILP problem.  

Proof: The scalarizing problem RNP1 is solved, when the DM wants improvement with respect to one criterion at 

least, or when K ≠  or K ≠ . 

Let *x  be the optimal solution of the scalarizing problem RNP1. Then the following conditions are satisfied: 

,),()( 1
* XxxTxT   (9) 

and constraints (6)-(7). 

Let us assume that 1
* Xx   is not an efficient/PO solution of the initial MOILP problem. In this case there must 

exist another 1
' Xx  , that is an efficient/PO solution of MOILP problem, for which: 

)()( *' xfxf kk  , for Kk  , )()( *' xfxf kk   for at least one Kk  (10) 

and constraints (6)-(7) are satisfied: 

After transformation of the objective function )(xT  of the scalarizing problem RNP1, using inequalities (10), the 

following relation is obtained: 
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It follows from (11) that )()( *' xTxT   and constraints (6)-(7), that contradicts to (9). Hence x* is an efficient 

solution, and )( *xf  is a PO solution in the criteria space of MOILP problem. 

In order to find a PO solution of MOLP problem, scalarizing problem RNP1 may be used, in which the constraint 
requiring integers (8) is removed. The relaxing problem obtained is denoted as RNP1-L.  

Since the objective functions of the scalarizing problems RNP1 and RNP1-L are non-differentiable, each one of 
them may be reduced to the equivalent optimization problem, on the account of additional variables and 
constraints, but with a differentiable objective function [7]. The equivalent linear integer problem of RNP1 
problem, denoted as RNP1е, can be presented as follows:  
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kkkk ffxff  Kk  (16) 
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New Trends in Classification and Data Mining 
 

77

   Kkyxff kkk ,
~
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1Xx  (23) 

 , , ky , Kk  - arbitrary. (24) 

Problems RNP1 and RNP1е have one and the same feasible set of solutions, and the values of their objective 
functions are equal. This comes from the following affirmation: 

Theorem 2: The optimal values of scalarizing problems RNP1 and RNP1е are equal, i.e. 
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Proof: It follows from (13) that     Kkffxff kkkk ,/ . Since this inequality is true for every Kk , 

then it is also true that 
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From (14) it could be noticed that     Kkffxff kkkk ,
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Using (25) and (26) the following is derived: 
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In the same way it follows from (15): 
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and from (16):  
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From (28) and (29) it can be written for  : 
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In case the left and right sides of inequalities (27) and (30) are summed up, the following relation is obtained: 
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If the term 
Kk

ky is added to both sides of (31), the following inequality is obtained:  
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Let *x  be the optimal solution of RNP1е problem. Then  
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for in the opposite case 
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then the right side of  (33) can be written down also as: 
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which proves the theorem. 

The continuous scalarizing problem RNP1-L has a similar equivalent problem of linear programming RNP1-Lе, in 
which the feasible set of the variables 2Xx is expanded. In order to find more than one weak PO solutions of 

the continuous scalarizing problem RNP1-Lе, its parametric extension, called RNP1-Lр, may be applied: 

  min  

s.t. 
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,)( * tfffxf kkkk  
  

Kk , 

,)( * tfffxf kkkk  
  

Kk , 

,
~

)( kk fxf    
  KKKKk , 

,
~~

)( kk fxf    
Kk  

2Xx , 0t ,  ,  - arbitrary. 

With the help of this parametric problem more new (weak) PO solutions of MOLP problem are sought, shifting the 
reference neighbourhood to direction of the preferences, set by the DM for desired improvement and acceptable 
deterioration of some of the criteria. In thus way it will not be necessary for the DM to make one more iteration in 
direction of improvement of the selected criteria, in order to acquire knowledge about the compromises that he 
has to accept with respect to the rest of the criteria. Let us assume that a (weak) PO solution of MOLP problem 
has been found with the help of scalarizing problems RNP1-Lе or RNP1-Lр, evaluated by the DM as satisfactory. 

Let it be denoted by T
pfff )ˆ,...,ˆ(ˆ

1 . In order to find a (weak) Pareto optimal solution of MOILP problem, close 

to the solution kf̂ , the following Tchebycheff’s problem RNP3 [7] may be used: 
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ff ,   is a small positive number. 

This problem is equivalent to the following problem of mixed integer programming RNP3e: 

min  

s.t. 
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,1Xx  

MOILP problems belong to the class of NP-problems. The computational efforts, connected with optimal solution 
finding in them depend considerably on the form of the feasible solutions area. That is why the search for new 
scalarizing problems, formulated in a way that could direct faster to the optimal solution, close to DM's 
preferences, is a constant task which all the researchers face.  

Basic properties of the scalarizing problems of the reference neighborhood 

The scalarizing problems of the reference neighborhood (RNP) are formulated on the basis of inexplicit 
classification of the criteria in accordance with DM’s preferences, aimed at improvement of the current preferred 
solution. Similar scalarizing problems have been offered in [3], [4], [5], [6], which also use inexplicit criteria 
division into groups. An open communication protocol to interact with the DM, which enables free exploration of 
the problem and progressive learning of the non-dominated solution set [2], is applied in the interactive 
algorithms, based on classification-oriented scalarizing problems. Four features of RNP problems facilitate the 
dialogue with the DM with respect to the information required about his/her local preferences, with respect to 
decrease of the time the DM has to wait for finding a new solution and also with respect to easing DM’s efforts in 
the evaluation of more than one solutions:  
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 the DM has variable possibilities to express his/her preferences, concerning the alteration of the values of 
some or all the criteria with respect to the current solution found. He/she may apply the most appropriate 
and comprehensible approach for every criterion, setting levels of attainability or a feasible trade-off, define 
the direction of improvement only, or specify the range of a feasible alteration;  

 the current preferred solution of MOILP problems, found at the previous iteration, is a feasible solution of 
the integer scalarizing problems RNP1е, which are to be solved at the next iteration. This reduces 
considerably the computational effort, since the discovery of a feasible solution of a single-criterion integer 
problem is an NP-problem;  

 the feasible solutions of the scalarizing problems of the reference neighborhood are located near to PO 
surface of MOILP problems. The feasible area of RNP scalarizing problems is a part of the feasible area of 
MOILP problems, unlike the feasible area of the scalarizing problems of the reference point, which 
coincides with it. Depending on the way, in which the DM sets his/her preferences (by values of desired 
improvement and acceptable deterioration), this feasible area may be comparatively narrow and the 
feasible solutions in the criteria space, found with the help of approximate algorithms of integer 
programming, might be located close to the non-dominated surface of MOILP problems. The use of 
approximate weak PO solutions leads to considerable decrease of the time duration, when the DM is 
expecting a new solution for evaluation and choice. In this way, on the account of slight worsening in the 
quality of the solutions obtained, the dialogue with the DM can be improved; 

 the strategy “not high profits - small losses” is realized. This is achieved, since the optimal solution of RNP 
scalarizing problems aspires to minimize the maximal Tchebycheff distance to the current preferred 
solution, both in direction of an improvement and also in direction of a compromise deterioration of the 
criteria, determined by DM’s preferences. The solutions from the reference neighborhood, that are obtained, 
are comparatively close, which facilitates the DM in his/her comparing of several solutions and also in 
selecting of the new currently preferred solution;  

 the application of the interactive algorithm in RNP1Lp scalarizing problem will result in finding more than 
one (weak) PO solutions of MOLP problems. It is obvious, that in case the DM evaluates at each iteration 
more (weak) PO solutions, then he/she will learn faster in problem specifics and will find quicker the most 
preferred solution to MOILP problems.  

Conclusion 

In the area of multicriteria decision making the interactive approach has found wide application in a specific and 
well defined class of algorithms, which aid the DM in the study of a set of solutions with the purpose to select one 
or a limited set from them. These algorithms, built on the basis of open communication protocols with the DM, 
prove to be some of the most promising ways of research to develop adequate MOILP tools for decision aiding in 
many complex practical situations [1]. Undoubtedly, in recent years the interest towards explicit multiple 
objectives inclusion in different real life application areas of integer programming models, has grown significantly. 

The quality of the interactive algorithms depends mainly on the scalarizing problems they are designed and 
based on. The properties of the scalarizing problems of the reference neighborhood herein proposed make them 
especially appropriate in realizing a “continuous-integer” approach in interactive algorithms for solving a general 
MOILP problem. Instead of generating integer solutions for evaluation at each iteration, the DM may evaluate 
linear continuous solutions at most of the iterations. In the criteria space the PO integer solutions are placed 
relatively close to PO continuous solutions. Thus, in the learning phase, the DM could be trained on the basis of 
linear continuous solutions, instead on the basis of integer solutions, which is particularly important for MOILP 
problems with large dimensions. In addition, the DM may also learn on the basis of approximate weak PO 
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solutions, found relatively near to a weak PO surface. Another advantage of this class of scalarizing problems is 
that in them the DM operates in the criteria space. In real life problems the criteria have their quantitative and 
financial aspects, so that the DM is able through their definition to express easier his/her preferences in the 
search for a trade-off solution.   
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