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BENCHMARK OF PSO-DE USING BBOB 2010 

Nuria Gómez Blas, Luis F. de Mingo 

Abstract: As an example, we benchmark the Particle Swarm Optimization algorithm with a Differential Evolution 
on the noisefree Black Box Optimization Benchmark 2010 testbed. Each candidate solution is sampled uniformly 
in [−5, 5] D , where D denotes the search space dimension, and the evolution is performed with a classical PSO 
algorithm and a classical DE/x/1 algorithm according to a random threshold. The maximum number of function 
evaluations is chosen as 105 times the search space dimension. This paper shows how to evaluate the 
performance of a given optimization algorithm a using the BBOB 2010.  

Keywords: Benchmarking, Black-box optimization, Direct search, Evolutionary computation, Particle Swarm 
Optimizacin, Differential Evolution 

Categories: G.1.6 [Numerical Analysis]: Optimization-global optimization, unconstrained optimization ; 
F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems. 

Introduction  

Particle swarm optimization (PSO) is a global optimization algorithm for dealing with problems in which a best 
solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space 
and seeded with an initial velocity, as well as a communication channel between the particles. Particles then 
move through the solution space, and are evaluated according to some fitness criterion after each timestep. Over 
time, particles are accelerated towards those particles within their communication grouping which have better 
fitness values. The main advantage of such an approach over other global minimization strategies such as 
simulated annealing is that the large number of members that make up the particle swarm make the technique 
impressively resilient to the problem of local minima [7, 8, 9].  

Equations used in the particle swarm optimization training process are the following ones, where c1 and c2 are 
two positive constants, R1 and R2 are two random numbers belonging to [0, 1] and w is the inertia weight. This 
equations define how the genotype values are changing along iterations. 

 

Previous equations will modified the network weights till a stop conditions is achieved, that is, a lower mean 
squared error or a maximum number of iterations is reached.  

Differential Evolution (DE) is an evolutionary algorithm [10, 11, 12] that uses a differential mutation procedure that 
consists in the addition of the weighted difference of two population vectors to a third vector. Many variants of the 
differential mutation procedure exists. Choosing between these variants and setting parameters requires 
preliminary testing as [11] admits that the results of the algorithm are dependent on the chosen strategy and the 
choice of parameter. DE/local-to-best/1 is a variant where instead of the base vector xi1 being chosen in the 
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population vector, it is chosen to lie between the vector considered and the best vector so far, thus the update of 
the velocity is written as follows, where F is a constant in the range [0, 2]:  
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Method 

We have used a uniform sampling in [−5, 5]D , where D denotes the dimension of the search space. The 
experiments according to [3] on the benchmark functions given in [2, 4] have been conducted using a C-code. A 
maximum of 105 × D function evaluations has been used.  

 

The simulations for 2; 5; 10; 20 and 40 D were done with the C-code and took 2 hours and a half. No parameter 
tuning was done and the crafting effort CrE [3] is computed to zero. 
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Results 

Results from experiments according to [2] on the benchmarks functions given in [1, 3] are presented in Figures 1, 
2 and 3 and in Tables 1 and 2. The algorithm solves some of the moderate functions f1, f2, f5, f6, f14 and f21. 
Else, f8, f9, f11, f12, f13 are partially solved for dimensions 20. 
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Conclusion 

We have presented the results of the Particle Swarm Optimization algorithm with a Differential Evolution term, 
that does use information gathered during search for guiding its next stops following a social behavior not a 
genetic one. Those results provide a baseline comparison that every adaptive algorithm should outperform. 
Results have been obtained using the Black Box Optimization Benchmark 2010, which provides useful tools to 
analyze data in a graphical way.  
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