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CHAIN SPLIT OF PARTIALLY ORDERED SET OF K-SUBSETS 

Hasmik Sahakyan, Levon Aslanyan 

Abstract: An application oriented class of partially ordered sets is considered. Let ),( knP  denotes the set of all 

k -tuples with strictly increasing elements from the set },,,{ nN 21  and nk 1 . Some properties of 

),( knP   is studied in terms of partially ordered sets. An algorithm that constructs a set of non intersecting 

increasing chains that cover all elements of ),( 3nP  is brought. The number of these chains is the minimal 

possible: it equals to the width of ),( 3nP , i.e. the largest cardinality of an antichain. Analogous to the Hansel’s 

well known algorithm for identification of monotone Boolean functions, the chains constructed for ),( 3nP  can be 

used for identification of monotone functions defined on ),( 3nP . 

 Keywords: partially ordered sets, chain split. 

ACM Classification Keywords: G.2.1 Discrete mathematics: Combinatorics  

Introduction 

An application oriented class of partially ordered sets is considered. Let ),( knP  denotes the set of all strictly 

increasing k -tuples of elements that are from the set },,,{ nN 21 , and for some nkk 1, . Properties of 

),( knP  and consequently of ),( 3nP  is studied. An algorithm that constructs a set of non intersecting increasing 

chains that cover all elements of ),( 3nP  is brought. Analogous to the Hansel’s well known algorithm for 

identification of monotone Boolean functions, based on partitioning of the set of vertices of the cube into non 
intersecting chains, - the chains, constructed for ),( 3nP  can be used for identification of monotone functions 

given in ),( 3nP . The study of ),( 3nP  is also motivated by its tight relation with the 3 -hypergraphs.  

Partially Ordered Sets  

This section brings introduction to the partially ordered sets ([ST, 2008], [E, 1997]). 

Definition 1. A partially ordered set (or poset) is an ordered pair ),( P , consisting of a set P  and a relation   

on P  satisfying the following three properties: 

(1) for all Px  , xx   (reflexivity). 

(2) for all Pyx , , if yx   and xy  , then yx   (anti-symmetry). 

(3) for all Pzyx ,, , if yx   and zy  , then zx   (transitivity). 

The notation yx   is used when both yx   and yx  .  

Definition 2. An element x  of a poset P  is minimal if there is no element Py   s.t. xy  . Similarly, x  is 

maximal if there is no element Pz  s.t. zx  . 

Two elements x  and y  in the poset P  are comparable if yx   or xy  ; otherwise x  and y  are 

incomparable. 

Definition 3. A chain in a poset ),( P  is a subset C  of P  which is totally ordered in P . An antichain is a set 

A  of pairwise incomparable elements. 
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The height of a poset is the largest cardinality of a chain, and its width is the largest cardinality of an antichain. 
We denote the height and width of ),( P  by )(Ph  and )(Pw . In a finite poset ),( P , a chain C  and an 

antichain A  have at most one element in common.  

Theorem 1 (Dilworth’s Theorem) Let ),( P  be a finite poset. Then there is a partition of P  into )(Pw  chains. 

Let x  and y  be distinct elements of a poset ),( P . We say that y covers x  if yx   but no element z  

satisfies relation yzx  . The Hasse diagram of a poset ),( P  is the directed graph whose vertex set is P  

and whose arcs are the covering pairs ),( yx  in the poset. We usually draw the Hasse diagram of a finite poset 

in the plane in such a way that, if x  is covered by y , then the point representing y  is higher than the point 

representing x . Then no arrows are required in the drawing, since the directions of the arrows are implicit 

While Dilworth’s theorem uses transitive comparisons in splitting ),( P  into the chains, our interest below 

concerns the chains consisting of pairwise covering vertices, that is chains in the Hasse diagram. A general 
postulation on existence of such chain splits on posets is not known. It is not hard to compose a simple poset P  
that can’t be split into )(Pw increasing chains of covering vertices. Such decompositions are valid for a number 

of well known particular cases of posets such as the unit cube, the structure of unit cube subcubes by inclusion, 
etc. The poset that we investigate in this regard is the special order of k -subsets of a finite set, - the equivalent 
structure of the k -th layer of a unit cube.  

k -subsets 

Let ),( knP  denotes the set of all k -tuples with strictly increasing elements from the set },,,{ nN 21 , and 

for some nkk 1, . ),(),,( knPii k 1  iff niii k  211 . The number of elements of ),( knP  

is k
nC . For two elements, ),,( kii 1  and ),,( kjj 1  we define   relation as follows:  ),,( kii 1  ),,( kjj 1  

if and only of kk jiji  ,,11 . Then ),( knP  becomes a poset with minimal and maximal elements 

),,,( k21  and ),,( nkn 1  respectively. We define the weight of ),,( kii 1  as the sum of its coordinates, 

kii 1 . Now let us form the Hasse diagram of ),( knP . The lowest layer of the diagram consists of the 

unique vertex ),,,( k21 . Then the i -th layer consists of all elements of ),( knP  that cover some elements of 

the )( 1i -th layer. The highest layer contains the vertex ),,( nkn 1 . So the overall diagram consists of 

1 )( knk  layers: we number them from 0  to )( knk  . 

All vertices of the i -th layer have equal weights which is )( ki  1 . We introduce a notion of middle layer 

or layers, which is the ( 2/)( knk  )-th layer for even k ,or odd k  and odd n ; and the ( 1 )( knk )-th 

layers for odd k  and even n .  

Each layer of ),( knP  consists of pairwise incomparable elements, that is, it composes an antichain. According 

to the Dilworth theorem there is a partition of ),( knP  into )),(( knPw  chains. We will prove that )),(( knPw  is 

achieved among the vertex sets of layers of ),( knP . Our attention is restricted to the case 3k  in regard to 

the framework of describing 3 -hypergraph degree sequences [S, 2009 ], where 3  is the minimal number to 

check the complexity of algorithms for the hypergraph degree sequence problem [B, 1986]. )),(( 3nPw  is found, 

and increasing chains consisting of covering vertices, are constructed for ),( 3nP . 
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Figure 1. Hasse diagram of ),( 47P . 

 

),( 3nP  

In this section we give formula for calculating layer cardinalities of ),( 3nP  and study some properties of ),( 3nP  

that will be used for determining the largest cardinality and to construct splitting to the chains. 

Formula   

Let lL  denotes the layer of ),( 3nP  containing elements with the weight equal to l : 

 niiiliiiiiiLl  321321321 1,/),,( . Calculation of lL  below is done by determining the 

range of feasible values for each coordinate ji . 

It is easy to check that the minimal feasible value for 1i  is ),max( 121  nl  and the maximal value equals 

  13 /l . 

For a given feasible 1i  the minimal feasible value of 2i  is ),max( nili  11 1  and the maximal is 

  121  /)( il . 

For given 1i  and 2i , - 3i  is unique. 

Resuming the above reasoning, we bring the formula of lL : 

  
 







13

121
111

1

12
/

),max(

),max(/)(
l

nli
l niliilL . 

For determining the layer of greatest cardinality which we intend, the formula given is improper, and we study 

further properties of )3,(nP . 
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Symmetry 

The elements of ),( 3nP  located on j -th layer have weight 6j . Middle layer of ),( 3nP  is at 

2

33 )( 


n
Lmid  for odd n  and there are two middle layers 

2

133 


)(n
Lmid  and 

2

133 


)(n
Lmid  for even n . ),( 3nP  is symmetric in respect to its middle layer (layers). If j -th layer 

contains an element ),,( 321 iii  for some j , then its “opposite” element that we define 

as ),,( 123 111 ininin   is located on the ( jn  )( 33 )-th layer. We denote by ),( 3nP


 and 

),( 3nP


 the parts of ),( 3nP  above and below the middle layers respectively.  

Partitioning 

The structure of ),( 3nP  naturally partitioned into 3 parts, denote them by ),( 31 nP , ),( 32 nP  and ),( 33 nP . 

),( 31 nP  and ),( 33 nP  consists of the first and last 3n  layers of ),( 3nP  respectively, and ),( 32 nP  consists 

of the remaining 13 n  layers. 

Consider a layer i  from the part ),( 31 nP . It is simple to indicate one specific vertex ),,( 321 i  on this layer, 

which is used in forthcoming considerations. Symmetrically, ),( 33 nP  contains opposite to i  layer in  )( 33  

and the vertex ),,( nnin 12   on it. Our main attention is to the middle part ),( 32 nP . We count the layer 

widths of ),( 32 nP  from layers 1  to 13 n , and indicate the vertex ),,( ni 11   for the layer 1i . Obviously 

middle layer or layers belong to ),( 32 nP . 

Quantities  in ),( 31 nP  and ),( 32 nP  

Elements of i -th layer of ),( 31 nP  can be generated starting from ),,( 321 i : a group of elements is generated 

by increasing the second coordinate 2  and decreasing the third one 3i  simultaneously. Then consider 

),,( 132 i  and generate elements by increasing 3  and decreasing 1i . In general consider 

),,( jijj 2321   while 1
3

321
1 



 


i

j , that is 




3

i
j , and generate elements by 

increasing the second coordinate and decreasing the third. It follows that the number of such elements increases 

with i , and therefore ),( 31 nP  has maximal number of elements on its last ( 13 n )-th layer. Completely 

analogous is the situation for ),( 33 nP . 

Quantities  in ),( 32 nP  

Now consider the middle zone ),( 32 nP . 

We construct the vertices ),,( cba  of a particular layer 1i  in this area. This layer as we know contains the 

vertex ),,( nii 111   which will be the origin of our constructions. 
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Construction will be done by several groups. The groups are defined as sets of vertices that have first coordinate 

fixed, for example, for 1i  it is 1 . For the first coordinate a  we denote the corresponding group by a
iG 1 . In 

a
iG 1  let minb  be the smallest possible value for the second coordinate, denoted it by b . The third coordinate 

which we denote by c , is determined in a unique way by a  and b  given. Let maxc  is the greatest possible 

value for the third coordinate for fixed a  (it is determined by minb ).  

For a given a  define group operation for generating all elements of the group. First compute minb  and maxc  for 

a , then the group operation increases minb  by one (shifts the position to the right) and decreases maxc  by one 

(shifts the position to the left). Evidently this group consists of all elements of layer 1i , having a  its first 

coordinate. All the groups by different first coordinates are non intersecting. Thus 
a

a
iG 1  represents the layer 

1i  of ),( 32 nP . Moreover, it is easy to calculate the group sizes when we know minb  and maxc : it simply 

equals 1+  21 /)( minmax  bc  or the same  21 /)( minmax  bc . 

Further we do two types of actions – compute the group sizes for all feasible a ’s, and compute and compare the 

groups of neighbor layers 1i  and i . Last action intends to determine the layer of maximum size in ),( 32 nP . 

We start from 1i . Then increase a  of 1i  by one. To keep the vertex in the same layer we decrease the 

second coordinate b  by one, the third, c  remains the same, - currently it is n . Repeating this operation while 

new b  is greater than new a , we get series of vertices of layer 1i . These vertices have the property that 

minbb   and ncc  max  for the a  fixed. Determine the values of a  and b  at the end of these series. 2 

cases are possible: a) a  and b  meet at 21 /)(  ia  and 121  /)(min ib  for even 1i . b) a  and b  

meet at the positions 22 /)( i  and 222  /)(i  when 1i  is odd. In case b) the value 122  /)(i  

between a  and b is not used. Then increasing a  and decreasing c  by one we get the element 

),/)(,/)(( 1222122  nii , which generates an additional group. Denote this group by *
1iG . All groups 

constructed at this stage are called 11 iG  groups.  

Now a  still can be increased while it reaches the great possible value for a , that is: 

  3311 /)(  nia . Continue increasing a . At this stage increasing a  causes increasing also b . 

Increase a  and b  by one (this is the smallest b , that is minb ) and decrease c  by two (this is maxc ). 

Repeating these operation, which ends at a triple ),,( cba  with   3311 /)(  nia , we get new groups 

of elements, that we call 12 iG  groups. 

Below the table represents two series of groups, first for layer 1i  and second for i . Consider the case when 
1i  is odd.  

 

 

 

 

 

An important notion is that all groups 11iG , 21iG , …, 1221  /)( i
iG  are congruent to groups 2

11 iG , 3
11 iG , 

…, 22
11 /)( 


i

iG  correspondingly, their sizes are equal and they might be eliminated in comparisons of layers i  and 

1i . The case when 1i  is even is similar to this one. 

Layer 1i  1
11 iG  2

11 iG    22
11 /)( 


i

iG  *
1iG  222

12 


/)( i
iG

 
  

Layer i  11iG  21iG    
221 /)( i

iG  2222  /)( i
iG

 

3222  /)( i
iG    
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Groups and their sizes 

 
j

iG 


1
11  The group consists of elements where a = j1 , b = ji 1  and c = n : ),,( njij  11 . Possible 

values for j  are 2110 /)(,,, i  for even 1i  and 2210 /)(,,, i  for odd 1i . The subgroup of each j  is 

generated by the group operation. So the subgroup of j  contains: 





 


2

11
1

)( jin
= 



 

2

jin
 elements.  

The last subgroup starts with the element ),/)(,/)(( nii 212211  , or the same 

),/)(,/)(( nii 21121   for even 1i  and ),/)(,/)(( nii 21221   for odd 1i . 

So we get  







 2

1

0 2

i

j

jin
 elements for even 1i  and 








 2

2

0 2

i

j

jin
 for odd 1i . 

*
1iG  This group exists only for odd 1i . It starts with the element ),/)(,/)(( 1223222  nii , or the 

same ),/,/( 12221  nii , and generates  



 

2

1221 )/( in
 elements. So 



 

 2

24
1

/* in
Gi . 

11 iG  is the union of all these sets:  *
1

1
11 11 


 







 i

j

j
ii GGG . 

12 iG   group described above consists of elements, where a = ji  211 /)( = ji  21 /)( ,  b = 

ji  212 /)( = ji  211 /)(  and c = jn 2 , where possible values for j  are ,,1 while  





 


3

1
21

ni
ji /)( , that is, 

2

1

3

1 




 


ini

j , - for even 1i  and 



 


3

1
2

ni
ji / ,  

23

1 ini
j 



 

 ,  for odd 1i . The subgroup of each j  is generated by the group operation. So the 

subgroup of j  contains 1+ 



 

2

12112 )/)(( jijn
 elements. 








 








 


2

1

3

1

1

1

2

212
2

ini

j

i jijn
G

)/)((
 for even 1i . For odd 1i  






 








 


23

1

1

1

2

22
2

ini

j

i jijn
G

)/(
 

All the above reasoning prove the following theorem: 

Theorem: 11 iG  and 12 iG  are non intersecting groups that cover the )( 1i -th layer of ),( 32 nP . 

 

Our next goal is to find the areas of increasing cardinalities among the neighbor layers. Compose 1G  and 

2G groups for the i -th layer of ),( 32 nP . We will consider the case of even 1i  only. The case of odd 1i  

can be done in an analogous way.  
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j
iG 11  is the group of elements where ja  1 , jib   and the third is nc  : ),,( njij 1 , where 

possible values for j  are 12110  /)(,,, i . The subgroup of each j  is generated by the group operation. 

So the subgroup of j  contains: 





 


2

1
1

)( jin
= 



 

2

1jin
 elements. The last subgroup starts with the element 

),/)(,/)(( nii 22121  . So we get 









 

1
2

1

0 2

1
i

j

jin
 elements. 

Here we have an additional group. 

 
*
iG1  starts with the element ),/)(,/)((),/)(,/)(( 1211211221121  niinii , which 

generates 



 


2

211
1

/)(* in
G i  elements by the group operation. Then iG1  is the union of these 

subgroups:  *
i

j

j
ii GGG 







 111 . 

iG2  This group contains elements where jijia  21211 /)(/)( ,  jib  211 /)(  and 

jnc 21 , where possible values for j  are ,,1 while 



 




3

2

2

1 in
j

i
, that is 

2

1

3

2 




 


iin

j . Then the subgroup of each j  is generated by the group operation. So the subgroup 

of j  contains 1+ 



 

2

121121 )/)(( jijn
 elements. 








 






 


2

1

3

2

1 2

2112
2

iin

j
i

jijn
G

)/)((
  

Calculate the differences: 11 iG - iG1  and ii GG 22 1  . 

11 iG - iG1 =







 2

1

0 2

i

j

jin 







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Consider cases: 

a) 3 is divisor of 1 in , it follows that 1
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b) 31 /)(  in , 1 remainder, it follows that 
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1) 21 /)(  in  is even, then it follows that jin 321  /)(  is even for even j  and is odd for odd j . 

1a) 21 /)(  in  is even and j  is even, and then it follows that 
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1b) 21 /)(  in  is even and j  is odd, then it follows that 



 





 

2

3121

2

321 jinjin /)(/)(
 

So in case 1a) 

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
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2

1
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1

1 122

iin
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ii GG , approximately the half of the upper index. 

2) 21 /)(  in   is odd, then it follows that jin 321  /)(  is odd for even  j  and is even for odd j . 

2a) 21 /)(  in  is odd and j  is even, and then it follows that 


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2b) 21 /)(  in  is odd and j  is odd, and then it follows that 
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So in case 2b) 
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1
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iin
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ii GG , approximately the half of the upper index. 

Further analysis of all possible cases provides that the 21 /)( n -th (for odd n ) and 2/n -th and ( 12 /n )-th 

(for even n ) layers of ),( 32 nP , - serve as layers of the largest cardinality for ),( 3nP . In both cases these are 

the middle layers. 
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Chain Split 

In this part our goal is to split ),( 3nP  into disjoint chains of covering pair sequences. Then each chain must 

contain exactly one element of the antichain of largest cardinality, and consequently will pass through the middle 

layer/layers. Due to the symmetry property it is sufficient to have chain constructions only for ),( 3nP


 or ),( 3nP


 

and then the extended construction is by symmetry. 

Notice that the antichain of the largest cardinality contains the element ),/)(,( nn 211   for odd n  and the 2 

antichains of the largest cardinality contains ),/,( nn 21  and ),/,( nn 121   respectively, for even n .  

 

Algorithm 

1. Ordering of elements. Consider lexicographic order of elements on layers; 

2. Constructing chain fragments in ),( 3nP


. Consider a recurrent procedure. First chain starts with the element 

)3,2,1( . Any current chain starts with the smallest unused element of the lowest layer that still contains unused 

elements and goes up until it reaches the layer midL  for odd n  ( midL  for even n ) . From this point we go up by 

increasing the third component until it reaches n  or the middle layer. If we come in some step across an element 
which is already used in previous chains, then we go back and increase the second component by one and then 
continue increasing the third. If also the increase of second component moves the element to the used one, then 
we go back and increase the first component by one, and continue increasing the second, etc. until the chain 

reaches the middle layer or finds a deadlock. For an element e  from midL  ( midL ) we denote by )(eC  the chain 

reaching this element. The first chain that started at )3,2,1(  reaches ),/)(,( nn 211   for odd n  and  

)),/(,( nn 121   – for even n . 

As an example consider ),( 39P . 456357348267258249168159 ,,,,,,,  lists the elements of layer midL . 

Chains in ),( 39P


 constructed by the algorithm are: 

},,,,,,,,,{)( 159149139129128127126125124123159 C , 

},,,,,,,{)( 168158148138137136135134168 C ,  

},,,,,,{)( 249239238237236235234249 C , },,,,,{)( 267167157147146145267 C   

},,,,{)( 258248247246245258 C , },,,{)( 357257256156357 C , 

},,,{)( 348347346345348 C , },{)( 456356456 C . 

3. Extending chains to the ),( 3nP


. Complete chains of ),( 3nP are constructed in a way of extending the 

chains of ),( 3nP


 into the ),( 3nP


 area. We use the symmetry property of ),( 3nP  in the following way. For each 

element ),,( 321 iiie   of midL , it is easy to check that its “opposite” to ),,( 321 iiie  - the element 

),,( 321 111 ininineop   also belongs to midL , for odd n . When n  is even, for each element 

),,( 321 iiie   of )( midL ,  its “opposite” element ),,( 321 111 ininineop   belongs to )( midL , and 

vice versa. For the above example: 159159 op , 249168 op , 168249 op , 348267 op , 258258 op , 

357357 op , 267348 op , 456456 op .    
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Then continuation of a chain )(eC  of ),( 3nP


 into the ),( 3nP


area considers the chain denoted by )(eCup , 

that consists of all “opposite” elements )( opeC of the )(eC  taking in inverse order. 

)(159upC = { opopopopopopopopop 123124125126127128129139149 ,,,,,,,, }=  

},,,,,,,,{ 789689589489389289189179169 , },,,,,{)( 678578478378278178168 upC , 

},,,,,,{)( 679579479379279269259249 upC , },,{)( 567467367267 upC , 

},,,{)( 568468368268258 upC , },,{)( 459458358357 upC , 

},,,,{)( 569469369359349348 upC , }{)( 457456 upC . 

So we get the chains: 

},,,,,,,,,,,,,,,,,,{ 789689589489389289189179169159149139129128127126125124123  

},,,,,,,,,,,,,{ 678578478378278178168158148138137136135134  

},,,,,,,,,,,,,{ 679579479379279269259249239238237236235234  

},,,,,,,,{ 567467367267167157147146145  

},,,,,,,,{ 568468368268258248247246245  

},,,,,,{ 459458358357257256156  

},,,,,,,,{ 569469369359349348347346345  

},,{ 457456356  

And the whole construction given by the algorithm is illustrated in the figure 2. 

 

Figure 2 
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Correctness of the algorithm.  First is the claim about the deadlock free of algorithms when growing the chains 

in ),( 3nP


. Then, it is to prove that chains constructed in step 2 cover all the elements of ),( 3nP


 symmetrically.  

This two steps are done by induction on n  taking into account the structure of l -th layer of ),( 3nP  that is a 

union of l  layers of ),( 2inP  , for ,1i   

Final comparisons and computation of the chains are by formulas given above.  

Conclusion 

We constructed non intersecting increasing chains that cover all elements of ),( 3nP . Theoretical outcome is that 

in addition to the chains by Dilworth’s theorem we prove the existence of chains consisted of covering elements, - 
as an analogy to the Hansel chains for binary cubes. The practical outcome is the monotone recognition of 

subsets kC  of elements of k -th layer of the n  dimensional unit cube by the use of queries about the 

involvement of several vertices into the kC .  
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