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UPPER BOUND ON RATE-RELIABILITY-DISTORTION FUNCTION FOR SOURCE 
WITH TWO-SIDED STATE INFORMATION 

Mariam Haroutunian, Arthur Muradyan 

Abstract: Different models of the source with side information can be considered when side information is known 
to the encoder, the decoder, both of them, none of them. In this paper, we investigate a generalized model of the 
discrete memoryless source with two-sided state information introduced by Cover and Chiang in [Cover-Chiang, 
2002], which includes the data compression problems mentioned above as special cases. We study the rate-
reliability-distortion function, which is understood as the minimum code rate for the encoding of the source 
messages under the requirement that the decoder reconstructs the messages at a desired distortion level with 
the error probability exponentially decreasing with the codeword length. In other words, the rate is considered as 
a function of a fixed distortion level and the error exponent. In this paper the upper bound on the rate-reliability-
distortion function is obtained. The upper bounds on rate-reliability-distortion functions of the source with side 
information are derived as special cases for four possible situations - one of which coincides with known result 
while the three others were unknown. 

Keywords: source with side information, rate-reliability-distortion function 

ACM Classification Keywords: H.0 Information Systems - Conference proceedings 

Introduction 

The state information problems were intensively studied. The model when state information is available to the 
decoder was analyzed by Wyner and Ziv in [Wyner-Ziv, 1976] where the rate-distortion function was derived 
which shows dependence of minimal rate on a required distortion introduced by Shannon in [Shannon, 1959]. 
The lossless source coding problem when state information is available at the decoder was investigated by 
Slepian-Wolf [Slepian-Wolf, 1973] .  

The applications of these problems include distributed sensor networks [Xiong-Liveris, 2004], digital upgrade of 
analog television signals, play-back of the compressed sound in the presence of background noise where 
decoder is fed with a background correlated signal to improve the quality of decoding. The source coding problem 
when state information is known to both encoder and decoder is studied in [Viswanathan-Berger, 1997]. The 
study includes applications in video coding where the pixel value at a given location depends on a pixel at the 
same location in a previous frame. Here, the previous frame can be considered as a side information for the 

coding of the present frame. 

A generalized model of sources where the encoder and the decoder have correlated state information (Figure 1) 
was considered by Cover and Chiang in [Cover-Chiang, 2002] where the rate-distortion function was derived. It 

Figure 1. Source with two-sided state information 
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was proved that rate-distortion functions of the source with state information in four possible situations can be 
obtained from the generalized formula. 

We study the rate-reliability-distortion function introduced by Haroutunian and Mekoush [Haroutunian-Mekoush, 
1984] which describes the dependence of rate on reliability and distortion level. The idea was then adopted and 
extended for multiuser source coding problems [Haroutunian et al, 1998, Haroutunian-Maroutian, 1991, 
Maroutian-1990, Meulen et al, 2000]. This function is a generalization of the rate-distortion function, since it tends 
to that function when the error exponent (reliability - E) tends to 0. The inverse order dependence of these 
parameters is studied by Marton in [Marton, 1974]. 

In this paper, an upper bound of the rate-reliability-distortion function is derived for the source with two sided state 
information. The limit of this bound for E → 0 coincides with the rate-distortion function, obtained in [Cover-
Chiang, 2002]. As a special case, we derive the upper bounds on the rate-reliability-distortion functions for four 
possible situations of the source with side information, one of them coincides with the rate-reliability-distortion 
function of the DMS [Haroutunian et al, 2008], while the three others were unknown. 

In the next section we give the definitions of the concepts extended for the considered generalized model. 
Description of the main theorem along with corollaries is given in section 3. Proof of the theorem is given in 
section 4. 

Notations and Definitions 

Capital letters are used for random variables 1 2
ˆS ,S , U, X, X taking values in the finite sets XXUSS ˆ,,,, 21 , 

respectively, and lower case letters xxuss ˆ,,,, 21  for their realizations. Small bold letters are used for N -length 

vectors 1( ,.., ) N
Nx x X x . 

  A generalized model representing the source with two-sided state information is depicted in Figure 1. 

1S  and 2S are the state information, known to the encoder and the decoder taking values from the set 1S  and 

2S , X  is an i.i.d. random variable taking values in the finite set X (the alphabet of messages of the source). 

The finite set X


different from the set X , represents the reproduction alphabet of the receiver, in general case. 

  The generating probability distribution of the source with two-sided state information is given as 

}.,,),,|(),(),,({ 221112
*

21
*

121
**

2
*

1
* SsSsXxsxsPsxPssxPPPP    

  We consider the memoryless source, which means that the probability of N -length vector of message 

1( ,.., ) x N
Nx x X  and state information vectors N

1 11 1N 1( s ,..,s ) S s , N
2 21 2N 2( s ,..,s ) S s  is 

defined as the product of component probabilities 
N

*N *
1 2 n 1n 2n

n 1

P ( , , ) P ( x ,s ,s )


x s s . 

 Let 

ˆ: [0, )d X X    

be the given distortion between the source and the reconstructed message. The distortion measure for the 

vectors NXx  and ˆˆ NXx  is defined as the average of the components’ distortions 

1

1
ˆ ˆ( , ) ( , ).

N

n n
n

d d x x
N 

 x x  
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The code  ),( NN gf  is a pair of the encoding and the decoding functions 

1: {1, 2,..., ( )}N N
Nf X S L N   

and 

2
ˆ:{1,2,..., ( )} N N

Ng L N S X   

where )(NL  is the volume of the code. 

The task of the system is to ensure reconstruction of the source messages at the receiver at a given distortion 

level   and with a small error probability. Our problem is estimating of the minimum of the code volume. 

To define error probability for given code ),( NN gf  and ∆ ≥ 0 consider the following set of triples: 

1 1 2 2 1 2 ˆ ˆ{ , , : ( ( , ), ) , ( , ) }.N N N
N NA X S S g f d      x s s x s s x x x  

The error probability of the code ),( NN gf , for the source probability distortion P*, ∆ and N is defined as: 

* *( , , , , ) 1 ( ).N
N Ne f g P N P A    

  A positive number R is called the (E, ∆)-achievable rate for a given P*, E > 0 and ∆ ≥ 0 if there exists a code 

),( NN gf  such that 

1
log ( )L N R

N
   

and error probability is exponentially small 
*( , , , , ) exp{ ( )}.N Ne f g P N N E     

for every ε > 0, δ > 0 and sufficiently large N. The minimum (E, ∆)-achievable rate is denoted by R(E, ∆, P*) and 
is called the rate-reliability-distortion function.  

 For notion of types, mutual information )(
1, XUI QP  , divergence )||( *PPD , we refer to [Cover-Thomas, 

1991, Csisza ́r- K�rner, 1981, Csisza ́r-1998]. 

 We introduce the following probability distributions with some auxiliary finite set U: 

1 2

1 1 1 1 1

2 2 2 2 2

1 2 1 2 1 1 2 2 1 1 1 2 2

1 2 1 1 2 2
, ,

{ ( | , ), , , },

ˆˆ ˆ{ ( | , ), , , },

{ ( , , ) ( , ) ( | , ), , },

ˆ ˆ( , ) ( , , ) ( , ) ( , ).

   

   
     

 


s s u

Q Q u x s x X s S u U

Q Q x u s x X u U s S

P P P P x s s P x s P s x s x X s S s S

PQ x x P x s s Q u x s Q x u s

   

  Following estimates [Cover-Thomas, 1991, Csisza ́r- K�rner, 1981] are used in the paper. For any type 

1 1( , )NP P X S  

1

1 1 1

| || |
1 1 1( 1) exp{ ( , )} | ( , ) | exp{ ( , )}X S N

P P PN NH X S T X S NH X S     (1) 

and any conditional type Q1 and 
1, ( )P QT Uu  

1

1 1 1

| || || |
, 1 , 1 , 1( 1) exp{ ( , | )} | ( , | ) | exp{ ( , | )}X S U N
P Q P Q P QN NH X S U T X S NH X S U  u .  (2) 
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The number of probability distributions on X , S1 , S2 is upper estimated as follows: 

1 2| || || |
1 2| ( , , ) | ( 1) .X S S

NP X S S N    (3) 

Formulation of Results 

Let * *( , ) { : ( ) }  E P P D P P E and 

* 1 1
1 2

*
, 1 , 2

, ( , )( , )
( , , ) max min ( , ) ( )

  
       P Q P Q

Q Q Q PP E P
R E P I U S X I U S , 

where the minimization is carried under following distortion constraint 

1 2
ˆ,

ˆ ˆ( , ) {( , ) : ( , ) ( , ) }   
x x

Q P Q Q d x x PQ x x . 

Theorem. R  is the upper bound of the rate-reliability-distortion function for any 0E , 0   and *P  

* *( , , ) ( , , ).  R E P R E P  

The proof of the theorem is given in the next section. 

Corollary 1. We obtain the rate-distortion function *( , )R P  established in [Cover-Chiang, 2002] when 

0E for any 0   and probability distribution *P  

* *
* 1 1

1 2

*
1 2, ,0 , ( , )

lim ( , , ) min ( , ) ( )
  

       P Q P QE Q Q Q P
R E P I U S X I U S . 

Corollary 2. We obtain the upper bounds on the rate-reliability-distortion functions for four possible situations of 
the source with side information as special cases. 

Case 1: No state information at the sender and receiver: 1 2, S S  

 

Here 1 2( , ) , ( ) 0,  S X X I U S with distributions 1( ), ( | )P x Q u x and 2 ˆ( | ),Q x u ˆ X U X forms 

Markov chain. Therefore 

1 1
1

, ,ˆ( | ) ( | )

ˆmin ( ) min ( ),  P Q P Q
Q u x Q x x

I U X I X X  with equality iff ˆU X . 

For this case we get the formula established in [Haroutunian et al, 2008]: 

 

* *1 1
1 2

*
, ,ˆ ˆ( | ) ( | ) ( | )( , ) ( , )

ˆ( , , ) max min ( ) max min ( ).
  

     P Q P Q
Q u x Q x u Q x xP E P P E P

R E P I U X I X X  

 

Case 2: State information on both sides is the same: 1 2 S S S  
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With distributions 1( | ), ( | , )P x s Q u x s  and 2 ˆ( | , ),Q x u s ˆ X U X  forms Markov chain conditioned on 

S . Therefore 

1
1

, ,ˆ( | , ) ( | , )

ˆmin ( | ) min ( | ),  P Q P Q
Q u x s Q x x s

I U X S I X X S  with equality iff ˆU X . 

We obtain the upper bound of rate-reliability-distortion function 

* 1 1
1 2

* 1 1 1
1 2

* 1

*
, ,ˆ( | , ) ( | , )( , )

, , ,ˆ( | , ) ( | , )( , )

,ˆ( | , )( , )

( , , ) max min ( , ) ( )

max min ( ) ( | ) ( )

ˆmax min ( | ).













        

        

 

P Q P Q
Q u x s Q x u sP E P

P Q P Q P Q
Q u x s Q x u sP E P

P Q
Q x x sP E P

R E P I U S X I U S

I U S I U X S I U S

I X X S

 

Case 3: State information on the receiver: 1 2, S S S  

 

Here 1( , ) ,S X X and with distributions 1( | ), ( | )P x s Q u x  and 2 ˆ( | , ),Q x u s the upper bound of rate-

reliability-distortion function is: 

* 1 1
1 2

*
, ,ˆ( | ) ( | , )( , )

( , , ) max min ( ) ( ) .


       P Q P Q
Q u x Q x u sP E P

R E P I U X I U S  

Case 4: State information on the sender: 1 2, S S S  

 

Here 2( ) 0, I U S  with distributions 1( | ), ( | , )P x s Q u x s  and 2 ˆ( | )Q x u ˆ X U X  forms Markov 

chain and hence 

1
1

, ,ˆ( | , ) ( | , )

ˆmin ( ) min ( ),  P Q P Q
Q u x s Q x x s

I U X I X X  with equality iff ˆU X . 

Since ˆU X and X̂ is independent of S we also have 
1, ( | ) 0 P QI U S X . Taking into account these 

properties we get the upper bound of rate-reliability-distortion function: 

* 1
1 2

* 1 1
1 2

* 1
1 2

*

*
,ˆ( | , ) ( | )( , )

, ,ˆ( | , ) ( | )( , )

,ˆ( | , ) ( | )( , )

,ˆ( | , )( , )

( , , ) max min ( , )

max min ( ) ( | )

max min ( ).

ˆmax min ( )

max

















    

      



  



P Q
Q u x s Q x uP E P

P Q P Q
Q u x s Q x uP E P

P Q
Q u x s Q x uP E P

P Q
Q x x sP E P

R E P I U S X

I U X I U S X

I U X

I X X

* ,ˆ( | )( , )

ˆmin ( ).


P Q
Q x xP E P

I X X
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Proof of the Theorem 

Let 
11 , 1( , ) exp{ [ ( , ) ]}  P QJ P Q N I X S U for types 1,P Q and 0  . 

Lemma. For every type P and conditional type 1Q  there exists a collection of vectors  

1, 1{ ( ), 1,.., ( , )} u N
j P QT U j J P Q , 

Such that for N large enough 
1

1 1

( , )

1 , 1
1

( , ) ( , | )


 u
J P Q

N N
P P Q j

j

T X S T X S . 

 The proof of the lemma is similar to the covering lemma from [Haroutunian et al, 2008]. 

The proof of the theorem is based on the construction of a code ),( NN gf based on the idea of importance of 

source vectors of messages of type P  not farther from *P  (in sense of divergence). It is shown that ( , )E  

achievable rate of the constructed code satisfies (4). 

 The triple of sets for source messages and state information (available at encoder and decoder) of length N can 

be represented as a union of all disjoint types of vector triples: 

1 2

1 2 1 2
( , , )

( , , )


   
N

N N N N
P

P P X S S

X S S T X S S . 

For 0  and for N large enough the probability of appearance of vector triples of types beyond 
*( , ) E P can be estimated in the following way: 

**

1 2

*

* *
1 2 1 2

( , )( , )

| || || | *

( , )

1 2

( ( , , )) ( ( , , )

( 1) exp{ min ( || )

exp{| || || | log( 1) ( )} exp{ ( / 2)}.

  

 

 

  

 

 

   

     

N N N N
P P

P E PP E P

X S S

P E P

P T X S S P T X S S

N N D P P

X S S N N E N E

 

The first 2 inequalities follow from the definition of ( , ) E P and type properties. 

Encoding 

For type P and conditional type 1Q  denote 

1 11 , 1 , 1 1( , , ) ( , | ) ( , | ), 1,.., ( , )


  u uN N
P Q j P Q j

j j

C P Q j T X S T X S j J P Q . 

Step 1 

Let us fix the type *( , )  P E P  and conditional types 1 2( , ) ( , ). Q Q Q P  

From the definition of 1( , , )C P Q j and from the lemma we have 

1 1

1 1

( , ) ( , )

1 , 1 1
1 1

( , , ) ( , | ) ( , ).
 

 u 
J P Q J P Q

N N
P Q j P

j j

C P Q j T X S T X S  

Step 2 

Let 
11 1 , 2( , ) ( , ) / exp{ ( )} P QL P Q J P Q NI U S . Randomly chosen indices of 

1, ( )u N
j P QT U are uniformly 

distributed to 1( , )L P Q bins. Denote by ( )B i the set of indices assigned to bin i . 
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Step 3 

Considering 1,x s encoder sends number i  such that 1 1( , ) ( , , )x s C P Q j and ( )j B i . 

Decoding 

Step 4 

By receiving number i and 2s state information the decoder looks for uk such that ( )k B i  and 

1, 2( | )u sN
k P QT U . If there is such k , the decoder selects 

1, 2
ˆˆ ( | , )x u sN

i P Q kT X . If there is no such k , or 

more than one k ,decoder chooses preliminary fixed reconstruction vector 0x̂ . If decoder receives 0i , again 0x̂  

is chosen. 

  The distortion between x and 1ˆ ( 1,.., ( , ))xi i L P Q can be calculated in the following way: 

1 2

1
, ,

ˆ ˆ, ,

ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , | , ) ( , ) ( , ) ( , )     x x x xi i P Q Q
x x x x

d N d x x n x x d x x PQ x x E d X X . 

So number of used vectors x̂ for fixed P and corresponding conditional types 1 2,Q Q is equal  

1 11 , 1 , 2( , ) exp{ [ ( , ) ( ) ]}    P Q P QL P Q N I X S U I U S . 

The number of vectors x̂ reconstructed under allowed distortion constraint for all P is not more than 

1 2 1( , , ) ( , )NP X S S L P Q . From the definition of ( , )E -achievable rate and from (3) we obtain: 

1 1

* 1 1
1 2

1 2 1

1
, 1 , 2 1 2

, 1 , 2
, ( , )( , )

1
log[ ( , , ) ( , )]

( , ) ( ) | || || | log( 1)

max min ( , ) ( ) .






 

 

      

     

N

P Q P Q

P Q P Q
Q Q Q PP E P

P X S S L P Q
N

I X S U I U S N X S S N

I X S U I U S

 

The theorem is proved. 
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