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PROTEIN STRUCTURE PREDICTION ON A THREE-DIMENSIONAL TRIANGULAR 
LATTICE 

Leonid Hulianytskyi, Vitalina Rudyk 

Abstract: The protein tertiary structure prediction problem is examined, which is one of up-to-date problems of 
computational biology. The results received earlier for two-dimensional case are extended for 3D and analyzed. 
Algorithms of local and stochastic search, ant colony optimization are proposed. The questions of software 
realization and their comparative research are discussed.  

 Keywords: combinatorial optimization, protein structure prediction, HP model, local search, ant colony 
optimization. 

ACM Classification Keywords: G.1.6. Mathematics of Computing, Numerical Analysis, Optimization. 

Conference topic: Decision Making.  

Introduction 

Defining features of the protein molecule remains a central problem in computational biology, molecular biology, 
biochemistry and physics. Three-dimensional protein structure analysis is a key for understanding and 
manipulating its biochemical and cellular functions. Knowing the protein shape is underlying for pharmacology 
and medicine, as the majority of drugs’ influence is caused by their conjunction to the protein for stabilizing the 
natural structure or destroying the part of it responsible for harmful disorders. Thus, for developing drugs it is 
necessary to know the exact three-dimensional structure of molecules.  

Protein is a macromolecule that is composed of amino acid sequence, which number varies from 20 to 40000 
(mostly about 100-300). There are 20 different amino acids. The research of proteins and their functions is 
usually based on "sequence-structure-function" dogma. It means that the functionality of the protein is uniquely 
determined by its 3D structure, while the last is defined by its amino acid sequence. High cost of experiments, 
amount of required time and diversity of protein forms lead to the development of mathematical methods of 
determining the molecule shape. 

To describe the forces that affect the protein folding complex and large-scale differential equation systems are 
used but it is impossible to solve them in practice. Therefore, the use of simplified models that produce 
approximate folding is widespread. Differential equation systems are simplified on basis of these approximations, 
and the more exact approximation was found, the easier system becomes. 

Traditionally, two different approaches are used for solving this problem. The first one, called "de novo", is based 
on the principles of physics, namely the thermodynamic hypothesis, according to which the natural structure of 
the protein corresponds to the global minimum of its free energy. Another, "template", is founded on the idea of  
evolution principles, assuming that similar amino acid sequences correspond to similar structures, and uses data 
about known folds, statistically analyzing them [Белецкий, Васильев, Гупал, 2007].  

The shortcoming of "de novo"-method is the fact that the very mechanism of protein folding is not completely 
clear. There is a problem known as "Levintal paradox" that lies in the fact that the average protein (200 amino 
acids long) would be searching its secondary structure of the 3200 possible (in the secondary structure each 
amino acid refers to one of three forms – α-helix, β-strand or irregular structure), each corresponding to a certain 
level of free energy. The protein can "feel" the stability of structure only after shaping it. The transition from one 
conformation to another is not faster than 10-13 seconds, so to scan all possible structures protein would spend 
about 1080 years (to compare, the lifetime of the Universe is 1010 years) [Финкельштейн, Птицин, 2005]. 
Moreover, as a rule, template methods are computationally simpler and give more accurate results. However, 
they are not universal - if given amino acid sequence is not like any of the known, predictable precision of the 
evaluated fold will be small.  
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The simplest of "de novo"-models is the HP model offered by Dill [Dill, Bromberg, Yue, Fiebig, Yee, Thomas, 
Chan, 1995]. According to it 20 amino acids are divided into two groups - hydrophobic (nonpolar) and hydrophilic 
(polar) residues, basing on their characteristics, so the input sequence is denoted as a word from the alphabet {H, 
P}, where the symbol P indicates a polar, and H - hydrophobic residues. The idea is that while folding 
hydrophobic residues move inside the molecule to prevent the contact with water, and the hydrophilic remain 
outside. According to the hypothesis, the protein shapes a structure that minimizes the contact area of 
hydrophobic residues with water or polar residues. Formalizing it, every amino acid residue is located in a certain 
lattice node (neighboring residues in the sequence - in the neighboring nodes), contacting residues are defined 
as those that are not neighbors in sequence, but are located in adjacent lattice sites, and the problem is to 
maximize the number of contacts between hydrophobic residues. Despite the simplicity of the HP model, it 
properly represents real protein folding processes.  

More complex models take into account the weighted influence of each contacting hydrophobic residue on the 
objective function [Decatur, 1996], use space discretization, based on sampling angles between amino acids, 
avoiding lattice binding [Awadh, Bahamish, Abdullah, Abdul Salam, 2006], base on protein secondary structure, 
operating with relative positions of α-helices, β-strands and irregular structures [Paluszewski, Winter, 2008].  

Various methods of combinatorial optimization are applied for solving the protein tertiary structure prediction 
problem in the HP model, such as simulation annealing algorithm, evolutionary algorithms, ant colonies 
optimization algorithms and others. Though the problem remains acute: open questions are improving the model 
(e.g. choosing more suitable lattice) and optimizing the time and accuracy of computing. 

HP-model 

In the current research for prediction of the protein tertiary structure Dill’s HP-model was chosen, as the most 
common one. Let’s describe it in detail.  

Each of the 20 amino acids applies to one of the two classes - hydrophobic ( H ) or polar ( P ), according to their 
physical properties, so amino acid sequence can be denoted as a sequence 1 2   nS ... ,  

1  { , }, ,i H P i n  of length .n  Each residue is placed in a node of some discrete lattice (such 

correspondence is called fold) in such a way that adjacent elements in a sequence correspond to neighboring 
nodes of the lattice (connectivity property), defining self-avoiding path on it. Connected self-avoiding folding is 
considered to be feasible. According to Dill contact appears between those hydrophobic residues that are not 
adjacent in the sequence, but are located in neighboring nodes of the lattice. The energy of folding is calculated 
as a number of contacts in it with a negative sign 

More formally, if each element of the amino acid sequence assigned to some node, the energy is calculated as 
follows:  

    

   
1 2 2

( ) ( , ) ( , )i j i j
i j n

E S I L L h  (1) 

where  

 


1, if nodes and are neighbors,
( , )

0 else,
i j

L Li jI L L  

    


1, if both and are hydrophobic,
( , )

0 else.

i jh i j  

The protein tertiary structure prediction is reduced to finding conformation with the lowest energy. In such 
interpretation the problem is proved to be NP-hard [Berger, Leighton, 1998; Crescenzi, Goldman, Papadimitriou, 
Piccolboni, Yannakakis, 1998].  
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Initially for 2D case Dill used square lattice. But one of its significant drawbacks is that the two residues can be 
adjacent in the lattice only when the number of elements in the sequence between them is even (it is known as 
parity problem). Thus, the sequence ( )nHP  on a square lattice will have no connections. That fact contradicts 

the natural representation. Moreover, such a strict limitation complicates the analysis of approximate algorithms, 
identifying artificially high lower energy bound, resulting in the fact that the algorithm accuracy estimation won’t 
have any significant value in real problems. Therefore in current research the triangular lattice was chosen for 
two-dimensional case and its axonometric variant in case of three dimensions (Fig. 1) where there is no parity 
problem, as for any two positions in the sequence there exists a conformation with the corresponding residues 
assigned to neighboring nodes of the lattice. 

 
Fig. 1. Two-dimensional and axonometric triangular lattices. 

Problem definition on three-dimensional lattice 

Let    1 2... ,n    { , }i H P  indicate the sequence of amino acids of length .n  To formulate the problem as the 

COP first of all it is necessary to define the decision space, in other words a fold should be denoted as some 
mathematical object [Гуляницкий, Рудык, 2010]. 

The simplest way to do it is to encode a folding as a sequence 1 2... nc c c  of integer coordinates of each amino 

acid residue so that a point  ( , , ),i i i ic x y z  , ,i i ix y z Z  assigns to a lattice node with Cartesian coordinates 

 1 2 3,i i ix e y e z e  where  3 1
1 2 2( , ,0),e  2 (0,1,0),e   3 331

3 6 2 6( , , )e .  

In such notation nodes 1 1 1( , , )x y z  and 2 2 2( , , )x y z  are neighbors if and only if     1 2 1 2 1 2( , , ) ,x x y y z z  

  { (0,1,0),  (1,0,0),  (1,-1,0),  (-1,0,0), (-1,1,0), 

(0,-1,0), (0,0,1), (0,-1,1), (-1,0,1), (0,1,-1), (1,0,-1), (0,0,-1)}.  

This representation is called coordinate encoding and it is comfortable for checking if a fold is a self-crossing one, 
but in general case changing a single sequence element leads to losing a connectivity property. That complicates 
the process of algorithm development. Another drawback is that the same fold corresponds to some different 
assignments turning one into another by a turn or parallel transport. To exclude the equal variants from 
examination the additional constraints that are difficult to hold are imposed. 

 For avoiding these drawbacks another encoding, called absolute, is proposed. A fold is denoted as a sequence 

1 2 1... ,na a a  ia ,  1i i ia c c , it fixes the position of each amino acid residue (starting from second) with 

respect to the previous one. Every such code specifies a connected path in the lattice, and for checking self-
avoidance constraint it is necessary to convert a sequence to coordinate encoding. Partially the problem with 
ambiguity is solved - parallel transport of fold does not change its code, but turns in various directions lead to 
existence of 12 different codes of the same conformation. 

The other way to present a fold is to describe it by relative encoding. It represents a position of every residue 
depending on a part of foregoing fold, in such a way it fixes angles in the conformation. So in case of two-
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dimensional lattice six elements of absolute encoding represent six possible directions: “west”, “northwest”, 
“northeast”, “east”, “southeast” and “southwest", while there are only five in relative encoding and they mean 
"back-left”, “front-left”, “front”, “forward-right”, “back-right” [Гуляницкий, Рудык, 2009] (Fig. 2). 

This representation has following advantages:  

- each convolution corresponds to its relative code one-to-one;  

- the absence of "back" partially direction solves a problem with self-crossing in a fold. 

A feature is the fact that the modification of single sequence element of relative code leads to a turn of following 
part of the fold, while in absolute encoding this action parallel transfers the same part. Thus comparing with 
absolute encoding a small change of code causes more significant change of fold energy value, but there is 
higher probability for self-crossing to appear. 

 
Fig. 2. The elements of absolute and relative code in two-dimensional triangular lattice. 

The disadvantage is the complexity of conversion a relative code to coordinate to check self-avoidance: in two-
dimensional lattice relative code element depends on the current and previous absolute code elements. (So if the 
last absolute direction was "east", the next relative direction "front-right" will match the absolute "southeast"). In 
axonometric case it depends on previous two. To convert the absolute code to relative and vice versa a 
conversion table is built. Its first two columns are filled with possible absolute directions, the third applies to a 
desired relative one, and the fourth gives a resulting absolute. 

Using the relative encoding a fold is formally represented in the following way: 

   
1 , , 2, 2,ir R r R i n    \ {(0, 1,0)},R   

 {(0,1,0), (1,0,0), (1,-1,0), (1,0,-1)}.R  

After comparing three encodings two of them (absolute and relative) were chosen for further analysis. Thus COP 
is defined: the encoding determines a decision space, a set of feasible solutions is the set codes that represent a 
self-avoiding fold, and the objective function is the energy of fold determined by formula (1).  

Deterministic local search 

Local search algorithms are a group of algorithms which search optimal values of objective function by iteratively 
moving from one acceptable solution to another neighboring one, and stop when certain conditions are met (e.g. 
time or iteration number constraints). The input of the algorithm is some initial value which serves as search 
starting point. Usually these algorithms are fast and significantly improve initial solution, but in case of 
multicriterion objective functions they rarely find global optima. These features allow them to be used as a part of 
more complex algorithms. 

Let's examine the deterministic local search algorithm for protein energy minimization in HP model. The distance 
( , ),s v between folds  1 2( , ,..., ),ks s s s   1 2( , ,..., )kv v v v D  is determined as the number of differing 

characters in their encodings: 
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


      


1

1, ;
( , ) ( , ), ( , )

0, .

k

i i
i

x y
s v s v x y

x y
 

 Let ( )O s  denote a fold s neighborhood of size  , so     ( ) { | ( , ) }O s v s v . Using such notation the 

deterministic local search scheme is given in Fig. 3. 

procedure LocalSearch ( 0s  ) 

 while 1 0( )O s  is not totally examined do 

  :s  some fold from 1 0( )O s ; 

  if s D  and  0( ) ( )E s E s  then  0 :s s ; 

 end while; 
 return 0s  ; 

end procedure. 

Fig. 3. Deterministic local search algorithm scheme. 

Thus the algorithm guarantees the improvement of current fold in neighborhood in case it exists. 

With the help of deterministic local search the difference between absolute and relative encoding can be 
demonstrated. As it was mentioned above, a change of single character in absolute encoding leads to parallel 
shift of the succeeding molecule part, while in relative it results in rotation. Fig. 4 shows the folds produced by the 
algorithm which was applied to a fold that had a line shape (using relative encoding – on top, and using absolute 
– on bottom). 

 
Fig. 4. Deterministic local search results. 

The problem is that the condition of self-avoidance is rather strict, so the neighborhood 1( )O s  can contain few to 

none acceptable solutions. Taking this into account it is proposed to replace neighborhood 1( )O s  in the 

procedure LocalSearch by a neighborhood of bigger size. It nonlinearly increases the time of every iteration: the 
maximum number of elements in 1( )O s   is *k d  , where k  denotes the length of encoding and d  means the 

number of characters in it ( d =12 for absolute encoding and d =11 for relative one) while 2( )O s  may contain 

 2( 1) *k k d  folds. Therefore it is reasonable to reduce 2( )O s to 2( )O s  according to the rule  

          
2( ) ,1 1: {1,..., } \ { , 1},t tv O s p N p k v s t k p p

 

and to use it instead of 1( )O s  (maximum number of elements in 2( )O s  is  2( 1) *k d ), although it also 

contributes greatly to the time. Therefore, to improve performance it is proposed to use stochastic local search 
methods.  

Simulated Annealing Algorithm 

Simulated annealing algorithm is one of the widely used local optimization algorithms [Hoos H, Stützle, 2005]. Its 
idea is quite similar to the one that deterministic local search has, but due to the stochastic component the 
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algorithm may recover from local minima, returning more accurate value. The basic idea is that the move to the 
best value is executed always, while moves to the "worse" (in terms of objective function values) are accepted 
with a certain probability that depends on the objective function value and iteration number.  

The algorithm is based on simulation of physical process taking place during the crystallization of substances 
from liquid to solid state, particularly during annealing. It is believed that atoms have taken their stable places in 
crystal lattice, but transitions of individual atoms from one node to another are still possible. The process 
proceeds under conditions of gradually lowering temperature. The atom transition from one place to another 
occurs with some probability that is decreasing with decrease of temperature. Stable crystal lattice corresponds to 
the minimum of atoms energy, so the atom tends to move to a state with lower energy. 

The scheme of the algorithm is shown in Fig. 5. 

The temperature varies according to the rule  

 ,
log( )

t

H
T

t
P

 

where ,H P R  are the algorithm parameters.  

The equilibrium condition is defined as follows. Let  be some natural number and   0  is real.  successive 
iterations of the algorithm are called “run”. If on the current temperature level q  runs were made, it is presumed 

that the equilibrium condition is met if 

   1| |q iE E  

for some  {1,... }i q , where iE  is the average energy value on i -th run.  

procedure SA( 0s  ) 

  0:recs s ;  :T  some initial value; 

 while 1 0( )O s  is not totally examined do 

  while equilibrium condition is not met do 
   :s  some fold from 1 0( )O s ; 

   if s D   then   
       0: ( ) ( )E s E s ; 

    


: min{1, }p
T

; 

     :  random[0,1]; 
    if  p  then 

     0 :s s ; 

     if ( ) ( )recE s E s   then  :recs s ; 

    end if; 
   end if; 
  end while; 
  :T  next value; 
 end while; 
 return recs ; 

end procedure. 

Fig. 5. Simulation annealing algorithm scheme 
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G- algorithm 

G-algorithm is an efficient algorithm for solving combinatorial optimization problems [Гуляницкий, 2004]. Unlike 
the simulation annealing algorithm, the probability of transition to the "worse" value on each step does not depend 
on the number of iteration, but the bound value that defines dropout conditions for "worse" folds does (Fig. 6).  

The function ( , )x y  is defined as follows:  


  

   min

( ) ( )
( , ) 1 ,

( ( ) )

E y E x
x y

E x E
 

where minE  denotes the lower bound of protein energy and   0  is a parameter. For evaluating minE  the 

following property is used: each hydrophobic amino acid residue except the first and the last ones in a triangular 
lattice can form up to10 contacts, while the first and the last ones can have 11. Therefore, if Hn  denotes the 

number of hydrophobic residues in amino acid sequence, minE  can be calculated by the formula: 


    min

10 2
(5 1)

2
H

H

n
E n . 

procedure G-algorithm ( 0s ) 

 0:recs s ; 0 : 0; : 0; : 0;h t     

 while 1 0( )O s is not totally examined do 

  while equilibrium condition is not met do 
   :s   some fold from 1 0( )O s ; 

   if s D  then  

    
  

0: ( , );s s
 

     : min{1,max{0, }};p  
    :  [0,1] (1 )t trandom    ; 

    if p    then 

     0 : ; : 1s s h h   ;  

     if ( ) ( )recE s E s  then  :recs s ; 

    end if; 
   end if; 
  end while; 
  1 : ( ); : 1;t tG t t      

 end while; 
 return recs  ; 

end procedure. 

Fig. 6. G-algorithm scheme. 

Function ( )G x  was chosen as follows: 

  ( ) ( ( ) ) ,h
hG x x H  

where   0 1, {1,2,3}H h   are the algorithm parameters,  


   

1/

0, 0,
( )

, 0.k h

x
x

x x
 

Equilibrium condition is the same as one used for the simulated annealing algorithm.  
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Simulated annealing algorithm and G-algorithm in general give more significant improvement of the initial solution 
than deterministic local search, and the calculation time increases slightly, what makes them suitable for further 
use. 

Ant Colony Optimization Algorithm 

Ant colonies optimization algorithm belongs to up-to-date combinatorial optimization stochastic methods and is 
widely spread [Dorigo M., Stützle, 2004]. The essence of the approach is based on analyzing and using ants’ 
behavior model when they seek shorter paths from colony to food. 

The main idea of the algorithm takes as a principle formic colony behavior, such as marking the shorter routes 
with bigger number of pheromones. In every iteration fixed number of ants simultaneously search their way to the 
food, using probability based methods of choosing directions that depend on the length of the relevant section of 
the route and the number of pheromones in it. While traveling some path an ant marks it with the number of 
pheromones, proportional to its length. To gradually remove nonoptimal plots pheromones evaporation procedure 
is used. Currently, these methods are quite competitive compared to other metaheuristics and to date they even 
produce the best results for some problems. 

The general algorithm scheme is shown in Fig. 7, where ,h p N  are the algorithm parameters.  

The dimension of pheromone matrix for the examined problem is  ( 2)d n (as was mentioned before, d  

means the number of characters in the encoding, d = 12 for absolute and d = 11 for relative one). In the first 

step the matrix can be initialized randomly or with certain given value 0m R . At each iteration the probability 

follow i -th direction after ( 1)j -th residue in the structure is proportional to [ , ]i j -th matrix element to the 

power  , [0,1]  and position estimation ( )e pos  to the power 1 , that is calculated by the following rule:  

2 ( )
( )

( ) ,
j f p

p O pos

e pos e




   

procedure ACO() 
 :recs null  

 InitPheromoneMatrix (М); 
 while stopping condition is not met do 
  for 1,...,i h do 
   :is GetSomeFeasibleSolution(M); 

   if  i p  then :is LocalSearch( is ); 

   if ( ) ( )i recE s E s  then  :rec is s ; 

  end for; 
  for  1,...,i h  do    RefreshPheromoneMatrix(М, is ); 

 end while; 
 return recs ; 

end procedure. 

Fig. 7. Ant colony optimization algorithm scheme. 

where pos  is a lattice node, which the next residue may be positioned in, ( )O pos  is a set of its neighboring 

nodes,  ( ) { , ,0}f H P  is a function that returns H  if the node is occupied by hydrophobic residue, P in case of 

polar and 0 if the node is free. Numbers 0 0, , , , , 0HH HP H PH PP Pe e e e e e are the algorithm parameters and 

should satisfy following conditions:     0 0, .HP H HH PH P PPe e e e e e  

It is proposed to refresh the pheromone matrix using one of two ways. The first of them is to increase each 
element proportionally to the absolute value of generated fold according to the formula  
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, 1
1

( 1) (1 ) ( ) ( )( ( )) ,
h

q
ij ij i j l l

l

m t m t s E s


        

where ( )ijm t  is [ , ]i j -th matrix element on the step t , q R  is the algorithm parameter, [0,1)  defines 

the rate of pheromones evaporation,  , ( ) {0,1}i j s  is a characteristic function that equals 1 if and only if the 

encoding of fold s  has its j -standing position occupied by symbol i .  

The second way is notable for considering separately those minimum parts of molecules, which have contacts 
inside:  

 


      , 1 1
1

( 1) (1 ) ( ) ( )( ( )) ,
h

q
ij ij i j l j l

l

m t m t s Z s  

where ( )jZ s  is a number of contacts in fold s between hydrophobic amino acid residues that have an order not 

greater than j, and ones with order greater than j 

A local search procedure can be selected from three algorithms described above.  

Computational Experiment 

The efficiency of introduced algorithms was analyzed with the help of specially designed software tools that 
consist of 3 programs: 

• algorithm visualizer is a program that allows to analyze step-by-step the chosen algorithm with the help of charts 
that demonstrate dependency of energy from iteration number, to customize its input parameters, to observe the 
energy of output protein folding and it's 3d shape; 

 • data generator is a software designed for automatic maintenance of database that stores the output of protein 
structure prediction algorithms;.  

• data analyzing module is program designed for visual analysis of algorithms and their comparison one with 
another or the same ones with different values of parameters.  

The computational experiment was conducted using the database of real proteins SwissProt [SwissProt]. For 
each local search algorithm 20 problems were solved using absolute and relative encoding and fixed input 
parameter values. Each of them started from three different randomly generated folds and a fold that has a line 
shape. For each stochastic algorithm for a fixed set of "amino acid sequence-initial folding" 5 runs were 
conducted. Thus, for each deterministic local search algorithm 80 launches were made, and for simulated 
annealing and G- algorithm – 400 launches. Using ACO algorithms with fixed set of parameters 5 problems were 
solved, 3 times each. To compare the effectiveness of the algorithm with different parameter values the additional 
experiments were carried out.  

Folds that were used as the initial approximations for algorithms and the starting seeds of pseudorandom 
numbers generator are saved in the database to make computational experiment reproducible.  

The outcomes of the computational experiment are the following: 

Local search algorithms that use absolute encoding in general improve the initial folding better than those, which 
use relative, except the case it has a shape of line. It can be explained by the fact that varying the single element 
of relative encoding rotates succeeding part of fold, so it noticeably changes, but at the same time some contacts 
are saved. The fold that has a line shape is flexible for such actions, but compact folds are not, as their 
neighborhood in relative encoding in general contains much less feasible solutions.  

The increasing of neighborhood radius in deterministic local search algorithms leads to a significant improvement 
of initial solution, but it nonlinearly increases expended time too. The same is correct for comparing stochastic 
local search methods with determined local search using single radius and comparing determined local search 
using extended radius with stochastic local search algorithms. Methods that use a local search procedure for the 
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improvement of somehow generated folds (e.g. genetic algorithms, ACO) should balance using different local 
search methods to achieve more accurate results during some reasonable time.  

On the average solutions generated by G-algorithm are more accurate than those, which were received by 
simulated annealing with the same time expended.  

The efficiency of simulated annealing, G-algorithm and ant colony optimization algorithm considerably relies on 
parameter values, what confirms the need to develop automatic methods of choosing appropriate parameter 
values. 

The described above features of relative encoding develop into evident advantage in both accuracy and time 
compared to absolute encoding when using them in ant colony optimization algorithm. 

Using position estimation and partial refreshing of pheromone matrix in ant colony optimization algorithms both 
improve its quality reasonably increasing expended time, whereas the improving of generated folds on every 
iteration with the help of local search procedure does not result in perfection of derived solution as it was 
expected. It can be explained by two facts. First of all, using local search for some folds on every step leads to 
enormous expenditure of time, what considerably decreases the algorithm speed. And the second reason is that 
significant improvement of generated folds results in premature convergence. From the other side, without local 
search ant colony optimization algorithm remains uncompetitive, so the open question is varying the parameters 
and adjusting the algorithm for the use of local search to be effective. 

 
Fig. 8. Hepsidin. 

To compare received results with the real ones, the problem of predicting the tertiary structure of Hepsidin 
molecule (the corresponding amino acid string is HPPHPPPPPHPHPHPHHPPPH) was solved. The results are 
shown in Fig. 8. The image a) corresponds to Hepsidin real known structure, b) was predicted by ACO method in 
cubic lattice [Fidanova, Lirkov, 2008], and c) was generated by the proposed ACO method with relative encoding in 
three-dimensional triangular lattice. The visual comparison on the one hand confirms the adequacy of the HP 
model and the feasibility of selecting a triangular lattice, on the other it shows the necessity of new sophisticated 
models’ development which more accurately take into account the traits of folding process, and the development of 
comparison methods to estimate the similarity between the discrete fold and the real one. 

 

Conclusion 

The combination of different fold encodings with well-known combinatorial optimization methods results in 
creating competitive algorithms for solving protein tertiary structure prediction problem. The detailed analysis 
forms a base for their former use as a part of complex metaheuristic algorithms. 

Open questions are the theoretical research of ant colony optimization algorithms convergence and combining 
them with local search methods, the development of hybrid algorithms for solving the problem, researching new 
models that describe folding processes in more precise way. 
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