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A GRAPH MODEL OF SHOCKED FINANCIAL SYSTEM 

Velina Slavova, Lyubomir Mirchev, Hristian Elefteridis 

Abstract: We applied mathematical modeling in order to understand the behavior of the banking system as a 
network infrastructure. Based on graph modeling, we developed program modules for simulating the propagation 
of a financial shock over a system of interconnected banks. The simulation imitates a wave of contagion of the 
banking system, which is generated as a random graph. In order to analyze the behavior of the system in 
general, we perform a multiple generation of random graphs and consider the obtained mean values. We analyze 
the influence of a set of input economic parameters with regards of the properties of the banking system as a 
“critical infrastructure”. We used different subordination models of the graph structure, with regards of 
contemporary financial theories and taking into account recent documents of the European financial 
commissions. The results of the simulations permit to do important recommendations concerning the methods for 
protecting and optimizing the banking system. 

ACM Classification Keywords: I.6.5: Model Development, I.6.6: Simulation Output Analysis. G.2.2 Graph 
Theory, G.2.3 Applications  

INTRODUCTION 

The recent global experience highlights the need to monitor systemic risks arising from both the macroeconomic 
developments in the economy and from the global financial markets. This requires new concepts, methodologies 
and models for financial system transformation and network crisis management. We applied mathematical 
modeling in order to understand the behavior of the banking system as a network infrastructure. 

The mathematical formalism in this work is based on graphs. The nodes are banks and the edges imitate the 
interbank connections. We did four main successive steps in our approach. The first was to elaborate algorithms 
running on the graph in order to adjust the model from the point of view of its economic parameters and to 
simulate the behavior of banks system when it is submitted to an external economic shock. The second step was 
to include in the system additional processes in order to better imitate some particularities of the financial market 
in situation of crises. The third step was to adjust the structure of the underlying graph as self-organized 
dynamical system. On this bases, we propose possible wais to protect the system, namely to limit the 
propagation of the shock. We performed computer simulations of the proposed measures of protection. The rest 
of this paper is organized following these main steps. 

Underlying economical calculus: We build a random graph with a chosen number N of nodes (banks) which 
have lent to one another with probability of p. The probability p expresses an important economic parameter - the 
connectivity of the banking system. So, pij is the probability that bank i has lent to bank j. The existence of an 
interbank borrowing from bank i to bank j is expressed by means of an edge between these two banks (the graph 
is oriented). The generation of the graph is performed using a simple random selection of Z edges from the full 
set of N*(N-1) edges of the corresponding complete graph.  Z = N*(N-1)*p , where p varies from 0 to 100%. 

We construct the graph of a hypothetic banking system by using the following inputs: 

N – number of banks; 

p – probability of connection; 

E – total external assets of the banking system; 

E/A – percentage of system’s external assets to system’s total assets; 

c/a – percentage of bank’s capital to total bank’s assets. 
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Each node is generated with its initial balance1, following a step-by step repartition of the actives and passives of 
the entire system. In big, the parameters of the balances - capital, assets and deposits are calculated depending 
on the number of connections that each node has obtained after the generation of the graph. More precisely, the 
banks balance sheets are calculated by starting with the external assets of the banking system as a whole (E). 
Having the formula for the total assets A = E + I, where I is the total interbank assets in the system and having E 
and E/A as an input, we find A and I:   A = E / (E/A) and I = A – E. Knowing the total size of the interbank 
exposures, the weight w of each edge is found by dividing I to the total number of edges: w = I / Z.  

From there we find the individual bank’s interbank assets and borrowings by multiplying w to the number of 
outgoing and incoming connections to each node (bank) in the graph. We denote the individual bank assets by a. 
So: ai = ei + ii , where e are the external assets i.e. loans and other investments to non-bank counterparties, and i 
denotes the interbank assets, i.e. exposures to other banks in the system. On the other side of the balance sheet 
we have the liabilities, denoted by l, so li = ci + di + bi , where ci is the capital of bank i, di are the deposits (from 
non-bank customers) of bank i, and bi denotes the borrowings (from other banks) of bank i. As every balance 
sheet, ai = li. The algorithm which calculates these bank-balance parameters has one iterative loop for distributing 
the “rests of the total money” after this first distribution.  

The interbank assets i of one bank are the borrowings b of another – these linkages are used as a shock 
transmitting channel.  

THE MODEL OF THE SHOCK  

We simulate a propagation of damages over the nodes of the graph. The edges are channels of transmission. We 
conceder that the initial shock S arises in the economic environment, and, being external for the system, it affects 
the external assets e of a bank. The size of the shock S is a chosen percentage of the external assets of the 
initially shocked bank. In the proposed simulation, when a bank receives a damage si, its capital ci is the first to 
absorb the losses (figure 1).  

 

 

 

 

 

 

 

Figure 1. Shock absorption and transmission.  

If the damage is greater than the bank’s capital, then the bank is in failure. The borrowings bi are the next to 
absorb the losses, thus the shock is transmitted to the net. The damage is than transmitted to the network, 
harming the neighbor bank-nodes. So, in the process of propagation we distinguish two states of a bank – 
“touched bank”, when the bank settles down its capital, but resists the shock and “bank – transmitter”, when the 
bank has lost its capital and the damage has touched its borrowings from other banks. If the losses exceed the 
borrowings bi, then the clients’ deposits di are damaged. We called that third possible state of a node a “dead 
bank”. The economic theory does not take into account the damages received by the deposits (the non-bank 
clients) and our analyses is not centered on the harmed deposits.   

As illustrated on figure 1, the initial shock absorber of the damage S is the capital c, the transition of the damage 
to the system is via the borrowings b and the final shock absorber of the damage are the deposits d. 

                                                            
1 The precise procedure is described in Mirchev, Slavova, Elefteridis 2010. 
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The damage, transmitted to each of the bank-
borrowers depends on the weight w of the 
connecting edge. In the model, the edges 
have the same weight and we distribute the 
unabsorbed damage equally on each outgoing 
edge. The attained banks receive the damage 
in the same way – they decrease their capital, 
further they loose their borrowings and 
become transmitters of the contagion wave. 
The process of propagation goes on until 
there are not more touched banks (the shock 
is absorbed by the system). 

 
One may do an analogy with the propagation of a wave in a fluid as it is illustrated on fig. 2.Each node has two 
functions: 1. the bank is an absorber of damages by means of its capital and 2. the bank is a transmitter of the 
shock after the threshold of its capital is reached.. The number of edges included in the process has also a 
double function. The distribution of the damage over the outgoing edges diminishes the fractions of damage and 
increases the number of touched banks (diversification).There is one more phenomenon which deserves our 
attention: the nodes stock the incoming damages via its entering edges. A given bank can initially resist the 
damage by absorbing it, but after some time can ‘brake down’ as the propagation of damages has reached it 
several times via different paths (note also that the graph has cycles). We called this phenomenon a gradual 
exhausting. It causes a postponed rising of the number of failed banks.  

The output that we register is the number of failed banks (bank defaults).  

The simulation of the system’s behavior is done by means of measuring the output when varying the values of the 
input parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulation architecture 

The influence of each input parameter is examined separately, by increasing gradually its value in small 
successive steps, when the other parameters stayed fixed (Figure 3.). For each value of the examined parameter, 
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we performed multiple generations of random graphs (we preformed 100 generation per step), we run the 
simulation of the shock and we calculated on the bases of the received 100 outputs the average of the number of 
failed banks. The programs are realized in Visual C#. The outputs, transferred in MS Excel tables, are used as 
source for the graphics and the further analyses of the system’s behavior.  

We conceived, implemented and tested several algorithms, realizing the described above process, called “Wave”. 
The accuracy tests wore performed by checking the total bank balances of the entire system before and after the 
wave of shock (see table 1). Each point of the graphic-examples given further is obtained after 100 runs of 
“Wave” on random graphs. That has required a special attention to the complexity of the used algorithms and 
especially of the one which calculates the propagation of the shock.  

ANALYSES OF THE RESULTS  

The described algorithms and simulation method wore used for the initial evaluation of the systems behavior. The 
interface and the outputs of the simulation are given on figure 4 and figure 6 respectively.  

 

 

 

 

 
 

 

 

 

 
 

Figure 4. – Simulation model interface – written on Microsoft Visual C# Express;  b) Examples of three random 
graphs with 15 nodes and connection ratio p=20%;. c) Examples of three scale-free graphs, connection ratio 

p=20%. 

 

From the point of view of the analogy with a fluid system that we made, the connection ratio p is a parameter with 
a crucial importance. In order to check the processes that we have supposed existing in such system, we give the 
example of analyses of the influence of the connection ratio from a more formal point of view. The results of 
simulation are shown on figure 5. The simulation is made for values of p between 0% and 100% - from a 
disintegrated system to a completely connected system. When the system is disintegrated, only the initially 
shocked bank defaults. With the rise of connectivity, the number of failed banks increases till a certain point of 
deterioration. In the interval where the connectivity is very poor, the graphics rises quickly as the damages are 
distributed in big fractions and the contaminated banks immediately fail harming the deposits. In this case, to 
suppress the wave of shock, the system utilizes also its second shock absorber. 

 

 

b 

c 



Information Models of Knowledge 
 

276 

With the further rise of connectivity, the 
portions of damage transmitted to the 
“neighbors” decreases and the number of 
banks which succeed to cushion the shock 
rises. That corresponds to the flattened part 
of the graphics on fig. 5. The effect of 
gradual exhausting is clearly observable on 
the graphics, expressed by the second rise 
of the curve. In fact, with the rise of 
connectivity, the damages distributed to 
each of the neighbors decrease and the 
deposits are less utilized as shock 
absorbers. The pathways of the contagion 
wave become longer and start crossing the 
same nodes several times. So, after a 
number of “attacks”, all these banks “give 
up” and fail “en bloque”. 
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Fig.5. Number of defaults depending on the graph connectivity 

 

After some degree of connectivity, the distribution of the shock becomes big enough to produce fractions which 
are absorbed immediately from the touched banks. That corresponds to the saturation point of the graphics. The 
positioning of the point of saturation depends on the capital – the first shock absorber. A system with less capital 
(on the graphics c=0,03) needs more connections to absorb the shock. That is illustrates also on figure 6.d.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Outputs of the Simulation. Graphics - failed banks depending on a) the size of the shock; b) the size of 
the system’s capital ; c) the external assets; d) the connection ratio and the capital 
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The economic interpretation of the influence of the input parameters is deeply discussed in Mirchev, Slavova 
Elefteridis 2010. Here we provide an example - the analyses of the influence of the size of the shock (fig. 6.a). 

While increasing the size of the shock (fig 5.a), the extent of contagion also increases to a certain point where the 
shock is distributed to enough banks and can be absorbed. This mechanism depends on the level of bank 
interconnectedness. In more connected banking system the contagion effect is greater. Nevertheless, the 
contagion pattern is different: while the shock is relatively small, the more connected network is absorbing the 
shock better as it is distributing small fractions of the shock to many neighbors. After certain point the effect of 
contagion prevails over the effect of diversification and the contagion sequence rolls over. After a certain point of 
saturation the increase in the size of the shock is not provoking additional failures because the shock is 
distributed to sufficiently many nodes in the system. 

The simulation model developed using graphs and algorithms for economic parameters calculation and the 
propagation wave of the shock in the banking system show an adequate behavior in the sense that the simulation 
results are easily explicable in terms of parameters and financial and economic dependencies. The model reveals 
that the stability of the system depends not only on the individual bank’s stability, but also on the intensity and the 
size of interbank connections i.e. how integrated the banking market is.  

The system’s behavior will be different if its resistance decreases during the wave propagation because of the 
fact that the absorbers are weaken. And, if the shock touches more nodes, the wave propagation will be changed. 
In fact, that is a more realistic model of the financial system.  

FINANCIAL MARKET REALITIES - WEAKEN ABSORBERS AND MASSIVE SHOCK 

Further, instead of the initially modeled perfect market liquidity, we introduced the liquidity effect described by the 
elasticity of the assets’ price to the assets sales and the mark-to-market accounting effect to the banks’ balance 
sheet accounts. That financial phenomenon is like a progressive decrease the resistance of the shock absorbers, 
as it decreases the power of their capital. The assets price is decreasing with the same proportion as the assets 
sold on the market compared to the total assets in the system. We introduced coefficient ‘elasticity’, affecting the 
magnitude of the liquidity effect. Value 0 means no liquidity effect or perfectly inelastic asset price (perfect 
liquidity), and 1 means full liquidity effect or unitary elasticity of the asset price. 

% of change in assets price = 1 – elasticity * (asold / A) 

Banks’ assets are re-evaluated on each simulation cycle with the current assets market price. When a bank 
defaults it sells all its remaining assets and exerts pressure on the assets prices. 

In parallel with that the balance sheets of 
all other remaining banks are revaluated 
and the amount of assets is decreased in 
accordance with the new prices. The 
effect of the mark-to-market accounting 
principle is that is weakening all the 
banks. A kind of additional shock 
cumulates over the balance sheet. As it 
was supposed, the contagion profile with 
mark-to-market accounting resembles to 
a contagion profile of less capitalized 
banking system (fig 7.). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Defaults by connection ratio and liquidity effect 

As the plots of the simulation conform (figure 8.), the system looses resistance. With the same level of initial 
shock the banking system needs more capital to withstand the contagion. The detailed economic analysis of the 
liquidity effect is given in Mirchev et all 2010. 
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Figure 8. Influence of the liquidity effect – less resistant system. 

 

Most of the external shocks would affect several or all banks simultaneously. We introduced the ability to shock 
several banks at the beginning of the simulation. The contagion profile shows how vulnerable and fragile a 
banking system is (fig. 9.). When increasing the number of initially shocked banks the contagion effect is stronger 
(wider contagion area).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Influence of the Massive chock a) one bank b) 5 banks; c) 5 banks 20% of shock 

 

We conducted similar simulations, but this time maintaining relatively identical size of the shock in the different 
scenarios i.e. increasing the number of initially shocked banks while decreasing the shock size for each bank 
(figure 9.c). A slight increase in the contagion area is observable, it is due to the fact that the initial shock is 
spread to more banks and thus the number of “powerful” contagion channels increases. We can see a slight 
increase in the contagion area (fig, 9.c.) due to the fact that the initial shock is spread to more banks and thus we 
have more contagion channels. By further increasing the number of initially shocked banks, the relative size of 
the shock for each bank is getting smaller and we see a new three staged contagion profile. First, when the banks 
have lower capital shock absorbers, the contagion effect works and we have high number of defaults. At some 
point by increasing the banks’ capital the effect of diversification starts prevailing and the number of defaults is 
limited only to the initially shocked banks. By further increasing the capital level, having in mind that with high 
number of initially shocked banks the size of the shock is relatively small, the banks are getting able to withstand 
the shock and the system scores no defaults. 
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The influence of the liquidity 
effect when the shock touches 
several banks can be previewed 
as gradually weakening the 
system in addition of the 
massive shock. That is the 
worse situation, as the two 
factors harm the system’s 
resistance (see figure 10). 
Several simulations of different 
scenarios are performed using 
the possibility to vary the input 
values and the results are 
analyzed from the economic 
point of view in details in 
Mirchev, Slavova Elefteridis, 
2010.    

 
 

Figure 10. Realistic situation – massive shock + liquidity effect 

 

The simulations gave the possibility to figure out possible strategies to protect the banking system. That was 
done with regards of the existing modern tendencies in the economic theories and taking into account the recent 
documents of the European Union. At EU level for critical infrastructures have been adopted stock exchanges 
and settlement systems. Considering the importance of the banking market (which dominates over other sectors 
of the financial market in the EU), we suggest its consideration as a separate critical infrastructure (social 
networking infrastructure). It is the economic infrastructure connecting the market participants in the economy and 
facilitating the processes of financial resources transformation. That assumption has necessitated modifying the 
underlying graph. 

NEW TOPOLOGY AND PROTECTION STRATEGIES 

Until recently, the banking system was considered as a set of financial institutions competing in a specific market 
– the banking market. In this respect, their role was not considered different from any other market player on the 
financial and non-financial markets. When a bank fails, the law provides protection to the creditors and in most 
cases to those entrusted their money to the banks - the depositors. But the crisis has shown us that the 
disturbance occurred in the financial market is rapidly transmitted to the rest of the economy. All the entities, 
relying on the banks services for conducting their businesses, are also affected adversely. The social function of 
the banks comes into focus - their role as financial intermediaries in the economy.  

A model for analyzing and strengthening the stability of the banking market, considered as critical infrastructure 
would include the following steps:  

1. Mapping the real topography (banks inter-connectivity) of the banking network.  

2. Identification of the hubs in the system – the supervisory efforts could be focused to these nodes 
depending on their importance. 

3. Assessing the extent of the threat / possible damage, which a hub brings to the system. The risk 
depends on the hub’s size and connectivity with other hubs and nodes in the network. This evaluation is 
performed through simulations or analysis through the development of a “fault-tree” for spreading the 
initial shock.  

4. Budget analysis – determines the optimum allocation of resources. Possible tool is the "network-wide 
investment" - after assessing the possible negative effects of each hub in the system, the investments 
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are allocated in such a way that minimizes the overall negative effect. Priority is given to the most 
important hubs, which have the greatest impact on the network stability.  

Many communication and social networks have power-law link distributions, containing a few nodes which have a 
very high degree and many with low degree. The high connectivity nodes play the important role of hubs in 
communication and networking, a fact which can be exploited when designing efficient protecting algorithms. The 
presence of self-organized criticality in social networks is often evidenced by a power-law scaling of event size 
distributions, which can be measured by linear regression on logarithmic axes. The power-law scaling can also be 
induced by the stochastic nature of the social phenomena.  

Financial markets are largely integrated, but the institutions responsible for their supervision and safeguarding the 
financial stability remain divided along the national lines. Studies on the stability of financial systems (Allen 2000, 
Nier 2008) used the assumption that the participants are equal, and the distribution of links is a random. Studies 
on social networks (as are the banking/financial markets) show that their structure is more complex (Lewis, 2009) 
and have the characteristics of scale-free networks and small-world networks.  
 

Scale-free networks (fig. 10.b) are 
networks whose degree distribution 
follows a power law - probability of 
a node to make connection to other 
depends on the number of 
connections, which it owns. The 
radius of the network - the number 
of edges between the two most 
distant nodes, is relatively small. 
They are clustered - some nodes 
called "hubs" have much more 
connections than others. Hubs in 
the banking system are the 
systematically important banks. 

 

 

 

 

 

 

 

 

 

 

 

Fig 10. A scale-free graph (b) and the distribution of its 
connections 

We implemented the Barabási–Albert algorithm for generating random scale-free network using a preferential 
attachment mechanism (nodes with higher degree have stronger ability to grab a connection). Examples of 
generated scale-free graphs are given on figure 4.c. The plot of the distribution of the number of connections of 
our generated graph is given on figure 10.a.  

The simulation showed that the 
scale-free banking system is 
prone to stronger contagion effect 
and the number of defaults rises 
sharply due to the presence of 
hubs (figure 11). It is important to 
note that for the scale-free 
system, while increasing the 
interconnectedness of the 
system, the defaults are dropping 
rapidly in comparison with the 
random network. .  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Behavior of the scale-free network (- - -) and   
the random ( __ ) 
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The assumption that the system has a scale-free underlying graph allowed the construction of a fundamentally 
new type of model for simulating the measures ensuring stability and efficiency of the banking market  

For applying such model there could be implemented and refined few basic principles (Lewis, 2006) with the 
following interpretation: 

Principle 1: You need a network to fight a network. This principle applied to the banking system may have the 
following two meanings:  

(1) Systemic instability in the banking market haves a network nature, so the means to oppose it should 
have a network character (a network of national supervisors - ESFS).  

(2) Due to the size of European and international banking market only network approach would be 
effective. It is not economically feasible to protect every link in the system. European Commission 
studies show that the national Deposit Guarantee Schemes in the EU would not withstand the shock if 
several hubs (large, systemically important banks) fail.  

Principle 2: Protect the hubs, not the connections. This principle is directly related to the preceding because the 
banking market is built on a network basis. Hubs are critical points, therefore they must be protected. Considering 
the scarcity of resources and the fact that such a network could be enormous in size, it is not possible to protect 
each node of the system, so efforts should be focused on the critical points.  

Principle 3: Invest 80/20. The capital in the banking system is not equally allocated. One could say that the 
majority of the assets in the banking system are held by a small number of banks. This suggests that the 80/20 
rule could be applied, i.e. 80% of resources should be invested in 20% of the units (which are critical to the 
system). 

Principle 4: Asymmetric thinking. Innovation in the financial sector often is used as a way to avoid certain 
regulations. In this regard, regulatory approaches must evolve, and adapt to the market situation, and anticipate 
and manage the development of the system. 

Principle 5: Dual purpose solutions. The scarcity of government resources raises the question for stakeholders’ 
involvement in the process of seeking solutions for improving the stability of the banking system. Example, the 
establishment of joint entities for electronic or cash payments, creation of shock absorber funds and other 
initiatives with purely private capital, would increase the stability of the system, but would also help to improve its 
efficiency. Thus resources optimization could be achieved.  

Taking into account these principles, we introduced in the simulation model three protection strategies: 

The first consists of proportional allocation of bail-out funds to the banks. This strategy resembles to a theoretical 
government bail-out program where the banks’ capital is increased. The result of its simulation is on figure 12.b. 

The second one is a derivate of the first, but the bail-out funds are allocated only the biggest banks (the hubs). 
The result of its simulation is on figure 12.c. 

The third strategy is called “toxic bank” and resembles to a theoretical government bail-out program, where there 
is a special institution buying the troubled assets from the banks while applying certain discount ratio. For better 
comparison we are using identical budget amount for all strategies. The result of its simulation is on figure 12.d. 

We can see that the different strategies affect the contagion profile in a different aspect. The “proportional 
allocation” strategy reduces significantly the number of defaulted banks when the shock to the initial bank is 
moderate. The “hubs allocation” strategy gives overall lower number of defaulted banks. Nevertheless, this 
strategy is more effective when we have a full-scale shock. The “toxic bank” strategy turns out to be the most 
effective. It gives the lowest number of defaulted banks, independently of the shock size, because this strategy is 
the most flexible – the funds are allocated on a case-by-case basis covering only the troubled banks. Depending 
on the regulators or government’s policy and the budget limits, a different discount ratio could be applied while 
buying toxic assets from the banks. Irrespective to their effectiveness and characteristics, all the strategies are 
bound with the same budget limits and when the shock gets enough big they cannot save system entirely. If the 
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funds limit is not sufficient to cope with the shock scale, these strategies can only postpone the system 
breakdown and give enough time for the economists and politicians to engage in more serious reforms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The non-protected system (a) and the system, protected with different strategies (b-d) 

 

Looking at the overall contagion profiles of the different strategies, we can notice that the “proportional allocation” 
strategy is more effective when the system is significantly undercapitalized. This is due to the fact that the 
strategy increases directly the capital base of the banks in the system. The “toxic bank” strategy is more effective 
with moderately capitalized banks because it reduces the toxic portfolios without affecting their capital. 

 

CONCLUSIONS 

The results obtained show that the implementation of the network approach to the banking system offers 
interesting opportunities for reorganizing its structure and predicting its response in crisis situations. This would 
contribute to the financial system transformation recommended in 2009 by the European Commission1, and for 
the establishment of a new system for European financial regulation and strengthening the cooperation and 
coordination between national supervisors. 

The adoption of the banking system as a high-level economic infrastructure (separate critical infrastructure) 
allows the development of fundamentally new type of methods for ensuring stability and efficiency. 

                                                            
1 European Commission, (2009), The de Larosière Group – Report, The High-Level Group on Supervision 
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