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DISTURBANCE OF STATISTICAL STABILITY  

Igor Gorban  

Abstract: The survey of author’s researches devoted to disturbance of statistical stability of physical quantities 
and processes is presented. Concepts of statistical stability of random sequences and random processes are 
formalized. Parameters characterizing their statistical stability in finite observation interval are proposed. It is 
found that statistical unstable processes are especial class of non-stationary processes. Statistical stability 
disturbance can be explained by low frequency cyclical fluctuations of expectation. It has been researched 
statistical stability of a number of physical quantities and processes, in particular line voltage, height of sea waves 
and their periods, Earth magnetic field fluctuation, and currency rate. It has been found that for all researched 
quantities and processes, there is statistical stability disturbance on large observation intervals. Obtained results 
corroborate the hypotheses that are in base of new physico-mathematical theory of hyper-random phenomena: 
real physical events, quantities, processes, and fields are not statistical stabile and they can be adequately 
described by hyper-random models taking into consideration their statistical instability. 

Keywords: statistical instability, theory of hyper-random phenomena, uncertainty, probability. 

ACM Classification Keywords: G.3 Probability and Statistics 

1. Introduction 

Physical basis of probability theory and mathematical statistics is statistical stability of event’s frequencies. This 
fact examined and tested a lot of times by different scientists. It is well known, for instant, coin test led by Buffon 
and K. Pirson [Гнеденко, 1961]. Buffon flipped a coin 4040 times. K. Pirson led two test series. In the first series 
a coin was flipped by him 12000 times and in the second series – 24000 times. In all their tossing experiments 
the head frequencies equaled to near 0.5. Such stable result is typical for any statistical stable conditions. 

In statistics and probability theory stability plays very important role. This circumstance was marked by a number 
of scientists, beginning from Jakob Bernoulli [Bernoulli, 1713]. R. von Mises proposed even to define [Mises, 
1964] the concept of probability on the base of event’s frequency in fixed conditions. Although Mises’s proposition 
was not supported by the most mathematics and now Kolmogorov’s set-theoretic definition of the random event 
[Колмогоров, 1936, ISO, 2006] is used mainly, importance of statistical stability is not decreased, especially in 
sphere of applications. 

For real physical phenomena (events, quantities, processes, and fields) it is not simple to determine correctly 
Kolmogorov’s probability measure. This fact was marked in many works, for instance, in [Колмогоров, 1986, 
Скороход, 1990, Тутубалин, 1972, Alimov, Kravtsov, 1992]. The main cause is in difficulty and often impossibility 
to stabilize statistical conditions. 

This stimulated the development of new theories, such as fuzzy logic [Zadeh, Kacprzyk, 1992], neural network 
[Hagan, Demuth, Beale, 1996], chaotic dynamical systems [Crownover, 1995], ], interval data [Шокин, 1981, 
Алефельд, Херцбергер, 1987, Shary, 2002, Kreinovich, Berleant, Ferson, Lodwick, 2005, Ferson, Kreinovichy, 
Ginzburg, Myers, 2003], and others theories. 

Author’s apprehension in statistic stability of real mass phenomena motivated him to develop physico-
mathematical theory of hyper-random phenomena [Горбань, 2007, Gorban, 2008, Gorban, 2009] oriented to 
description of statistically unstable physical events, quantities, processes, and fields. 

The theory of hyper-random phenomena includes two components: mathematical and physical ones. Don’t 
discussing now mathematical part of it, mark that its physical part is based on the hypothesis of existence in real 
physical world statistically unstable physical phenomena and the hypothesis of hyper-random setting up of the 
world, essence of which is that statistical unstable phenomena (adequately described by hyper-random models) 
are mass ones. 
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Now the basis of new theory is developed in different directions, however, for this time the main question remains 
disputable: are real phenomena statistically unstable or not? 

To obtain the answer to the question a number of experimental researches devoted to disturbance of statistical 
stability of real physical quantities and processes were led by the author [Горбань, 2010 (1), Горбань, 2010 (2), 
Горбань, 2010 (3), Горбань, 2010 (4)]. 

The aim of the article is to present generalized results of these experimental researches. 

2. Experimental research of line voltage  

Research of line voltage is led by computer and simple linkage (consists of transformer and voltage divider). Input 
voltage was discretized with frequency 5 kHz. Voltage effective values were calculated on the base of every 1024 
units and were written in memory. Record was led by session during two months with pause in some days. 

Duration of every record was 60 hours. For this session time, near 202 1 N  million of effective voltage units 
were recorded. 

Line voltage was changed continuously. In different sessions changes had different character. Time dependences 
of line voltage for two sessions and according cumulative averages are presented in Fig. 1. 

 
Fig. 1. Time dependences of line voltage for two sessions (in hours) (a, c) and according cumulative averages (b, 

d) 
 

Analyze of a number records showed that all cumulative averages are not decayed (Fig. 1 b, d). This strange on 
the first view fact, sharply contrasts with well known theoretical results, demonstrating time decay of cumulative 
averages when the observation time is increased. Such decay is typical, for instance, for white Gaussian noise 
(model 1) and harmonic oscillation (model 2) presented in Fig. 2. 

To clear causes of such difference let us appeal to the theory.  
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Fig. 2. White Gaussian noise (model 1) (a), harmonic oscillation (model 2) (c), and according cumulative 

averages (b, d) 

3. Some theory questions 

Sequence 1 2, ,...X X  of random variables (random sample) will be called a statistically stable one [Горбань, 2010 

(1)], if expectation of sample variance 2
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accord to this clause will be called statistically unstable ones.  
The type of convergence is not essential hear but to obtain necessary mathematical rigor we shall mean 
probability convergence. 
It is well known Chebyshev theorem that presents the law of large numbers states [Гнеденко, 1961]: average 
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 when sample size N  tends to infinity. 

Draw attention on one nuance unnoticed by the most: this theorem does not say about convergence of neither 
average NY , nor mean 

Nym . It states the convergence of these variables to each other, or otherwise, the 

convergence of their difference to zero. This means that average NY  and mean 
Nym  can have not the limit. They 

can fluctuate around the constant. In the process of such fluctuation they are changed without fail by 
synchronously manner. 
It follows from Chebyshev theorem, that random sequence is statistically stable if and only if sample variance of 
mean 

Nym  tends to zero when sample size N  tends to infinity. 

Random process will be called a statistically stable one, if expectation of the integral 2
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mean of average ( )Y t . Random processes that don’t accord to this clause will be called statistically unstable 

ones. 
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Mark, that determinate quantity 0x  can be regarded in rough as a particular case of a random quantity that has in 

the distribution function a unit step in the point 0x  [Горбань, 2007, Gorban, 2009]. Analogues, determinate 

function 0 ( )x t  can be regarded in rough as a particular case of a random function with distribution function 

0( ; ) rect( ( ))F x t x x t  . Therefore statistically stable and statistically unstable concepts are suitable for 

sequence of determinate quantities and for sequence of determinate functions. 

Examples of statistically stable sequences are uniform random sample with finite two first moments and also 
nonuniform random sample with finite two first moments, for which mean of expectations has a limit. 

The sequence is statistically unstable one if mean of expectations has not a limit (for instance, fluctuates) when 
sample size tends to infinity. Numerical divergent sequence is statistically unstable one too. 

Underline, for random processes, concept of nonstationarity and concept of statistical instability are not identical. 

Stationary ergodic (in expectation) processes are statistically stable ones. Among non stationary processes there 
are as statistically stable as statistically unstable processes. Hence, statistically unstable processes are especial 
class of non stationary processes. 

The fact of statistical stability or statistical instability of real sequence with finite sample size or the same fact of 
real process on the finite interval observation cannot be established in principle, because for establishing such 
facts the sequence or the process must be infinite ones. 

However, concept of statistical stability on finite interval may be formalized. The bases for such formalization may 
be detection the tendency of stabilization of the average level or the tendency of stabilization of the mean of 
expectations when sample size increases. These tendencies may be the quality indicators of statistic stability of 
the process. Before going to quantity characteristics let us analyze possible causes led to disturbance of 
statistical stability. 

4. Possible causes led to disturbance of statistical stability of random processes 

Any non stationary random process ( )X t  can be presented in the following form: 

( )( ) ( )x tX t m X t 


 

where ( )x tm  is expectation of the process ( )X t  and ( )X t


 is random process with zero expectation. 

Expectation ( )y tm  of average ( )Y t  is determined by expectation ( )x tm : 
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Hence statistic stability of the process ( )X t  depends from particularities of expectation ( )x tm . 

Examine random processes with different changes of expectation ( )x tm , in particular periodic, intermittent, and 

aperiodic types. 

Let ( )x tm  is a periodic function with period T . Then its Fourier expansion 
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where exp( jφ )k k ka a  is complex expansion coefficient. 

Then average expectation  
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It follows from expression (2) that variable part of average expectation is described by harmonic functions 
subsided on the low of sin /x x . Subside speed of these functions is determined by value of the period T : it 
decreases with rising the period and tends to zero when T  . 

Minimum subside speed has the first term of series (according to 1k  ). In average expectation (2) harmonics of 
high orders are suppressed. Suppress level increases with increasing of harmonic order. 

Changing of average expectation is not significant if observation interval t  essentially less than the period T . 
This is area of statistical stability. However, situation gradually changes when value t  approaches to the period 
T . As follow from expression (2), average expectation is changed significantly in the interval [0, ]t T . It means 

that in the interval [0, ]t T  statistical stability is disturbed. 

Mark, essential changes of average expectation and disturbances of statistic stability may be registered in the 
observation intervals that larger than period T  too, in particular, when amplitudes of high order harmonics are 
large and numbers of these harmonics are not high. Fig. 3 demonstrates these particularities (models 3, 4). 

 
Fig. 3. Models of random processes with high (model 3) (a) and low (model 4) (c) oscillation frequency of 

expectation and according averages (b, d) 
 

It follows from expression (2), that fluctuation of average expectation ( )y tm  tends to zero when t  . This 

means that, although random process with periodic oscillation of expectation has in some observation intervals 
disturbances of statistical stability, it is statistically stable in infinite interval. 

Let ( )X t  is a random process consists of Q  processes ( )qX t  ( 1,q Q ) with near equal levels and periodic 

expectations. Periods of these expectations are 1 2, , , QT T T . The period 1qT   of each process 1( )qX t  is 

essentially larger than the period qT  of previous process ( )qX t . 

In observation interval from zero to t  that is essentially less than 1T , there are no essential changes of 
expectations and therefore the process ( )X t  is statistically stable, in practice. With approaching t  to the period 

1T  the process 1( )X t  (and therefore the process ( )X t ) becomes more statistically unstable. With further rising 

of observation time statistical properties of the process 1( )X t  appear and the process ( )X t  becomes similar to 
statistically stable one. 

With approaching t  to the period 2T  the process 2 ( )X t  becomes more statistically unstable again. This leads to 

disturbance of statistical stability of the process ( )X t , and so on. When Q   and QT   interchange of 

statistically stable and unstable states reaches to infinite observation interval.  
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When 1 2q qT T   unstable areas are joined and process ( )X t  is statistically unstable in all observation interval 

1[ , )QT T . 

Forming process of statistically unstable areas is illustrated by the models 5 and 6 (Fig. 4). 

 
Fig. 4. Model of random process with expectation that has tree essentially different on frequency harmonics 

(model 5) (a), model of random process with five close to each other on frequency harmonics (model 6) (c), and 
according averages (b, d) 

Described additive model explains interchanging of statistically stable and unstable states in real processes. 

Random processes with intermittent changing of expectation are not interesting very much because distinguished 
samples create changes in average, however these changes are smoothed out fast (model 7, Fig. 5, a, b). 

 
Fig. 5. Model of random process with intermittent change of expectation (model 7) (a), model of random process 

with aperiodic change of expectation (model 8) (c), and according averages (b, d) 
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Random processes with aperiodic changing of expectation are more interesting. Mark, process ( )X t  with 

expectation, which changes periodically with the period T , may be regarded in the observation interval t T  as 
aperiodic process. So, aperiodic processes may be statistically unstable.  

If expectation ( )x tm  may be presented as expansion in a Taylor series 

( )
0
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x t k
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It follows from expressions (3) and (4), if expectation ( )x tm  is changed on low kt  expectation ( )y tm  is changed on 

the same low too. So, if ( )
k

x tm t , the process ( )X t  is not statistically stable in any observation interval. 

Mark, in compare with expansion (3), expansion (4) has addition coefficient 1( 1)k  . Therefore, in general, 

changing low of expectation ( )y tm  doesn’t repeat changing low of expectation ( )x tm  and so, processes with 

aperiodic changing of expectations are not always statistically unstable ones. 

The process ( )X t , expectation of which is changed periodically in logarithmic scale with period T , has 

interesting property. In this case, expectation of the process 
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As follow from last expression, for the process ( )X t , expectation of which is changed periodically in logarithmic 

scale, average expectation ( )y tm  is described by harmonic non subsided functions. This mean that the process is 

not statistically stable in the interval [0, ) . Such process (model 8) and according average are presented in 

Fig. 5, c, d. 

5. Random processes in finite observation interval: characteristics of statistical instability 

In a finite observation interval statistical instability of random sequence 1 2 NX X X, ,...,  or random process ( )X t , 

both with limited first two moments, can be characterized by parameters describing fluctuation of average NY  or 

fluctuation of expectation 
Nym . 

Fluctuation of average NY  is characterized by sample variance 
NYD  of average. To characterize statistical 

instability of random sequence, the parameter of statistical instability 1

M
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N
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N
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Therefore another parameter of statistical instability may be the parameter 2γ
yN

N

m

N
x

D

D
  that is fluctuation 

variance of average expectation 
yN

mD  normalized on mean 
NxD  of variances of random variables nX . 

It follows from Chebyshev theorem, that parameter of statistical instability 1γ N  tends to parameter of statistical 

instability 2γ N  when N  . If the sequence is statistically stable, the value of these parameters tends to zero 

(because M 0
NYD     and 

NxD  is a finite quantity) and if the sequence is statistically instable, the value of 

them tends to some positive number, fluctuates, or tends to infinite. 

The values of statistical instability 1γ N  and 2γ N  depend from value of expectation of sample variance of average 

M
NYD   , variance of average expectation 

yN
mD , and mean 

NxD  of variances of random variables nX . With 

reducing of fluctuation parameters M
NYD    and 

yN
mD , parameters of statistical instability are reducing too, and 

with reducing of mean 
NxD  of variances, parameters of statistical instability are rising. 

Sometimes more useful are parameters of statistically instability 1μ N , 2μ N  linked with parameters 1γ N  and 2γ N  

by the following expressions: 1
1

1

γ
μ

1 γ
N

N
N




, 2
2

2

γ
μ

1 γ
N

N
N




. Less values of parameters 1μ N , 2μ N  more 

statistically stable is according sequence. 

Parameters 1γ N  and 2γ N  have only lower bound (that is zero) and parameters 1μ N , 2μ N  have as lower as upper 

bounds: lower bound equals to zero and upper bound – to unit. 

Calculating results of parameters 1γ N  and 2γ N  for described eight models and also four obtained records of line 

voltage are presented in Fig. 6. According calculating results of parameters 1μ N  and 2μ N  are viewed in Fig. 7. 

Thin lines 1 – 2 and 7 – 8 present calculating results for models 1 – 2 and 7 – 8 accordingly, bold lines 3 – 6 
present calculating results for models 3 – 6 accordingly, and heavy lines 9 – 12 present calculating results for 
obtained records of line voltage. 

In calculations, sample variances were used instead of variances. 

  
a      b 

Fig. 6. Parameter of statistical instability of average 1γ N  (а) and parameter of statistical instability of expectation 

of average 2γ N  (b) 
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а     b 

Fig. 7. Parameter of statistical instability of average 1μ N  (а) and parameter of statistical instability of expectation 

of average 2μ N  (b) 

 

It follows from the curves, in the area of high observation time for all models and real processes, parameter of 

statistical instability of average 1γ N  practically equals to parameter of statistical instability of expectation of 

average 2γ N  ( 1 2γ γ γN N N  ) and parameter of statistical instability of average 1μ N  – to parameter of statistical 

instability of expectation of average 2μ N  ( 1 2μ μ μN N N  ). So, any of these parameters may be used to 

describe statistical instability of the process. 

Real processes can be presented as a mixture of statistical stable and statistical unstable components. Value of 
parameter μN  characterizes approximately percentage composition in the researched process of statistically 

unstable components. Time changes of value of this parameter give information about observation intervals on 
which the process can be regarded as statistically stable or statistically unstable. 

For models 1 – 3 and 7, that accord to statistically stable processes, parameter value μN  steadily reduces with 

rising of observation time t ; for models 4 – 6 and 8, that accord to statistically unstable processes, value of this 
parameter increases. In the area of large observation times, for all real voltage processes the value of the 
parameter or steadily increases or oscillates on high level. 

In the area of large observation times, values of parameters 1γ N , 2γ N  and 1μ N , 2μ N  are higher for statistically 

unstable processes than for statistically stable ones. This fact corroborates usefulness of parameters 1γ N , 2γ N  

and 1μ N , 2μ N  for detection of statistical stability disturbance. 

In the area of large observation times, values of instability parameters 1γ N , 2γ N  are in dozens times more for all 

experimental obtained records (not only presented in Fig. 6, 7) than for researched statistically stable models. It 
follows from this result that line voltage fluctuation has evidently statistically instable properties. 

The interval on which parameters of statistical instability have high values, begins from some hours and follows to 
end of the records. So, the area of statistical instability is continues one, and coves range from some hours to not 
less 60 hours. 

Stable character of disturbances of statistical stability of line voltage allows to assume that there are analogous 
disturbances of statistical stability in case of other physical (and may be not only physical) phenomena. Statistical 
stability of some others physical quantities are researched in the next sections. 
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6. Experimental research of statistical stability of height of sea waves and of their periods  

Statistical stability of height of sea waves and of their periods was experimentally researched on the basis of 
statistical data obtained by Shirshov Oceanology Institute, RAS [ESIMO, 2010] from 2001 to 2003 years over a 
period of 15 months. Data was registered by wave station with interval from an hour to some hours. 

Statistical instability parameters μN  were calculated for height of sea waves and for their periods (Fig. 8). 

It follows from the figure that statistical instability parameters μN  have high value beginning from the zero 

reading, according the first ten observation hours. This means that in all observation interval, time dependences 
of height of sea waves and time dependences of periods of these waves have statistically unstable character. 
Therefore in time intervals, that are more ten hours statistical prediction of value of these parameters is practically 
impossible. 

 

 
а    b 

 

 
c    d 

 

Fig. 8. Parameter of statistical instability μN  averaged on 15 months (solid lines) and bounds of the parameter 

(dotted lines): a – for maximum height of waves, b – for 10% height of waves, c – for periods of maximum height 
of waves, d – for periods of 10% height of waves 

 

7. Experimental research of statistical stability of Earth magnetic field 

Magnetic field of the Earth is changed in time and space. Observations of its fluctuation are led for a lot years in 
different Earth points.  



Information Models of Knowledge 
 

408 

 
Fig. 9. Time dependencies of x , y , and z  components of Earth magnetic induction for13 years in Moscow 

region (a, c, e) and according time dependencies of averages (b, d, f) 

 

Time dependencies of x , y , and z  components of Earth magnetic induction obtained on the basis of IZMIRAN 

data [IZMIRAN, 2010] are presented in Fig. 9 a, c, e. According time dependencies of averages are shown in 
Fig. 9 b, d, f. Statistic instability parameters 1μ N , 2μ N  calculated on the described technique are presented in 

Fig. 10. 

 
 

Fig. 10. Time dependencies of statistical unstable parameters 1μ N , 2μ N  for x , y , and z  components of Earth 

magnetic induction for 13 years in Moscow region (according 1, 2, and 3 curves) and also for control white 
Gaussian noise (curves without number). Solid lines accord to parameters 1μ N  and dotted lines – to parameters 

2μ N  
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Analyze of curves shows that Earth magnetic induction field is not statistically stable, in general, although there 
are some time intervals where magnetic induction is practically stable. Duration of these intervals is not regular 
and fluctuates from some months to some years. Hence, statistical prediction of Earth magnetic induction field in 
the interval that is more some months is problematic and in the interval that is more some years is practically 
impossible. 

8. Experimental research of statistical stability of currency rate 

Imaging about statistical instability of currency rate gives curves in Fig. 11, obtained on the basis of FOREXITE 
data [FOREXITE, 2010]. It follows from curves, statistical instability parameter has high values beginning from the 
first observation hours and continuously rises. Hence, currency rate is statistically unstable quality and its 
statistical prediction is practically impossible. 

 

 
а    б 

Fig. 11. Statistical instability parameter μN  averaged on 16 decades (solid line) and bounds of its changes 

determined by STD (dotted lines) for currency rate of AUD relative to USD for 2001 (a) and 2002 (b) years 

 

Conclusion 

The materials generalizing results of author’s researches in the field of disturbance of statistical stability have 
been presented. The concepts of statistical stability of random sequences and random processes are formalized. 
Parameters characterizing their statistical stability in finite observation interval are proposed. It is found that 
statistical unstable processes are especial class of non-stationary processes. Statistical stability disturbance can 
be explained by low frequency cyclical fluctuations of expectation. It has been researched statistical stability of a 
number of physical quantities and processes, in particular line voltage, height of sea waves and their periods, 
Earth magnetic field fluctuation, and currency rate. It has been found that for all researched quantities and 
processes, there is statistical stability disturbance on large observation intervals. Obtained results corroborate the 
hypotheses that are in base of new physico-mathematical theory of hyper-random phenomena: real physical 
events, quantities, processes, and fields are not statistical stabile and they can be adequately described by 
hyper-random models taking into consideration their statistical instability. 
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