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MULTIPLE FOLDING OF VLSI REGULAR STRUCTURE VIA BOOLEAN 
SATISFIABILITY 

Liudmila Cheremisinova 

Abstract: The problem under consideration is to reduce the area of the layout of regular VLSI structures by 
means of their folding. A novel reformulation of the folding problem as the Boolean satisfiability problem solved 
with any standard SAT-solver is proposed. The method is developed that allows creating a Boolean equation 
presenting folding problem in CNF form. 

Keywords: design automation, area optimization, VLSI structure folding. 

ACM Classification Keywords: B.6.3 [Logic Design]: Design Aids – Optimization; B.7.2 [Integrated circuits]: 
Design Aids –Layout. 

Introduction 

When designing control logic of custom VLSI, regular structured logic is widely used. This logic refers to logic 
forms that exhibit a high degree of regularity in their layout and interconnections. The widespread used hardware 
forms for structured design of digital VLSI systems are Programmable Logic Arrays (PLAs), Gate Matrices and, 
regular structures on the base of MOS-transistors connected in sequence (RMOS-structures) and others 
[Ullman, 1984]. All these forms have a two-dimensional structure consisting of an array of rows and columns. There 
are transistors in intersections of some rows and columns. The other special features of the structures under 
consideration are specified by the technology of VLSI manufacturing. The price paid for the structural regularity is 
larger chip area because obtained layouts are as a rule sparse: a large percentage of the row-column intersections 
are not personalized. Several techniques have been proposed for reducing the area required. Two approaches are 
usually used to reduce the area occupied by array-based structures: logic minimization that provides logic 
expressions with minimal number of products (and literals) and topological minimization reclaiming unused space. 

The proposed paper deals with the problem of optimizing the area of the regular structure layout of regular 
structure by means of its folding [Hachtel, 1982], [DeMicheli, 1983], [Lecky, 1989], [Cheremisinova, 2004]. 
Folding is based on merging several columns (and/or rows) of an array-based structure into a single column 
(row). One special case of folding is simple column (and/or row) folding that involves merging a pair of columns 
(and/or rows) into a single column (row). The objective of one-dimensional column (row) folding is to find a 
permutation of the rows (columns) such that the set of columns (rows) could be placed in the minimum number of 
vertical lines. A generalization of the simple folding is multiple folding [DeMicheli, 1983] when more than two 
columns may share the same vertical line. This availability supposes rearrangement of different pieces (initial 
columns) of the same vertical line and thus multiple column (row) folding aims at determining a permutation of the 
regular structure rows (columns) which allow to implement in each vertical line (horizontal line) of the folded 
structure a set of initial columns (rows). 

The proposed algorithm will be formulated regarding multiple column folding but it is valid for row folding too. 
Folding a column supposes to split that column into several segments so that several array inputs or outputs may 
share the same column of the folded two-dimensional structure. A multiple column folding is implemented by 
reordering the regular structure rows such that all of the rows populated along one column cover physically one 
segment of a vertical line that does not intersect with segments for other columns of the folding set. 

Recent advances in solving Boolean satisfiability problems caused a significant resurgence of the application of 
satisfiability solvers (SAT-solvers) in different electronic design automation domains. In the last years, great 
improvements were achieved in both the speed and capacity of SAT-solvers [Eén], [Mahajan, 2005], 
[Goldberg, 2002], which are now very fast and can handle huge problems. The new efficient SAT-solvers open 
new possibilities for applying this technology by translating hard design problems to equivalent SAT problems. So 



Information Models of Knowledge 
 

412 

the existence of effective SAT-solvers makes it attractive to translate folding problem into Boolean problem 
solvable by SAT-solvers. 

Devadas has been reformulated a routing problem as a Boolean satisfiability problem in his pioneer paper 
[Devadas, 1989], later the same manner the transformation of the problem of PLA column folding has been done 
in [Quintana, 1995]. Though the Boolean satisfiability is an NP-hard problem (as well as the folding problem 
[Luby, 1982]), there are successful, practical attacks on even large satisfiability problems by using Binary 
Decision Diagrams (BDDs) [Bryant, 1986] and heuristic search [Eén], [Mahajan, 2005], [Goldberg, 2002]. The 
papers [Devadas, 1989], [Quintana, 1995] attacked their problems using BDD representation of verified Boolean 
function whose internal structure captures the solved problem. In contrast to these approaches the method 
presented here turn a folding problem into an instance of a Boolean satisfiability problem solved with any 
standard SAT-solver. SAT-solvers normally operate on Boolean formulas in Conjunctive Normal Form (CNF), so 
the method is proposed that allows creating a Boolean function (that presents folding problem) in CNF form. 

Boolean SAT formulations are binary in essence. Introduced Boolean variables represent solution alternatives, 
and Boolean formulas represent constraints imposes by the solved problem. All variable assignments satisfying 
Boolean formulas are equivalent when solving the satisfiability problem. During the search of SAT solution there 
is no cost mechanisms to favor one over another. Thus we can only get the answer whether some solution of our 
problem exists. That is why in [Quintana, 1995] the problem of optimum PLA folding is solved regarding a priori 
assigned folding size (number of folding pairs or sets). The problem of PLA folding is considered and formulated 
as a problem of Boolean satisfiability, deriving a Boolean function such that an assignment of variables that 
satisfy it (if it exists) defines a fold of the given size. Thus, they are forced continuously to reformate the folding 
problem with decreasing values of folding sizes until a satisfiable problem formulation exists. Such a 
reformulation of the folding problem based on enumeration of folding size values becomes cumbersome for PLAs 
of great size, especially for “dense” PLAs. 

Unlike that, in the present paper it is suggested to deal with the key problem of array-based structure folding – the 
problem of ascertaining whether the given folding set (the collections of columns) is implementable. There exist 
efficient methods of finding the folding sets (for example, in [Cheremisinova, 1999] this task is reduced to clique 
identification in graph of pairwise compatibility between columns) but the methods of examining the 
implementability of a collection of folding sets (they are observed in [Lecky, 1989]) are complicated and they are 
formulated concerning ordered folding collections only. Hence, in the paper we focus upon the task of 
reformulation the folding problem as SAT problem and solve it in more general statement. A collection of 
unordered column folding lists is dealt with, and the problem is reformulated as follows: it is necessary 1) to 
establish whether there exists ordering of elements within folding lists such that the collection of the obtained 
ordered column folding lists is implementable, and 2) to find the ordering of rows of the array-based structure 
induced by the collection of ordered column folding lists. The results described in the paper are generalization of 
ones proposed in [Cheremisinova, 2010] where the case of simple folding is considered and so the case of 
folding pairs is dealt with. 

The problem of a regular structure folding 

The combinational PLA is an example of an array-based structure. The overall combinational PLA is a standard 
two level NOR-NOR structure. Its vertical lines are assigned with the input variables (and their complements) and 
output variables. Inputs run vertically through the first part of a PLA matrix, called as the PLA AND plane. It 
generates signals on its rows, which are used as inputs to the second part of a PLA matrix called as the PLA OR 
plane. In Figure 1 an example of an array-based structure (that can be viewed as PLA AND plane) and its folded 
form are shown. Here, a dot means placing a transistor on crosspoint of vertical and horizontal lines. 
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Figure 1 An example of array-based structure 

Before we can give a mathematically tractable definition of PLA folding problem and its solution let give some 
other definitions. Either AND plane or both AND and OR planes together can be described in symbolic form by a 
Boolean matrix B having sets C(B) and R(B) of its columns and rows. 1 in the position i,j of the matrix B means 
there is an appropriate crosspoint (transistor) between the i-row and the j-column in the matrix. Each column ci of 
matrix B implies the set R(ci) of rows with a nonzero entry in this column: ri  R(ci)  bij = 1. And let C(ri) be a 
set of columns with a nonzero entry in the i-th row of B. 

Any two columns ci and cj are disjoint if R(ci)  R(cj) = . Two disjoint columns both do not have transistors on 
any particular row of the array-based structure. If there are no restrictions on the folding type two disjoint columns 
are compatible and can be folded together, so they form a column folding pair.  

A column folding list lck = (ck1, ck2,…, ckm) is a set of disjoint (in pairs) columns cij, it is unordered in general case. 
An ordered column folding list lcok = <ck1, ck2,…, ckm> is a column folding list lck whose elements cki are ordered. An 
ordered column folding list (OCFL) lcok of cardinality two is an ordered column folding pair. Any OCFL lcok = <ck1, 
ck2,…, ckm> can be actually implemented in the same vertical line of array-based structure moving сk1 above ck2, 
сk2 above ck3, an so on, сk,m-1 above сkm. So OCFL lcok results to permutation on the set of rows: R(ck1)  R(ck2) – 
the rows of R(ck1) are all above those of R(ck2), R(ck2)  R(ck2) – R(ck2) are all above those of R(ck3), and so on, 
R(ck,m-1)  R(ck,m) – the rows of R(сk,m-1) are all above those of R(сkm) inducing the relation on row set R(B): 

P r(lcok) = 
ji ,
 (R(cki)  R(ckj)),   i.e.   P r(lcok) = { rp  rq/rp  R(cki), rq  R(ckj), i < j }. 

This relation is partial because it is irreflexive, asymmetric and transitive by its definition. Any unordered column 
folding list (CFL) lck = (ck1, ck2,…, ckm) induces up to m! possible OCFLs lcokl = <ck,l1, ck,l2,…, ck,lm> begot by 
different permutations of columns in lck. Thus CFP lck induces one of m! possible partial relations on the row set 
R(B). For example, the mentioned array-based structure (Figure 1) allows the CFL lc = (c1, c3, c5) that induces six 
OCFLs: 

lco1 = <c1, c3, c5>; lco2 = <c1, c5, c3>; lco3 = <c3, c1, c5>; lco4 = <c3, c5, c1>; loc5 = <c5, c1, c3>; lco6 = <c5, c3, c1>. (1) 

and correspondingly six partial row orderings, the first of them is as follows: 

{r1, r3, r5}  {r4, r8}; {r4, r8}  {r2, r6, r7}. 

A column folding set (CFS) Lck = {lck1, lck2,…, lckn} is a set of disjoint column folding lists (ordered Lcok or unordered 

Lck). The number of columns entering into all CFLs lcki  Lck is called as the size of CFS Lck. An ordered column 
folding set (OCFS) Lcok = {lcok1, lcok2,…, lcokn} induces a set of ordering relations among the rows that is the union of 
ordering relations induced by OCFLs lcok belonging to the OCFS P r(lcok): 
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P r(Lco
k) = 

n

i 1
 (P r(lco

ki)). 

This relation P r(Lcok) is irreflexive, asymmetric but not transitive in general case. The transitive closure Rt(P r) of 
P r(Lcok) is irreflexive, transitive but can be not asymmetric. 

It is proven [DeMicheli, 1983] that an OCFS Lcok is implementable topologically (by a folded array-based structure) if 
the transitive closure Rt(P r) of the relation P r(Lcok) is a partial ordering on R(B), that is Rt(P r) is asymmetric. In other 
words, an OCFS Lcok is implementable topologically if there exist linear order of the rows R(B) extending the row 
ordering P r(Lcok). For example, for the considered array-based structure (Figure 1) there are four CFLs: 

lc1 = (c1, c3, c5); lc2 = (c1, c2); lc3 = (c2, c6); lc4 = (c3, c6) 

two of them are disjoint (lc1 and lc3) and may constitute CFS of maximal size: Lc = {(c1, c3, c5), (c2,c6)}, it induces 12 
OCFS Lcok (lc1 allows 6 different orderings (1) and lc2 allows 2 different orderings: <c2, c6> and <c6, c2>). One of the 

induced OCFS Lco1 = {<c1, c3, c5>, c2,c6} generates the relation 

P1r(Lco1) = R(c1)  R(c3)  R(c3)  R(c5)  R(c2)  R(c6) =  

= {r1, r3, r5}  {r4, r8}  {r4, r8}  {r2, r6, r7}  {r2, r8}  {r3, r5, r9}. 

Its transitive closure Rt(P1r) contains conflict pairs (r3, r2) and (r2, r3); so Rt(P1r) is not a partial ordering on R(B) 
(because it is not asymmetric) and OCFS Lco1 is not implementable. But the other induced OCFS Lco2 = 

{<c1, c3, c5>, c6,c2} generates the relation 

P2r(Lco1) = R(c1)  R(c3)  R(c3)  R(c5)  R(c6)  R(c2) =  

= {r1, r3, r5}  {r4, r8}  {r4, r8}  {r2, r6, r7}  {r3, r5, r9}  {r2, r8}, 

whose transitive closure Rt(P2r) is asymmetric, so it is partial relation and OCFS Lco2 is implementable. 

An implementable OCFS Lcok specifies the structure of the folded array, and its size is referred to as the size of 

the folding: the number of OCFLs in Lcok corresponds to the number of columns that will replace 
n

i 1
 |lcoki| 

columns of the initial array-based structure. For example, the size of implementable OCFS Lco2 = {<c1, c3, c5>, 

c6,c2} is equal five and two columns of the folded regular structure replace five columns of the initial structure. 

So the formal statement of optimal folding problem is as follows: given a Boolean matrix representing array-based 
structure, find an implementable ordered folding set of maximum size. 

A column folding set (consisting of unordered folding lists) Lck = {lck1, lck2,…, lckn} is implementable if there exists an 

implementable OCFS Lcok which OCFLs lcoki are got by ordering CFLs lcki  Lck. 

OCFS implementability checking via Boolean satisfiability formulation 

Further the problem is stated as follows: given a column folding set (ordered) Lco = {lco1, lco2,…, lcon}, it is 
necessary to verify whether it is implementable. If it is, the corresponding partial order relation on the regular 
structure rows will be found. OCFS Lco can be obtained by one of the known methods (for example, by the 
method from [DeMicheli, 1983] or from [Cheremisinova, 1999]) where these task is reduced to maximum cliques 
identification in the graph of compatibility relation between array columns). 

As it follows from above discussion an OCFL lcok = <ck1, ck2,…, ckm> induce the following partial ordering: 

(R(ck1)  R(ck2))  (R(ck2)  R(ck3))   …   (R(ck,m-1)  R(ckm)) (2) 
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The task of checking whether OCFS Lco is implementable is reduced as shown below to checking whether there 

exists such an ordering of rows that provides fulfillment of the condition (2) for all OCFL lcok  Lco. Let us show 
how to reduce the task to solving logic equation. 

Let form a set RP of rows that enter into at least one of the sets R(сij) (сij  lcoi, lcoi  Lco), i  {1,2,…,n}, 

j  {1,2,…,im}. Positions of rows of the set R(B) \ RP in the folded array-based structure have no influence on the 
possibility of the structure folding regarding column folding lists from Lco. Therefore we may consider further only 

rows of RP. Moreover, we do not need to consider the rows each of which is a member of the only R(сkj) (сkj  lcok, 

lcok  Lco), they may be excluded from RP because their placing is fixed only relative to the rows of a single set 

R(сki) and has no conflicts regarding placing rows from other sets R(сsq) (s  k). In this way we can reduce the 
number of variables and terms in a formed equation. 

To determine ordering of |RP| rows we encode each of the rows of the set RP in q = log2| RP| Boolean variables 

x1,x2, …,xq (where t is the least integer that is not less than the value of t). The value of the code xi1xi2…xiq for 
the row ri specifies its serial number that shows in which physical horizontal line the row ri will be in the folded 

array-based structure. Thus the conditions implied by orderings ri  rj or ri  rj can be represented by the following 
functions: 

fij = (xiqxiq-1…xi1)  (xjqxjq-1…xj1)   or   fij = (xiqxiq-1…xi1)  (xjqxjq-1…xj1). (3) 

So the restriction (2), induced by an OCFL lcok = <ck1, ck2,…, ckm> and imposed on the order of array rows, takes 
the following form: 

1

1





m

l
 ( m

lp 1
 (

)( kli cRr
 (

)( kpj cRr 
 fij))). (4) 

An ordered folding set Lco = {lco1, lco2,…, lcon} is implementable if the following equation is satisfiable: 

n

k 1
 ( 1

1





m

l
 ( m

lp 1
 (

)( kli cRr
 (

)( kpj cRr 
 fij)))) = 1 (5) 

If the equation (5) has an assignment to the variables xil  {0,1} that makes it to equal 1 than the considered 
OCFS Lco is implementable. And the satisfying assignment specifies the serial numbers of the rows of RP. 
Otherwise, when no satisfying assignment for the equation (5) exists, the considered OCFS Lco is not 
implementable. 

For illustration the technique consider OCFS Lco2 = {c1, c3, c5,c6,c2} from the example above. As R(c1) = 
{r1, r3, r5}; R(c3) = {r4, r8}; R(c5) = {r2, r6, r7}; R(c2) = {r2, r8}; R(c6) = {r3, r5, r9} we have RP ={r1, r2, r3, r4, r5, r6, r7, r8} 
that can be reduced to RP ={r2, r3, r5, r8} because some rows enter into the only set R(ci). Thus we have 
R’(c1) = {r3, r5}; R’(c3) = {r8}; R’(c5) = {r2}; R’(c2) = {r2, r8}; R’(c6) = {r3, r5}. Four rows from RP are encoded using two 
Boolean variables x2 and x1, their values for a row ri are xi2 and xi1. After encoding equation (5) takes the form: 

(f3,8
  f5,8

  f8,2
)  (f3,2

  f3,8
  f5,2

  f5,8
) = f3,8

  f5,8
  f8,2

  f3,2
  f5,2

 =  
 = (x32x31  x82x81)  (x52x51  x82x81)  (x82x81  x22x21)  (x32x31  x22x21)  (x52x51  x22x21) 

(6) 

CFS implementability checking via Boolean satisfiability formulation 

Further we consider that unordered column folding set Lc = {lc1, lc2,…, lcn} is given where lck = (ck1, ck2,…, ckm). The 
problem is stated as follows: verify whether CFS Lc is implementable and, if it is, the appropriate implementable 
OCFS should be found and the corresponding partial order relation on the array rows. This case differs from that 
considered above only by what to check CFS implementability we should look over different orders of columns 

within all CFLs lci  Lc, i.e. we should generate all permutations on a set of columns for each folding list lci  Lc. 
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That follows from the fact that a CFL lck = (ck1, ck2,…, ckm) induces the set P(km) of size km! of possible OCFLs lcoki 
= (ck,i1, ck,i2,…, ck,im) (m = 1, 2,…, km!) corresponding to different permutations of columns in lck. Thus CFL lck 
induces the following partial relations on the row set R(B) that is the extension of (2): 

)(co
sk, mkPl 
 ((R(ck,s1)  R(ck,s2))  (R(ck,s2)  R(ck,s3))   …  (R(ck,sm-1)  R(ck,sm))). 

(7) 

After encoding rows of the set RP formed the same manner as in previous section the condition for CFL lck takes 
the following form that is more complex than that of (4) for OCFL lcok: 

)(co
sk, mkPl 
 ( 1

1





m

l
 ( m

lp 1
 (

)( ,slki cRr
 (

)( ,spkj cRr 
 fij)))).  (8) 

With (8) in mind, by analogy with (5), an unordered folding set Lc = {lc1, lc2,…, lcn} is implementable if the following 
equation is satisfiable: 

n

k 1
 (

)(co
sk, mkPl 
 ( 1

1





m

l
 ( m

lp 1
 (

)( ,slki cRr
 (

)( ,spkj cRr 
 fij))))) = 1  (9) 

If the equation (9) has an assignment to the variables xil  {0,1} that makes it to equal 1 than the considered 
CFS Lc is implementable. And the satisfying assignment specifies the serial numbers of the rows of RP, which 
show, in its turn, how the CFLs lck = (ck1, ck2,…, ckm) should be ordered. Otherwise, when no satisfying assignment 
for the equation (9) exists, the considered CFS Lc is not implementable. 

To illustrate the technique let consider CFS Lc = {(c1, c3, c5), (c2,c6)} from the above example. Thus we have 
RP ={r2, r3, r5, r8}, R’(c1) = {r3, r5}; R’(c3) = {r8}; R’(c5) = {r2}; R’(c2) = {r2, r8}; R’(c6) = {r3, r5}, CFS Lc induces 12 
OCFS Lcok. After encoding four rows from RP the equation (9) takes the form: 

((f3,8
  f5,8

  f8,2
)  (f3,2

  f5,2
  f2,8

)  (f8,3
  f8,5

  f3,2
  f5,2

)  (f8,2
  f2,3

  f2,5
)   

  (f2,3
  f2,5

  f3,8
  f5,8

)  (f2,8
  f8,3

  f8,5
))  ((f2,3

  f2,5
  f8,3

  f8,5
)  (f3,2

  f3,8
  f5,2

  f5,8
)) 

(10) 

Transforming the equation for OCFS implementability checking into CNF form 

When testing CFS whether it is implementable we need to ascertain SAT and to find a solution (if it exists), that 
gives OCFS and array row ordering. Effective SAT-solvers have been developed to perform the search for a 
satisfying solution (or prove that it does not exist). The best of SAT-solvers that exist today ([Eén], 
[Mahajan, 2005], [Goldberg, 2002] and others) are capable of handling millions of logical clauses and thousands 
of variables. SAT-solvers usually require their input to be in CNF form, thus it is necessary to convert the left part 
of the equations (5) and (9) into CNF form. CNF formula is expressed as the product of clauses, where each 
clause is the sum of literals. A literal is either variable or its negation. 

To convert (5) into CNF form it is enough to get CNF form for the function fij = (xiqxiq-1…xi1)  (xjqxjq-1…xj1) (3) 

only. For example for q = 1 (only one encoding variable) we have two-argument function fij = (xi1)  (xj1), its 
minimum CNF formula is written over two variables and has two clauses: 

С(fij) = xi1xj1. 

For q = 2 we have four-argument function fij = (xi2xi1)  (xj2xj1), its minimum CNF formula is written over four 
variables and has five clauses: 

С(fij) = (xi2  xi1)  (xj2  xi1)  (xi2 xj1)  (xj2 xj1)  (xi2 xj2). 

In general case CNF formula for q = t depends on 2t arguments. It is not difficult to show that the CNF formula for 
q = t + 1 can be recursively received from the CNF formula for q = t by transforming each r-th clause d tr of the 

first CNF into two clauses (xit+1  d tr), (xjt+1  d tr) and adding into the resulting CNF one more additional clause 



I T H E A 
 

417

(xit+1 xjt+1). So the minimum CNF for q = t + 1 will consist of nt+1 = 2nt + 1 clauses, where nt is the number of 
clauses in CNF for q = t. 

After substituting CNFs for the function fij we transform (5) into the following Boolean equation whose left part is CNF: 

n

k 1
 ( 1

1





m

l
 ( m

lp 1
 (

)( kli cRr
 (

)( kpj cRr 
 C(fij))))) = 1 (11) 

Thus the task of checking whether an ordered column folding set is implementable is reduced to the task of 
checking whether CNF formula (11) is satisfiable. 

To make clear the above transformations, it is useful to proceed with transformations of the formula (6) for OCFS 

Lco2 = {c1, c3, c5,c6,c2} implementability checking into the following equation in CNF form: 

 

f3,8
  f5,8

  f8,2
  f3,2

  f5,2
 = ((x32  x31)  (x82  x31)  (x32 x81)  (x82 x81)  (x32 x82))   

  ((x52  x51)  (x82  x51)  (x52 x81)  (x82 x81)  (x52 x82))   
  ((x82  x81)  (x22  x81)  (x82 x21)  (x22 x21)  (x82 x22))   
  ((x32  x31)  (x22  x31)  (x32 x21)  (x22 x21)  (x32 x22))  

  ((x5
2  x5

1)  (x2
2  x5

1)  (x5
2 x2

1)  (x2
2 x2

1)  (x5
2 x2

2)) =1. 

(12) 

 

Variable assignment satisfying the CNF is x32 = x31 = 1; x52 = 1; x51 = 0; x82 = 0; x81 = 0; x22 = x21 = 0. So the rows of 
RP ={r3, r5, r8, r2} are encoded as r3 – 11, r5 – 10, r8 – 01, r2 – 00. The solution specifies partial row ordering r3, r5, r8, r2 
and linear ordering that is, for example, r1, r3, r5, r9 r4, r8, r7, r6, r2, which leads to the folded array-based structure 
shown in Figure 1. 

Transforming the equation for CFS implementability checking into CNF form 

For more general case of unordered column folding set, after substituting CNFs for the functions fij into (9) we 
construct following Boolean equation whose left part is not CNF generally speaking: 

n

k 1
 (

)(co
sk, mkPl 
 C

k,s) = 1 (13) 

where C
k,s is the following CNF formula: 

C
k,s = 1

1





m

l
 ( m

lp 1
 (

)( ,slki cRr
 (

)( ,spkj cRr 
 C(fij)))). (14) 

Boolean function on the left part of the equation (13) is almost CNF but not CNF in general case. To solve 
difficulty arising in transformation of Boolean formula (

)(co
sk, mkPl 
 C

k,s) to a CNF form we suggest to convert it by 

encoding km! CNFs C
k,s using unary codes, for example. km! additional coding Boolean variables zk,s are 

introduced for encoding km! CNFs C
k,s. To choose between km! CNFs C

k,s we can replace (
)(co

sk, mkPl 
 C

k,s) 

(from (13) with: 

(
)(co

sk, mkPl 
 (C

k,s  zk,s))  ( !

1

mk

s
 zk,s). (15) 
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Here (C
k,s  zk,s) can be considered as CNF that is simply deduced from C

k,s with the help of the distributive law (of 
Boolean algebra) of the conjunction concerning the disjunction: encoding variable zk,s is added into each clause 

dm  C
k,s, that is dm  zk,s . To code all the CFLs lck  Lc we should introduce 

n

k 1
 (km!) encoding variables zk,s. 

Thus, from the formulas (11), (13) – (15) obtained previously we construct CNF formula solving the key problem 
of array-based structure folding: 

n

k 1
 ((

)(co
sk, mkPl 
 (C

k,s  zk,s))  ( !

1

mk

s
 zk,s))) = 1. 

To make clear the above transformations, it is useful to proceed with transformations of the formula (10) for CFS 
Lc = {(c1, c3, c5),(c2,c6)} implementability checking into the following equation in CNF form: 

 

((f3,8
  f5,8

  f8,2
)  …  (f2,8

  f8,3
  f8,5

))  ((f2,3
  f2,5

  f8,3
  f8,5

)  …) = 

= ((x32  x31  z11)  (x82  x31  z11)  (x32 x81  z11)  (x82 x81  z11)  (x32 x82  z11))   

 ((x52  x51  z11)  (x82  x51  z11)  (x52 x81  z11)  (x82 x81  z11)  (x52 x82  z11))  

 ((x82  x81  z11)  (x22  x81  z11)  (x82 x21  z11)  (x22 x21  z11)  (x82 x22  z11))  ….  

 ((x22  x21  z61)  (x82  x21  z61)  (x22 x81  z61)  (x82 x81  z61)  (x22 x82  z61))   

 ((x82  x81  z61)  (x32  x81  z61)  (x82 x31  z61)  (x32 x31  z61)  (x82 x32  z61))  

 ((x82  x81  z61)  (x52  x81  z61)  (x82 x51  z61)  (x52 x51  z61)  (x82 x52  z61))  

 (z11 z21 z31 z41 z51 z61 )  

 ((x22  x21  z12)  (x32  x21  z12)  (x22 x31  z12)  (x32 x31  z12)  (x22 x32  z12))  … 

 (z12 z22) = 1. 

 

One of the variable assignments satisfying the CNF is the same as for CNF (12). It allows to encode rows of 
RP ={r3, r5, r8, r2} as r3 – 11, r5 – 10, r8 – 01, r2 – 00 and to fold array-based structure as shown in Figure 1. 

Conclusion 

In this paper a novel reformulation of the multiple folding problem as the Boolean satisfiability problem solved with 
any SAT-solver was developed. To be exact the task of checking whether the given set of folding sets (or pairs in 
the case of simple folding) is implementable is considered. The distinctive features of the proposed method are 
as follows: 

1) it can deal with a set of unordered column folding lists: 

2) it orders column folding lists such a manner the resulting set of ordered folding lists to be implementable (if it is 
possible); 

3) it specifies the ordering of rows of the regular structure induced by the found set of ordered column folding lists 
(if it exists). 
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