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CYCLE ROUTES OPTIMIZATION FOR NOT FULL GRAPH 

Anatoly Panishev, Anton Levchenko 

Abstract: Searching for cycling routes of minimum cost is an urgent task of transport nets designing, traffic flows 
routing, etc. Each locality, transport node can be the vertex of the graph, and each cut line, linking localities, − the 
edge of the graph. The edge’s cost represents distance, repair cost, channel bandwidth, circuit resistance, etc.   

If closed route reaches all vertexes of the graph exactly once, it is called Hamiltonian cycle (HC), and the task of 
searching for minimum cost is the Hamiltonian Traveling Salesman’s Problem (HTSP). HTSP is NP-hard and not 
always has a solution [Майника, 1981].  Algorithms delivering optimum to HTSP are described as an exhaustive 
search reduction. 

If restriction of visiting only once every vertex is taken off, then such task can be called Common Traveling 
Salesman Problem (CTSP). Besides completeness of the route is an additional restriction for this task. CTSP 
seems the generalization of HTSP [Бондаренко, 2004]. For every linked graph always the CTSP’s set of 
solutions is not empty, and it allows using approximate algorithms and heuristics. The authors have no data about 
exact methods, bringing optimum of closed CTSP. 

This article offers exact algorithm of CTSP solution, bringing the cycle of minimum cost, which includes all 
vertexes of the graph at least once and contains the less number of edges. 

Keywords: TSP, Traveling Salesman Problem, Hamiltonian cycle, closed route, optimal route, exact algorithm. 

ACM Classification Keywords: Algorithms, Theory. 

Introduction 

Transport nets, electric chains are often presented as graph. Most methods come from the idea that graph is full. 
The ideas, offered in the article, allow using standard methods for arbitrary connected graphs.  

One of the most famous graph problems is Traveling Salesman’s Problem (TSP). We call Hamiltonian TSP 
(HTSP) task of finding minimal cost route visiting all graph’s vertexes only once [Бондаренко, 2004]. If route can 
visit any vertex at least once we call such task Common TSP (CTSP). 

Algorithm’s foundation 

The graph   ,H U V  is given, where V  – is the set of vertexes, U  – is the set of edges, connecting these 

vertexes. Every edge  ,i j U  has cost 0
ijd R , where 0

R  – is the set of real non-negative numbers. The 

task is to find in graph H  minimal cost cycle, which reaches every vertex of the graph. 

If H  is linked, then every random pair of vertexes ,i j V  is connected by the set of simple chains ijA , this set 

contains the chain  ij  with the minimal total weight of included edges   ijD . Matrix    ij
n

D  specifies the 

full graph    ,H V E , with every edge  ,i j E  responses to the chain  ij  with weight   ijD  in the graph 

H . H  is full and meets triangle’s condition 

 ij ik kjd d d ,  i k j  (1) 

By analogy with (1) let’s write following inequality, characterizing weight relationships between edges of the graph 
H , even if it is not full: 

 ij ijd D  (2) 

There are two possibilities: a) all edges of H  meet inequality (2), b) at least one of the edges doesn’t meet (2). 

The graph   ,H V U  is assumed to be Hamiltonian;  ,   – are optimal solutions of HTSP and CTSP 
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accordingly, which are built in the H ,  D  и  C  – costs of these built solutions. Let’s find the minimal cost 

cycle   in the full graph H . 

Predicate 1. If inequality (2) holds for all edges  ,i j U  of the Hamiltonian graph,   ,H V U  then   , 

    C D . 

Demonstration. HTSP solution   contains n  edges of the set U . In case a) the edge  ,i j  of the full graph 

H  has cost   ij ijD d , if  ,i j U , and   ij ijD d  else. Implies, that in the H  exact solution of TSP 

  matches  , and it’s cost doesn’t exceed the cost of random route which contains n  and more edges, 
including  .  

Predicate 2. If at least for one edge  ,i j  of the Hamiltonian graph,   ,H V U  inequality (2) doesn’t hold, then 

    C D . 

Demonstration. In case b) in the full graph H  there is at least one edge  ,i j , which in the H  has cost 

 ij ijd D . If Hamiltonian cycle   of the graph H  contains the edge  ,i j , then it’s cost is greater than the 

cost of the corresponding route in the H , which contains chain  ij  instead of the edge  ,i j U . If the cycle 

  doesn’t include edges, that break inequality (1), then it matches HTSP.  

The graph   ,H V U  is assumed not to be Hamiltonian. Then in any case a) or b) cost of the optimal TSP 

solution   for the full graph    ,H V E  is equal to cost of the CTSP’s solution   for the graph H . So closed 

route   could be found by building Hamiltonian cycle   in the graph H , and replacing every edge  ,i j E  

by the chain  ij  obtained from edges of the set U . 

Exact solution algorithm for CTSP 

S0.   ,H V U  – linked weighted graph with the set of vertexes V , V n , and the set of edges U ,   ij n
d  

– the matrix of weights of the graph H , where if  ,i j U  then 0
ijd R , else  ijd ; 1, ,i j n , 0

R  – the 

set of real non-negative numbers. 

S1. Build by Floyd’s algorithm the matrix   ij n
 of the shortest chains between all pairs of vertexes of the graph 

H  and the matrix    ij
n

D , where every element  ,i j  is equal to the cost   ijD  of the chain  ij ; 

matrices   ij n
 and    ij

n
D  sets the full weighted graph    ,H V E , where every edge  ,i j  replaces 

the chain  ij  in the graph H . 

S2. Find minimal cost circuit   in the graph H by any known algorithm of metric TSP solution. 

S3. Build the optimal solution of CTSP   replacing every edge  ,i j  of circuit   by the graph‘s H chain  ij . 

Modified Little’s method 

Graph H  can contain several tours with the cost equal to optimal, but with different edges number, with the 
above described algorithm can select any of them. Proposed use at the step S2 modification of the classic Little’s 
algorithm, which reaches optimum with less number of edges. 

According to Little’s method, building of the optimal solution occurs during branching with the purpose of partition 
of the set of feasible solutions to disjoint subsets. These subsets are represented as vertexes of the solutions tree 
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[Харари, 1973]. The root of the tree is the vertex  , denoting the set of all feasible TSP solutions. It is the initial 
vertex of branching. 

Let   ijD  is value of the element  ,i j  of the reduced matrix of costs of the initial graph, 1, ,i j n . Every 

matrix’s element is represented as an arc in the oriented multigraph G , where every two vertexes i  and j  are 

connected by the pairs of arcs  ,i j  and  ,j i . 

Branching starts with selection of the most appropriate for tour arc  ,k l  of the multigraph G . The set of 

feasible solutions is divided to two subsets: including the arc  ,k l , and not including that arc. These subsets 

vertexes can be marked as   ,k l  and   ,k l  accordingly. For them lower bounds of TSP’s costs 

   ,k l  and    ,k l  are calculated. Reduced matrices are formed too. Among the terminal vertexes of 

the search tree the vertex with the lowest bound is determined – a branching vertex. According to the branching 
vertex the subset is divided to two subsets by arc, based on reduced matrix. For the corresponding vertexes 
reduced matrixes are formed and lower bounds calculated.  

The way from the search tree’s root to terminal vertex contains a part of a feasible TSP’s solution consisting of 
arcs included in the process of branching. The method is considered completed when the next branching vertex 
includes all tour’s arcs in multigraph G . 

The number of edges in a tour can be called length of tour. If at any step of the branching several terminal 
vertexes have the same minimum bound, then Little’s method offers to choose any of them that do not guarantee 
a CTSP’s solution with the lowest length. We introduce an additional parameter which is a lower bound for the 
length of the resulting tour for each vertex. 

In the building of solutions tree the path from the root to terminal vertex contains the arcs included and not 

included in the partial solution. Let    ,
p qj j jP v v  be the set of arcs included into the partial solution as a 

result of building of the path from root to terminal vertex j . Every arc  ,
p qj jv v  of the set jP  in multigraph G  

is an edge  ,p qv v , in the graph H  with corresponding shortest chain pq , which connects vertexes p  and q  

and contains  pql  edges. Then the partial solution for vertex j  includes  
 




 
,j j jp q

j pq

v v P

l l  edges of the 

graph H . 

Reduced matrix  
j

d  of the vertex j  containts at least one zero element in every column and row. 0 ijd  

means the arc  ,i j  of multighraph G  is the most likely candidate for inclusion in the desired tour. From  
j

d  

columns  pj  and rows  qj are deleted corresponding to arcs   ,
p qj jv v , included to partial solution jP . 

Zeros in the same row (column) of the matrix  
j

d  correspond to arcs of G , starting or ending in the same 

vertex. 

Let’s build matrix  
j

d in such a way that if 0 ijd , then   ijd , else   ij ijd l . Obviously, adding G to 

tour arc  ,i j with 0 ijd , results to the fact that tour in the graph H  increases by ijd  edges. Let  j  is a 

permutation of columns of matrix  
j

d , which is solution of Assignment Problem (AP). The cost of this solution 

  jC  is the sum of diagonal elements of permutated matrix and this sum is minimal. Corresponding to diagonal 
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matrix’s elements edges don’t start or finish at the same vertex. Consequently   jC  is the lower bound for the 

number of edges of graph H , which can be included to the tour in the further branching of the search tree. 

Let every terminal vertex j , is characterized by value: 

    j j j jL l P C  (3) 

in addition to lower bound   j . If lower bound of several terminal vertexes is equal then we choose the vertex 

with minimal value of (3) that facilitates the choice of the optimal solution with less length. 

Graph’s topology and algorithm’s productivity 

Graph of the actual transport network carries information to assess whether it is connected. The three 
components of the graph describing its connectivity are the articulation point, bridge, and a subset of the pendant 
or terminal nodes. 

If deletion of vertex transforms a connected graph into a disconnected, then it is called the point of articulation 
(cutpoint), and an edge with the same property - a bridge. A connected, non-empty, having no cutpoints subgraph 
of graph H  is called a block. Cutpoint is a common vertex of several blocks [Харари, 1973]. Non-empty subset 
of terminal nodes of graph H  creates subgraph H  in the form of forest [Гаращенко, 2007]. Every tree of the 
forest corresponds to root node, connecting it with the part of the graph H , which doesn’t include edges and 
other vertexes of the tree. Obviously, the each tree’s root vertex is a point of articulation, and therefore, every tree 
of the forest is a block where all vertexes are the points of articulation, except for the hanging ones. 

The above mentioned algorithm of CTSP’s exact solution permits improvement, reducing the work time of the 
branch and bound procedure for a graph containing blocks of trees and bridges. The improvement mechanism is 
based on demonstrable fact. 

Predicate 3. Any CSTP’s solution for a tree has a value equal to the double sum of weights of tree’s edges. 

Let graph H  contain blocks built from bridges and trees. First we select all blocks-trees in H  and build for each 
of them closed route starting in route vertex and visiting every vertex, and passing every edge twice.  

Each route planning, we note the root vertex. Then we select in graph H  all bridges and mark the articulation 
point of each bridge. Obviously, the cost of a closed path on the bridge is equal to the double weight of the edges, 
representing the bridge. The sum of the values of the routes built for the selected objects is a constant 
component of the cost of any CTSP’s solution in graph H . 

Let’s study the subgraph obtained by removing from the graph H  all bridges and all trees except root vertexes. 
The subgraph is not linked if the graph H  contains bridges. The connected components of subgraphs together 
contain all the marked vertexes. The component could be an articulation point, a block or a decomposable 
subgraph, i.e. subgraph containing the articulation points, other than marked. Then we construct the salesman’s 
route for each component, which begins and ends at the marked nodes incidental to the bridge. CTSP’s solution 
for graph H is the result of union all successive routes in the marked vertexes. 

To select the trees of the forest H  apply version of the algorithm proposed in [Гаращенко, 2007]. Mark as V  
and U  sets of vertexes and matrices of the forest    ,H V U , K  – set of root vertexes, K V . The 

following algorithm constructs all the trees of the forest H  in graph H  and defines set of root vertexes K . 

S0.   ,H V U  – linked graph where V  – set of vertexes, U  – set of edges   ,u i j , V n ; vertexes of 

graph H  placed in non-decreasing order of their degrees: 1 2  deg deg ... degn ;  K ,   V , 
  U . 

S1. If 1 1deg , then end: graph H  doesn’t contents graph H , else 1i . 

S2. For edge   ,u i j  let 1deg i , 1 deg degj j ,   V V i ,     ,V V i j ,    U U u ; 

1 i i . 
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S3. If 1 i n , then  V V ,  U U , end: graph H  is a tree. 

S4. If 1deg i , then go to S2. 

S5.  K V V , to build for every root vertex from K  tree of forest H . 
Time of the algorithm is obviously commensurable with the time of ordering vertexes’ degrees of the graph H , 
evaluated, as it is well known by value  logO n n . 

Every edge  ,v w  of the tree 
kH , 1 ,k K , generally speaking, is a bridge, the removal of which leads to a 

non-connected spanning subgraph of graph H , not containing  ,v w . 

Let’s consider the subgraph S  of the subgraph H , generated by a subset of vertexes    S V V K . To 

find and select all the bridges in the subgraph S depth-first search algorithm is used that determines the set of 

vertexes S  all articulation points during   O S V V  [Рейнгольд, 1980]. If a pair of cutpoints is 

connected by an edge deletion, which increases the number of connected components of the subgraph S , then 
it creates bridge mM . Set of s  bridges generates 1s  connected components 

lH  of subgraph S . Closed 

route visiting all vertexes of the component 
lH , 1 1 ,l s , and delivering the minimum sum of weights of 

edges, is a part of traveling salesman’s tour   in graph H . 

We show how to unite to CSTP’s solution   routes  k , me ,  l , which are built for trees 
kH  of the forest H , 

1 ,k K , bridges mM , 1 ,m s , and connected components 
lH  of subgraph S , 1 1 ,l s . 

Among all the components 
lH  always exists such that contains exactly one vertex uV  of the bridge. It is defined 

as the first in the set of components 
lH , 1 1 ,l s . The vertex uV is marked as the starting and ending point of 

a salesman’s route  . If 2s , then the part of components 
lH , 2 1 ,l s , is interconnected by several 

bridges. In such components there is one vertex of each bridge. 

Let     ,..., ,..., ,...,l w a b w  be the salesman’s tour built for 
lH , 1 1 ,l s , where w  – bridge’s vertex; 

w v  if 1l . Suppose it contains vertexes from the set of root vertexes K . Then we execute in  l  

replacement of every vertex a K  by the route  ,...,a a  for the tree 
kH  with ending vertex a . We mark all 

vertexes in every route  l , incidental to bridges. 

Let’s build graph  ,L M , in which to every vertex l L , 1 1 ,l s , is assigned to the route  l , and to every 

edge  ,i j M  – a bridge mM , 1 ,m s . In graph  ,L M  a pair of vertexes i  and j  creates an edge  ,i j , 

if vertexes   ip  and   jq  are connected by bridge  ,p q , i j .  Graph  ,L M  is a tree, since by 

construction it is linked, and 1 L M . We assume vertex 1 of the tree  ,L M  as a root vertex. To 

salesman’s tour   every tour is assigned including all tree’s vertexes, which starts and ends in the vertex 1 and и 
runs twice along every edge from M . 

All details of uniting to tour   of sets of routes  1 1   ,l l s , linked by bridges mM , 1 ,m s , can be 

presented on the basis of Fig. 1. First   includes tour  1   ,...,v v  and the bridge  ,v w , linking 1   with 

route  2   ,..., ,..., ,...,w x y w . As x  and y  – marked vertexes, i.e. vertexes of bridges  ,x a  и  ,y b , 

then   runs along the part  ,...,w x  of tour 2  , edge  ,x a , route  3   ,...,a a  and edge  ,a x . Then it 

includes the part  ,...,x y  of the route 2  , edge  ,y b , route  4   ,...,b b , edge  ,b y , one more part 

 ,...,y w  of the route 2   and the edge  ,w v . Thus the tour   ,..., , ,..., , ,..., , ,...,v v w x a a x  

, ,..., , ,..., ,y b b y w v is built. Obviously, the time to unite all the selected subgraphs of the graph H  is limited by 

value  O V . 
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Fig. 1. The tree  ,L M  with distinguished vertexes 

Salesman’s tour’s   cost equals to        
1

1 1 1

2  


  

     
K s s

k m l
k m l

C C C M C , where the first two terms 

are constants for a given graph H . The cost of subgraph’s S components, which is represented by one vertex, 

is equal to 0. 
Example 1. At the Fig 2. a connected weighted graph H  is shown. Closed salesman’s tour   is required to be 
built for it. 

  

a) b) 

Fig. 2 a) original graph; б) trees of the forest H . 
First the forest’s H  building algorithm is performed, which consists of two stages. In the first stage it sorts all 
graph’s H  vertexes by their degrees in non-decreasing: deg 14=1, deg 15=1, deg 20=1, deg 1=2, deg 3=2, deg 
4=2, deg 8=2, deg 9=2, deg 12=2, deg 18=2, deg 19=2, deg 2=3, deg 13=3, deg 7=3, deg 10=3, deg 16=3, deg 
16=3, deg 17=3, deg 5=4, deg 11=4, deg 6=5. In the second stage algorithm finds the set of forest’s vertexes 

 14 15 13 6 20 16 , , , , ,V , subset of root vertexes  6 16 ,K  and builds и trees 1
H , 2

H  (Fig. 2, b). Trees’ 

root vertexes at Fig. 2 b) are marked by thicker lines of circles. 
Generated by subset 1 2 3 4 5 6 7 8 9 10 11 12 16 17 , , , , , , , , , , , , , ,S  18 19,  subgraph S  is shown at fig 3 a).  

Finding cutpoints algorithm finds there are 7 such cutpoints in S :  5, 2, 6, 7, 11, 16, 17. Vertexes 2, 6, 7, 11, 

16, 17 from them create bridges  1 2 6 ,M ,  2 6 7 ,M ,  3 11 16 ,M . Deletion of bridges makes 5 

connected components of subgraph S  1
H , 2

H , 3
H , 4

H , 5
H  (Fig. 3, b).  

  
a) b) 

Fig. 3 a) the induced subgraph S ; b) subgraph’s S  connected components. 
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We build closed salesman’s routes, starting and ending at the marked vertexes, for each tree and each 
connected component of subgraph S :  1 6 13 14 13 15 13 6   , , , , , , ,  2 16 20 16   , , , 

 1 2 4 2 5 3 1 5 2   , , , , , , , ,  2 6 10 12 11 6   , , , , ,  3 7 8 9 7   , , , ,  4 16   ,  5 17 18 19 17   , , , . As a result of 

route 1  unites with route 2   we get the tour  2 6 13 14 13 15 13 6 10 12 11 6   , , , , , , , , , , . Union 2   with 4   gives 

the rout  4 16 20 16   , , . 

The tree  ,L M , built for subgraph S  of graph H , is presented at Fig 4. 

 

Fig. 4. The corresponding to subgraph S  of graph H  tree  ,L M . 

Select any tour of the tree’s  ,L M  vertexes, which starts and ends in vertex 1. Assume that it is (1, 2, 3, 2, 4, 5, 

4, 2, 1). Build salesman’s tour   for graph H    (2, 4, 2, 5, 3, 1, 5, 2, 6, 13, 14, 13, 15, 13, 6, 7, 8, 9, .7, 6, 11, 
16, 20, 16, 17, 18, 19, 17, 16, 11, 12, 10, 6, 2). In   bridge’s vertexes are marked bold, and rout 2   is presented 
by two parts (6, 11) and (11, 12, 10, 6), which are doesn’t following one after the other. The cost of such CTSP’s 

solution for the graph H  is        
2 4 5

1 1 1

2  
  

     k m l
k m l

C C C M C  (2+3+3+1+1+2)+(4+4)+2(4+3+1+ 

+5)+(3+3+2+1+4+5+2)+ (1+2+ +1)+ (2+2+1)=75.  

Conclusion 

The exact algorithm of CTSP solution is offered. The modification of Little’s method is also offered which chooses 
among several optimal solutions the one with the least number of graphs. The procedure of branching for graphs 
with the determined topology can be more effective. Some features of his topology are described in the paper. 
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