
Krassimir Markov, Vitalii Velychko, Oleksy Voloshin

(editors)

Information Models
of

Knowledge

 I T H E A®
K I E V – S O F I A

2010

Krassimir Markov, Vitalii Velychko, Oleksy Voloshin (ed.)

Information Models of Knowledge

ITHEA®

Kiev, Ukraine – Sofia, Bulgaria, 2010

ISBN 978-954-16-0048-1

First edition

Recommended for publication by The Scientific Concil of the Institute of Information Theories and Applications FOI ITHEA

ITHEA IBS ISC: 19.

This book maintains articles on actual problems of research and application of information technologies, especially the new approaches,
models, algorithms and methods fot information modeling of knowledge in: Intelligence metasynthesis and knowledge processing in
intelligent systems; Formalisms and methods of knowledge representation; Connectionism and neural nets; System analysis and sintesis;
Modelling of the complex artificial systems; Image Processing and Computer Vision; Computer virtual reality; Virtual laboratories for
computer-aided design; Decision support systems; Information models of knowledge of and for education; Open social info-educational
platforms; Web-based educational information systems; Semantic Web Technologies; Mathematical foundations for information modeling
of knowledge; Discrete mathematics; Mathematical methods for research of complex systems.

It is represented that book articles will be interesting for experts in the field of information technologies as well as for practical users.

General Sponsor: Consortium FOI Bulgaria (www.foibg.com).

Printed in Ukraine

Copyright © 2010 All rights reserved

© 2010 ITHEA® – Publisher; Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org ; e-mail: info@foibg.com

© 2010 Krassimir Markov, Vitalii Velychko, Oleksy Voloshin – Editors

© 2010 Ina Markova – Technical editor

© 2010 For all authors in the book.

® ITHEA is a registered trade mark of FOI-COMMERCE Co., Bulgaria

ISBN 978-954-16-0048-1

C\o Jusautor, Sofia, 2010

Information Models of Knowledge

460

SOME PROPERTIES OF ACYCLIC COMPOSITIONAL PROGRAMS

Tetiana Parfirova, Vadim Vinnik

Abstract: Structure, behaviour and properties of acyclic programs are investigated in methodological and
mahematical framework of compositional programming. Relations of acyclic programs to sequantial-parallel and
chain programs (defined in the previous authors’ papers) are investigated: any acyclic program can be
transformed to an equivalent sequential-parallel program with extra usages of basic subroutines but without extra
names (informally, enlarging the executable code but not enlarging data); acyclic program can be transformed to
an equivalent chain program with extra names but without extra basic sunroutine usages (informally, this enlarges
data but does not not enlarge the executable code); sequential composition of two acyclic programs can be
thansformed to an equivalent acyclic program with either complex internal interconnections (though without extra
subroutines) or with one additional subroutine (though with simple interconnections).

Keywords: sequential composition, parallel composition, compositional programming, nominal function, acyclic
program, sequential and parallel compositions.

ACM Classification Keywords: D.1.4 Sequential Programming, D.2.4 Software/Program Verification, F.3.2
Semantics of Programming Languages.

Introduction

Previous papers [Parfirova 2010a, Parfirova 2010b] cover structure, properties and behavior of a certain simple
form of programs where subroutines work sequentially, data flow in one direction from predecessors to
successors, without loopback. It was noticed that this principle is intrinsic to the large-scale structural level of
information processing systems, in particular to software systems that support business activity and electronic
document processing, organizational activity, education etc. Except this, it was shown [Parfirova 2009] that
sequential type of structure and its corresponding principle of operation is the most transparent implementation of
the reference model of interaction in terms of entity platform [Redko 2008a, Redko et al. 2008]. Two particular
cases, sequential-parallel and chain systems were described and investigated in [Parfirova 2010b]; it was shown
that systems of the first kind can be transformed to the second kind, and the transformation doesn’t introduce
extra usages of subroutines to the compositional term that represents the system but requires extra names (used
for temporary copies of data). The general model of acyclic programs is described in [Parfirova and Vinnik 2010].
The goal of this paper is to reveal some properties of acyclic programs and their relations to the previously
investigated classes.

Basic Notions: Compositional Programming

According to compositional programming (CP) and entity platform created on its basis [Redko 1978, Redko 1998,
Redko 2008, Redko et al. 2008], data objects are modelled by means of nominal sets (NS), whereas programs
and their parts as data transformers are modelled as nominal functions (NF).

Sets of all names and all detonates are designated as V and D respectively. V -NS is a finite functional1 binary

relation VD where VV . Note that, when  is a V -NS, Vv  is some name,  v is the value of

that name in the NS. Let us denote the set of all NSs as Ν .

By definition, NF is a unary partial function of the form NN~ . NF is called V -ary if Vf Ddom , and

 WV , -ary if, except this, Wf Drang , for some VWV, . Not all NFs have an arity. Function that has

some arity is called polyary. Here and further we investigate polyary NFs only.

1There is also a branch of CP called compositional-nominative approach where functionality of NS is not
required [Nikitchenko, 1999; Nikitchenko, 2009].

I T H E A

461

Restriction is a  VUV , -ary NF V
U (where VVU, , vertical bar means restriction of a relation by its 1st

component on a given set):

      UududuUV
U   ,|,| , VD .

For some mapping VU : , renaming is a  UV, -ary NF  (where VVU,):

      Uuuu  |,  , VD .

Substantially, this operation replaces names Vv  in NS  with new names Uu  such that   vu  . It

should be noted that  does not have to be a one-to-one mapping. It means that one name from  can turn

after renaming into several new names. From the definition, it directly follows that if WV   21 prpr

(where ipr means projection of a relation  by its i -th component) then      V
W where 

means multiplication of unary functions (taking into account that NS  can be ragarded as a function that maps
names to their denotates).

The identical mapping of some set X into itself is designated as   XxxxX  |,id .

Overlapping is a binary operation such that, for any NSs  and  ,

       1pr,,|,  ududu .

Operations on nominal functions are called compositions. Substantially, compositions model composing a
complex program from simpler programs, or subroutines. Two fundamental compositions will be important in the
next sections: multiplication (model of sequential execution) and overlapping (models parallel execution) defined
as follows:

      fggf  ,

       gfgf  .

In the second formula,  in the left side denotes a composition (an operation on nominal functions) whereas in
the right side it means operation on nominal sets; this should not confuse the reader because the context of this
operation is always clear. Let NFs f and g be  11 VU , -ary and  22 VU , -ary respectively. Then gf  is a

 21 VU , -ary NF if 21 UV  and totally undefined NF otherwise; gf  is  21 VVU , -ary NF if UUU  21

and totally undefined otherwise.

Sequential-Parallel and Chain Functions

Notions of sequential-parallel and chain functions were first introduced in [Parfirova 2010a, Parfirova 2010b]. Let
us briefly remind the main definitions and theorems that will be important int this work.

Let  be some set of NFs. NF h is called sequantial-parallel in basis  if it can be obtained from functions of
the set  and functions V

U ,  , VD
id by means of compositions  and  .

Link with the kernel f is NF of the form

   
  ffh  





2

2

pr
prL  ,

where  ,  are renaming mappings, VU : , '': VU  , where VVUVU ,,, . Instantially, the

definition of the link means that some part of the input data, after selecting an appropriate part and renaming  ,

is passed to the kernel function f , and the rest of input data is passed to the output through a renaming  . The

overlapping of these two parallel branches gives the link’s output. Note that ranaming  is applied to the whole

input NS without excluding any names; except this, renaming can transform any input name to two or more output
names. This means that renaming  can be used to create “backup copies” of the input data, see fig. 1.

Information Models of Knowledge

462

Fig. 1. Link

Chain function in basis  (where  is a set of NFs) is a function of the form nhhhh  21 where

every ih (ni ,,1) is a link with some kernel f .

It is proved [Parfirova 2010a, Parfirova 2010b] that any, say  VU, -ary, sequential-parallel NF f in basis  can

be transformed into a chain function f̂ in the same basis with some arity  VU ˆ, where VV ˆ , that is

equivalent to f up to extra names, i.e. V
Vff
ˆˆ   .

Acyclic Functions

Let us remind definitions [Parfirova and Vinnik 2010]. For an acyclic program consisting of n subroutines, let us
consider the input of the whole program as the output of its imaginary 0-th subroutine; in a dual way, the output of
the whole program is considered as the input of its imaginary  1n -th subroutine. The determinative feature of

acyclic programs is that relation act after (or use outputs of) is a partial ordering on the set of all its subroutines.
This order can be considered as linear: for each i , j where 10  nji , data transfer channel from the

output of the i -th subroutine to the input of the j -th subroutine exists if and only if ji  .

Suppose we have  ii VU , -ary NFs, ni ,1 , a set of names V that will be also designated 0V , a set of

names U that will be also designated 1nU , and renaming mappings ij for all ji, where 10  nji .

The mappings ij can be regarded as an upper-right triangle matrix  (this matrix has 1n rows and as many

columns; row indices start with 0, and column indices start with 1). The following restrictions are imposed:

 ij

n

ij

iV 2

1

1

pr




 , ni ,0 .

 
1

0
1






j

i
ijjU pr , 11  nj , .

By definition, acyclic NF is NF  nUV fff ,, 1
 such that for any V -ary NS  its value   f is defined by

the following equations (fig. 2) where  0 , 1 n :

 iik

k

i
k  






1

0

, for 11  nk , ,

 kkk f   , for nk ,1 .

Note that i is the value of if (for ni 0), and i (for 11  ni) is the argument of if .

I T H E A

463

Fig. 2. Structure of an acyclic program, general case

Relation of Acyclic NFs to Sequentially-Parallel NFs

Considering features of acyclic NFs in general would require lots of technical details, so we will demonstrate
these properties on some substantial examples.

Statement 1. Not every acyclic NF is sequential-parallel — see fig. 3 with parameters listed in table 1.

Fig 3. Example of an acyclic NF, that is not sequential-parallel

Table 1: Arities iU , iV and renamings ij .

i j 1 2 3 4 iV

0  yxid ,   yid   yx,

1 —  xid   xid  x

2 — —  xid   x

3 — — —  yid  y

iU  yx,  x  yx,  yx, —

Statement 2. Every acyclic NF can be transformed into an equivalent sequential-parallel NF. This transformation
increases number of basic functions usages in the compositional term but does not introduce extra names. For
the acyclic NF from the previous example, we have the following equivalent sequentially-parallel NF (see fig. 4):

 
     3211 fffff yx
x  ,

Information Models of Knowledge

464

Apparently this sequentially-parallel NF has one extra usage of NF 1f .

Fig 4. Sequentially-parallel NF equivalent to the acyclic NF

Statement 3. Every acyclic NF could be transformed, without introducing extra usages of basic functions to the
compositional term but possibly introducing extra names, into an equivalent (up to extra names) chain NF.

Note that a weaker statement is trivial: indeed, every acyclic NF can be transformed to an equivalent sequential-
parallel NF due to statement 2 (with extra usages of basic functions), and the later can be transformed to an
equivalent chain NF due to the main theorem from [Parfirova 2010b]. To avoid extra usages of basic functions,
however, we shoud transform acyclic NF to chain NF directly. For the given example, the equivalent chain NF
(where parameters i and i are shown in the table 2) is:

       
 yxx

yxfffg ,,
,LLL   321

3

3

2

2

1

1








 .

Table 2. Transformation to the chain NF

i i i

1  yyxx  ,  yyxx  ,

2  yyxx  ,  xx 

3  yyxxxx  ,,   yyxx  ,

This example is notable because it uses only one auxiliary name x . On the other hand, we are interested in a
general method of transformation acyclic NFs to chain NFs. Let us explain the main idea of the method. Suppose
some if (including special case 0i for the very input) has an output name, say x . Then the  1i -th link of

the chain NF should rename x to ix . Except this, every (say, k -th) link must preserve all names of the

form jx , kj 0 , from its input. Therefore, the output of the k -th link consists of copies jx of outputs of all

previous subroutines and own outputs of kf . Thus, if the j -th subroutine uses output x of the i -th subroutine

when 1 ji (i.e. if   xyji  for some name y), the j -th link of the chain should rename ix into y

before applying kf . The only remaining special issue is the last link that restores names from the form ix and

assembles the final result.

For the example above, this principle gives the following chain function with parameters shown in the table 3.

         
 yxxxyx

yxfffg ,,,,,
,idLLLL 21004

4

3

3

2

2

1

1 321   
D











 .

Table 3. Transformation to the chain NF

i i i

1  yyxx  00 ,  yyxx  ,

2  xxyyxx  10000 ,,  xx 

3  xxxxyyxx  2110000 ,,,  0yyxx  ,

4  yyxxxxxxyyxx  ,,,,, 122110000 

I T H E A

465

Fig. 5. Sequential composition of acyclic programs as an acyclic program

Statement 4. If f and g are both acyclic functions then their sequential composition gf  could be presented

as an acyclic function as well. Let  mUV fff ,,, 1
 ,  nWU ggg ,,, 1

 ; then (see fig. 5)

 nmWV ggffhgf U  ,,id,,,, 11 D

 with the following matrix of renamings:






















































1

1001

1

1001

nn

n

mm

m

Z

,

,

,

,














.

In other words,















 .if,

,,if,

,if,

, 21

220

10

11 nmjim

nmjmmi

mji

mjmi

ij

ij






From this example one can see that gf  can be transformed to an equivalent acyclic function h in such a way

that the renaming matrix of h is very simple but one additional (though trivial) subroutine is introduced to h . It
can be shown that there is another option: no extra subroutines are introduced to h but the renaming matrix is

Information Models of Knowledge

466

not so simple. This should be regarded as an example of a common trade-off between simplicity of internal
structure of a system vs. simplicity of interfaces between its subsystems.

Conclusion

The composition  UV , described above models a sequential data and control flow between parts of a program

that does not contain loops. Its particular cases are sequantial programs, entirely parallel programs and various
intermediate program structures that combine both parallel and sequential execution of statements. Finally, the
model allows equivalent transformations by clear algebraic laws known from CP.

Bibliography

[Parfirova 2010a] T.S. Parfirova. Compositional model of sequential-parallel connections in information systems.
Proceedings of the 10th international seminar "Discrete mathematics and its applications", Moscow State University,
198–201, 2010 (in Russian).

[Parfirova 2010b] T.S. Parfirova. On reduction of sequential-parallel compositional programs to entirely sequential form.
Bulletin of Kyiv National Taras Shevchenko University, series: Physical and mathematical sciences, 1, 132–137, 2010 (in
Ukrainian).

[Parfirova 2009] T.S. Parfirova. The notion of interaction from the perspective of the entity platform. Proceedings of the 6th
international conference "Theoretical and applied aspects of program system development", Kyiv, 78–80, 2009 (in
Russian).

[Parfirova and Vinnik 2010] T. Parfirova, V. Vinnik. Copmositional Model of Acyclic Programs. Proceedings of the
International Conference on Computer Science and Engineering CSE’2010, Košice – Stará Ľubovňa, Slovakia (accepted
for publication).

[Redko 1978] V.N. Redko. Compositions of programs and compositional programming. Programming and Computer
Software. 5, 3–24, 1978 (in Russian).

[Redko 1998] V.N. Redko. Compositional structure of programmology. Cybernetics and Systems Analysis. 4, 47–66, 1998 (in
Russian).

[Redko 2008] V.N. Redko. Existential foundations of compositional paradigm. Cybernetics and Systems Analysis. 2, 3–12,
2008 (in Russian).

[Redko et al. 2008] V.N. Redko, I.V. Redko, N.V. Gryshko. Programmological foundations of entity platform. Problems of
Programming. 2–3, 75–83, 2008 (in Russian).

[Nikitchenko 1999] N.S. Nikitchenko. Compositional-nominative approach to clarifying the notion of program. Problems of
Programming. 1, 16–31, 1999 (in Russian).

[Nikitchenko 2009] N.S. Nikitchenko. Compositional-nominative aspects of address programming. Cybernetics and Systems
Analysis. 6, 24–35, 2009 (in Russian).

Authors' Information

Tetiana Parfirova – Kiev National Taras Shevchenko University, faculty of Cybernetics, 01601, Volodymyrska
str, 64, Kiev, Ukraine; e-mail tetiana.parfirova@gmail.com

Major Fields of Scientific Research: Theory of programming, formal semantics of programming languages,
educational environments, e-learning systems.

Vadim Vinnik – Kiev National Taras Shevchenko University, faculty of Cybernetics, 01601, Volodymyrska str, 64,
Kiev, Ukraine; e-mail vadim.vinnik@gmail.com

Major Fields of Scientific Research: Theory of programming, formal semantics of programming languages,
program specification and verificaztion, complex systems modelling and simulatio

