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FUZZY ARTMAP NEURAL NETWORKS FOR COMPUTER AIDED DIAGNOSIS 

Anatoli Nachev 

Abstract: The economic and social values of breast cancer diagnosis are very high. This study explores the 
predictive abilities of Fuzzy ARTMAP neural networks for breast cancer diagnosis. The data used is 
a combination of 39 mammographic, sonographic, and other descriptors, which is novel for the field. By using 
feature selection techniques we propose a subset of 21 descriptors that outperform the full feature set and 
outperforms the prediction model based on the most popular MLP neural networks. We also explored the model 
performance by ROC analysis and used metrics, such as max accuracy, area under the ROC curve, and area 
under the convex hull. Due to lack of specificity, many diagnosis tools entail unnecessary surgical biopsies, which 
motivated us to explore the clinically relevant metrics partial area under the ROC curve where sensitivity is above 
90% and specificity at 98% sensitivity. In conclusion we find that the Fuzzy ARTMAP neural network is 
a promising prediction tool for breast cancer diagnosis. To the best of our knowledge, the Fuzzy ARTMAP neural 
networks have not been studied in that area until now. 
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Introduction 

Breast cancer ranks first in the causes of cancer deaths among women in developed countries and is second  in 
developing countries [Parker, 1997], [Lacey et al., 2002]. The best way to reduce deaths due to breast cancer is 
to treat the disease at an earlier stage. Earlier treatment requires early diagnosis, and early diagnosis requires an 
accurate and reliable diagnostic procedure that allows physicians to differentiate benign from malignant lesions. 
The economic and social values of breast cancer diagnosis are very high. Some studies show that only a third of 
suspicious masses are determined to be malignant and many surgical biopsies are unnecessary [Jemal et al., 
2005].  Breast cancer diagnosis is a typical machine learning problem for many years. It has been dealt with 
using various machine learning algorithms and computer aided detection/diagnosis (CAD) tools. The problem is 
nontrivial and difficult to solve as the data set is noisy and relatively small. Techniques which rely on a large 
training data set would not work well for this problem.  

A considerable amount of research in the area has been done based on rich variety of modalities and sources of 
medical information, such as: digitized screen-film mammograms, sonograms, magnetic resonance imaging 
(MRI) images, and gene expression profiles, etc. [Jesneck et al. 2006].  Current computerized breast cancer 
diagnosis tend to use only one information source, usually mammographic data in the form of descriptors defined 
by the Breast Imaging Reporting and Data System (BI-RADS) lexicon [BI-RADS, 2003]. Initially, BI-RADS was 
developed for standardization of mammographic descriptors only, but recently the American College of Radiology 
included a breast sonography extension, which standardizes various sonographic descriptors of lesions. Jesneck 
et al. [2007] have used a specific combination of BI-RADS mammographic and sonographic descriptors and 
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some proposed by Stavros et al. [1995] to build a predictive model. Their study was pioneering in using such 
a combination and they report that predictive abilities of the linear discriminant analysis (LDA) and multi-layer 
preceptrons (MPL) are similar in the context of using either all 39 descriptors or a suggested subset of 
14 descriptors. MLP have been largely applied to breast cancer diagnosis applications, but they have 
a drawback: the model assumes predefined network architecture, including connectivity and node activation 
functions, and training algorithm to learn to predict. The issue of designing a near optimal network architecture 
can be formulated as a search problem and still remains open.  

This paper describes an alternative approach based on Fuzzy ARTMAP neural networks which feature well 
established architecture and fast one-pass online learning. To the best of our knowledge Fuzzy ARTMAP neural 
networks has not been used to date for breast cancer diagnosis with a combination of mammographic and 
sonographic descriptors. 

The paper is organized as follows: Section 2 provides an overview of the Fuzzy ARTMAP neural network 
architecture used build a predictive model; Section 3 introduces the dataset used in the study, its features, and 
preprocessing of data; Section 4 presents and discuses the experimental results; and Section 5 gives the 
conclusions. 

Fuzzy ARTMAP Neural Networks 

ARTMAP systems are based on the Adaptive Resonance Theory (ART) for neural network modeling [Grossberg, 
1976]. ARTMAP architectures are neural networks that develop stable recognition codes in real time in response 
to arbitrary sequences of input patterns. They were designed to solve the stability-plasticity dilemma that every 
intelligent machine learning system has to face: how to keep learning from new events without forgetting 
previously learned information. Fuzzy ARTMAP networks were designed to accept real-valued input patterns 
[Carpenter et al., 1992]. They learn by either simultaneously establishing suitable categories in both input and 
output space (tasks carried out within the so-called ARTa and ARTb modules respectively) or linking input and 
output categories according to joint occurrence and predictive success (the linkages being stored in a special unit 
called the map field or ARTab (see Figure 1). Modules are made of fields, which consist of neurons (nodes). Each 
ART module a comparison layer (F1), and a recognition layer (F2) with m  and n  neurons, respectively. All 

categorization and learning are achieved by sequentially modifying the connection weights, between the layers 
(black circles in the figure). In Fuzzy ARTMAP systems data can be processed with either natural or complement 
coding [Carpenter et al., 1992]: if natural coding is used, a data item is processed as it is, otherwise, it is 
augmented with its complement to 1. Thus, if a data sample d is an n-dimensional vector, system actually works 
on a 2n-dimensional vector.  

The numbers of weights in the ARTa and ARTb modules are system parameters determining the number and 
dimension of weights in the ARTab module. During training, a sample and the category label are provided as 
input to the ARTa and ARTb modules, which causes an activation to flow from the excited neurons (categories) in 
ARTa and ARTb into ARTab and then eventually back to ARTa. During testing a given input vector activates 
(predicts) a single category in the ARTb and ARTab modules. Whenever a pattern A activates a layer F1, 
it propagates through weighted connections wij to layer F2. Activation of each node j in the F2 layer is determined 
by the function: 

 

(1) 
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where  is the fuzzy AND operator: (Awj) min(Ai, wij). The F2 layer produces a winner-take-all (WTA) pattern 
of activity such that only the node j=J with the greates t activation value remains active. Node J propagates its 
top-down expectation, or prototype vector wJ, back onto F1 and the vigilance test is performed. This test 

compares the degree of match between wJ and A against the dimensionless vigilance parameter  (rhobar). 
Within a given ARTa or ARTb module, the system decision to commit new neurons, as opposed to using 

previously commited neurons, is controlled by the vigilance parameter. When  is large, the system tends to 
commit neurons more easily: otherwise, relatively fewer and therefore larger categories are constructed. 

The system learns an input sample a by updating the vector of weights wJ associated with the prototype: 

 
(2) 

where β is a fixed learning rate parameter. Then a new association between the F2 node J and ARTab field takes 
place. 

 

 
Figure 1. Simplified structurel of a Fuzzy ARTMAP neural network 

 

Data, Features, and Preprocessing 

The data used in this study consists of mammographic and sonographic examinations collected from 2000 to 
2005 at Duke University Medical Centre [Jesneck et al., 2007]. Samples included in the dataset are those 
selected for biopsy only if the lesions corresponded to solid masses on sonograms and if both mammographic 
and sonographic images taken before the biopsy were available for review. The data set contains 803 samples of 
which 296 malignant and 507 benign. Information about patient physical examination findings, family history of 
breast cancer, and personal history of breast malignancy has been available to each radiologist to reproduce 
a realistic clinical situation.  

Out of 39 features in total, 13 are mammographic BI-RADS features, 13 are sonographic BI-RADS features, six 
are sonographic features suggested by Stavros et al. [1995], four are other sonographic features, and three were 
patient history features [BI-RADS, 2003], [Jesneck et al., 2007], [Nachev & Stoyanov, 2010]. The features are as 
follows: mass size, parenchyma density, mass margin, mass shape, mass density, calcification number of 
particles, calcification distribution, calcification description, architectural distortion, associated findings, special 
cases (as defined by the BI-RADS lexicon: asymmetric tubular structure, intramammary lymph node, global 
asymmetry, and focal asymmetry), comparison with findings at prior examination, and change in mass size. The 
sonographic features are radial diameter, antiradial diameter, anteroposterior diameter, background tissue echo 
texture, mass shape, mass orientation, mass margin, lesion boundary, echo pattern, posterior acoustic features, 
calcifications within mass, special cases (as defined by the BI-RADS lexicon: clustered microcysts, complicated 
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cysts, mass in or on skin, foreign body, intramammary lymph node, and axillary lymph node), and vascularity. 
The six features suggested by Stavros [Stavros et al., 1995] are mass shape, mass margin, acoustic 
transmission, thin echo pseudocapsule, mass echogenicity, and calcifications. The four other sonographic mass 
descriptors are edge shadow, cystic component, and two mammographic BI-RADS descriptors applied to 
sonography—mass shape (oval and lobulated are separate descriptors) and mass margin (replaces sonographic 
descriptor angular with obscured). The three patient history features were family history, patient age, and 
indication for sonography.  

The Fuzzy ARTMAP neural network we use require a specific input format, which presumes preprocessing of the 
original dataset. We applied two linear transformations: normalization and rescaling. The normalization addresses 
a problem of the input variables – they differ significantly in their values due to different units in which they are 
expressed. This difference can lead to poor classification as some variable dominate others. By calculating the 
deviation of each variable value from the variable mean, normalized by its standard deviation, we obtained the 
new values of the dataset using (3) and (4). 

 
(3) 

where n
ix~ is the new value, n

ix is the original one, and 

 

(4) 

The second transformation, rescaling, maps the dataset values into [0, 1] using (5) as this is a requirement of the 
NN. 

 
(5) 

where max
ix  and min

ix  are the max, and min values of the variable ix , respectively. 

Experimental Results and Discussion 

A series of tests was carried out in order to investigate how a trained Fuzzy ARTMAP NN predicts breast cancer 
decease, based on a set of descriptors outlined above. In order to validate our experiments we used 5-fold cross-
validation (CV) technique which avoids bias in selection of the training and test sets. It does so by creating 
5 copies of the classifier, and testing each on 20% (1/5) of the data set, after training it on the remainder. 
The classification error estimate is computed as the average of the values obtained for each test set.  

The experiments were focused to two aspects of the model functioning: reduction of dimensionality of the data 
and optimal values of the network parameters. 

We considered and experimented with various feature selection techniques, such as best first, genetic search, 
subset size forward selection, race search, and scatter search, and sults showed that best feature selection 
technique is genetic search [Goldberg, 1989] combined with a set evaluation technique that considers individual 
predictive ability of each feature along with the degree of redundancy between them [Hall, 1998]. The feature set 
we obtained as best consists of the following 21 descriptors: patient age, family history, mass margin, 
architectural distortion, associated findings, comparison with prior examinations, anteroposterior diameter, mass 
shape, mass orientation, mass margin, lesion boundary, calcification within mass, special cases, mass shape, 
mass margin, thin echo pseudocapsule, mass echogenicity, edge shadow, cystic component, mass shape, and 
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mass margin. We also tested the model with three other feature sets: the full set of 39 descriptors (s39), the set of 
14 features obtained by [Jesneck et al., 2007] by stepwise feature selection method, and the set of 17 features 
(s17) proposed by [Nachev & Stoyanov, 2010] for MLP neural networks. 

In order to estimate the Fuzzy ARTMAP performance with different network parameters, we explored each of 
them individually. Results show that the parameters baseline vigilance, signal rule, and the learning fraction 
provide the model with best discriminatory power by values 0test  , 0.01  , 1.0  , and regardless of the 

feature selection. The vigilance parameter   (rhobar), however, shows dependency to each selected feature set.  

For each set the model was trained and tested with 42 vigilance parameter values from 0 to 1 with step of 
increment 0.025. Figure 2 shows the prediction accuracy of the four sets with all values of the vigilance 
parameter. The sets show similar performance, but certain values of the parameter cause picks of accuracy with 
best result of 84.4% achieved by s21 at 0.225 .  

 

 
Figure 2. Accuracy of Fuzzy ARTMAP with four feature sets and vigilance parameter (rhobar) values 

 from 0 to 1 with step of increment 0.025 

 

Accuracy is the most common estimator used to date, but it can be misleading if the distribution of the classes is 
skewed, or if errors of type I and type II have different clinical implications and different cost. Taking into account 
those drawbacks we did Receiver Operating Characteristics (ROC) analysis of the results. ROC curves describe 
the relation between true positive rate (TPR) and false positive rate (FPR) [Fawcett, 2006]. In the case of crisp 
classifiers, such as Fuzzy ARTMAP, each classifier is represented by one point on the ROC space. By varying 
a parameter, such as the vigilance one, we generate an aggregation of points (Figure 3). The solid line 
represents the ROC convex hull (ROCCH), a line made up by connecting the most northwest points and the two 
trivial classifiers (0,0) and (1,1). All the candidates for optimal classifier lie on the convex hull as these are the 
most northwest point with minimum FPR and maximum TPR. All other classifiers that are ‘capped’ by the ROCCH 
can be ignored as they cannot be optimal. Each ROCCH line section between two adjacent corner points 
represents a continuum of possible intermediate classifiers that can be constructed by randomly weighting both 
corner classifiers giving more or less weight to one or the other. The optimal classifiers in terms of ROC are the 
most ‘northwest’ or most distant from the no-discrimination line. These are the square points on Figure 3 and they 
are the same that give maximal accuracy, which confirms that best in terms of accuracy is best in terms of ROC.  
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Figure 3. ROC analysis of Fuzzy ARTMAP with feature set of: a) 14 descriptors [Jesneck, 2007]; b) 17 descriptors 
[Nachev & Stoyanov, 2010]; c) 21 descriptors proposed in this study; d) all 39 descriptors. Each point represents a 

classifier determined by a value of the vigilance parameter that varies from 0 to 1 with step of increment 0.025 

 

ROC analysis also allows to calculate metrics that estimate a model performance, such as area under the ROC 
curve (AUC), partial AUC (0.90AUC of sensitivity above 0.90), and specificity at 98% sensitivity. AUC represents 
the overall model performance regardless the choice of vigilance; 0.90AUC shows the model performance at high 
values of sensitivity, which is important from a clinical viewpoint; specificity at 98% sensitivity is also important 
from a clinical perspective. Figure 3 shows the ROC space and the performance metrics for each of the four sets. 

The figures are compared in Table 1, that shows that Fuzzy ARTMAP has max accuracy 84.4% with the 21 
descriptor set and vigilance parameter value 0.225. The model also outperforms predictors based on the most 
popular neural networks – MLP, which yield 82.5% accuracy [Nachev & Stoyanov, 2010]. Second best is the set 
of 39 descriptors, which means that collecting and processing all the data is time consuming and not necessary. 
Lowest accuracy is obtained by using the 17 and 14 feature sets, which suggests that despite those sets give 
good results with LDA and MLP, they don’t work well with another model, such as Fuzzy ARTMAP. AUC and 
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0.90AUC show that the full feature set outperforms the selection of 21 descriptors and all features should be used if 
sensitivity above 90% is required.  

 

Table 1. Accuracy of Fuzzy ARTMAP with four feature sets and vigilance  
parameter (rhobar) values from 0 to 1 with step of increment 0.025. 

 

 

Conclusion 

Computer-aided breast cancer diagnosis is a typical classification problem which was approached over the years 
by many techniques and methods, and algorithms. 

This paper explores the discriminatory power of Fuzzy ARTMAP neural networks in differentiation between 
malignant and benign lesions based on data from mammographic and sonographic examinations. We used 
a data collected at Duke University Medical Centre which contains 39 descriptors. In order to improve the model 
performance we did reduction of dimensionality by applying various feature selection techniques.  

We found that a subset of 21 descriptors outperforms the full descriptor set, as well as two other subsets used 
with the same dataset in other studies. A careful adjusted Fuzzy ARTMAP neural network outputs 84.4% 
prediction accuracy of the dataset versus 82.5% of the MLP neural network with the same dataset.  

The model performance was also estimated by ROC analysis and the metrics such as area under the ROC curve, 
partial area under the ROC curve above 90% sensitivity, and specificity at 98% sensitivity.  

In conclusion we find that the Fuzzy ARTMAP neural network is a promising technique for diagnosis, but when 
used it requires a careful reduction of dimensionality and well tuned network parameters. The model also 
provides additional benefits such as one-pass online learning that retains already acquired knowledge, in contrast 
to the widely used MLP neural networks. To the best of our knowledge Fuzzy ARTMAP neural networks has not 
been used to date for breast cancer diagnosis in combination with both mammographic and sonographic 
descriptors. 
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