
I T H E A ®

193

FAILURE PREDICTION IN COMPLEX COMPUTER SYSTEMS

Paweł Janczarek

Abstract: Failure prediction has its origins at the turn of the 15th and 16th centuries. Trade companies tried to
calculate what was the risk with shipping goods over the sea. Modern failure predictions start in 70’s of 20th
century. Naturally software prediction has its origins in failure prediction of electronic equipments. Nomenclature
and definitions are very often similar to those used in electronics. Since 70’s scientists have been trying to find
perfect model to simulate failures in software.

Keywords: system availability , failure, prediction, reliability, risk management

ACM Classification Keywords: G. Mathematics of Computing, G.3 PROBABILITY AND STATISTICS, G.3
PROBABILITY AND STATISTICS, Reliability and life testing

Introduction

Failure prediction has its origins at the turn of the 15th and 16th centuries. Trade companies tried to calculate the
risk related to shipping the goods over the sea. Modern failure predictions started in 70’s of 20th century. Naturally
software prediction has its origins in failure prediction of electronic equipment. Nomenclature and definitions are
very often similar as those used in electronics. Since 70’s scientists have been trying to find perfect model to
simulate failures in software.

Failure prediction in software

At first we need to answer the following questions: What is a failure in complex information system? Is this
complete system shutdown? Is this delay in response for user? Every system is very unique so for everyone of
them failure has to be defined in slightly different manner.

Second very important issue is how we define the measure of time, or more precisely what type of clock we use
to measure time between the failures. Is this human-clock time (days, hours, seconds, etc.) or we use hardware-
clock time (CPU, logical executions, etc). Right time measure is crucial for software failure prediction. Natural
measure for people is normal human-clock, but in context of software it is very often misleading. Systems often
have their own life-cycle (batch processing, night recalculations, backups, etc.) not very correlated with human-
clock way of perceiving the time aspect.

We also need to know what are the origins of our failures. Are they human errors, bugs in software, hardware
malfunctions or else. According to Gartner analysis 80 % of errors are those in direct cause of human mistake. In
our future analysis it is good to think if we would like to divide them separately.

Figure 1. Origins of software errors

Methods and Instruments of Artificial Intelligence

194

 Basic theoretical background in failure prediction

Theory used for software failure predictions has its origins in hardware failure prediction. That’s way names and
formulas are very similar to those used for hardware (or sometimes even form theirs predecessor - risk
calculation for shipping goods over the sea from the turn of the 15th and 16th centuries).

We can compute probability of a failure in very simple way as [Summerville]:

   
0

0

0

t

T dttftTP (1)

where fT(t) – is the density function which describes distribution of failures in time. We can also calculate
probability of failure in case there hasn’t been any error for some time (Z(t) t). To do this we need to use

conditional probability [Summerville]:

   tTttTtPttZ  (2)

where T is time of failure, and t is time period in which failure will occur.

As we see to do all those calculations we need to have density function which describes distribution of failures in
time. Without this density function identified we are unable to do any predictions of failures. Using empirical
distribution functions based on history of previous failures we are able to fairly approximate distribution of failures
for software. Simple example is presented in the next section.

At this moment we can calculate reliability of our system, which is telling us that it won’t break down before t0

point in time, with the following formula [Summerville]:

         



0

0

0

000 11
t

T

t

TTT dttfdttftFtTPtR (3)

The least value, the better reliability is between two systems. As one can see, the most important is the density
function fT(t). Without it we can’t do any predictions.

In practical cases, very often we can assume that t is very short so we can pass it over. Then we can simplify
our conditional probability of failure to following equation [Summerville] (aka failure rate):

   
 tR

tf
tZ

T

T (4)

In almost all bibliography and electronics we can very often run across with term of MTTF (Mean Time To
Failure). Using our previous calculation, we can now calculate MTTF, as:

 tZ
MTTF

1
 (5)

Failure prediction in software - example

In previous paragraph we discussed, theoretical mathematical concepts of failure predictions. The key figure in
this equations is density function which describes distribution of failures in time. Earlier in previous paragraph, I
also mentioned empirical distribution functions. In this paragraph, I will try to show how to calculate density
function using empirical distribution function on real example from complex software system failures dataset.

I T H E A ®

195

Let’s assume (and that is real example) that we have failures related data from complex software system
(presented in the table below).

Table 1. Failures in system

Number of
failures

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 22

Time of
failure

1 4 49 50 52 56 69 71 73 89 96 99 119 120 126 127 128 129 135 154

Number of

failures 23 24 25 27 29 31 34 35 36 37 38 40 41 42 43 46 47 49 50 52

Time of
failure 170 172 174 175 176 183 185 186 188 196 197 217 219 220 222 232 233 234 237 238

Number of

failures 53 55 57 58 59 60 62 63 64 65 66 67 68 70 72 73 75 77 78 79

Time of
failure 241 246 248 249 251 266 268 269 271 273 280 294 295 296 300 301 302 303 305 306

Number of

failures
80 82 84 86 87 88 89 91 93 94 98 99 100 101 102 103 104 105 106 110

Time of
failure

323 329 330 331 332 333 334 335 345 346 347 348 349 350 351 352 371 372 374 375

Number of

failures 111 112 113 114 115 116 117 118 119 120 123 125 126 130 133 136 137 138

Time of
failure 377 378 381 382 384 396 399 400 401 402 403 404 405 406 407 408 410 411

As can be seen, in system there had been observed 138 failures and the last was in 411 time interval. Data are
form real system used by over 30 thousands of users every day, from January of 2005 to half of March of 2006.
Therefore, data are from pretty modest system. Very often, we have that kind of data from our software systems.

At first we present some diagrams that show data from the table 1. First let’s see how number of failures has
increased in time.

Figure 2. Total number of failures in time

Before we start computing distribution function, we can also look at faults intervals presented on figure 2.

Methods and Instruments of Artificial Intelligence

196

Figure 3. Faults intervals

At this moment we can start to do some calculations. Using data only from table 1, we can do some calculations
which will describe quantitatively our examined software system. Calculated values are presented below.

- MTTF (average interval length)= 3 time intervals

- Median = 1

- Variance = 33,9

- Standard deviation = 5,8

As we see, on average we will have one fault every 3 days (we need to assume also, that time taking of failure is
forgetful factor), but the variance of intervals is very big, so some of faults occurrences are dense and other time
they are rare.

At this point, we can start with generating our density function using empirical distribution. First we need to group
our fault interval into groups.

Table 2. Number of failures grouped by intervals

Interval 0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 19 20 45

Number of
faults 39 48 20 7 2 1 3 3 1 1 1 1 1 1 1 2 1 2 2 1

If we will have more groups, then we would have more accurate approximation, but in our case 6 groups will be
sufficient. Now we will group faults intervals into this 6 classes:

-  1;0

-  2;1

-  3;2

-  6;3

-  10;6

-  ;10

Table 3. Calculation of empirical distribution

Time interval Number of faults Percent of total % Empirical distribution value

[0-1) 39 28,26% 0,28

[1-2) 48 34,78% 0,63

I T H E A ®

197

[2-3) 20 14,49% 0,78

[3-6) 10 7,25% 0,85

[6-10) 8 5,80% 0,91

[10-∞) 13 9,42% 1,00

Figure 4. Empirical distribution value

Now when we have approximation of density function, we can easily go back to previous chapter and calculate
probability of failures in the future. While calculating probability we need to read our values form above chart.

Bibliography

[Summerville] “Basic Reliability: An introduction to Reliability Engineering”, Nicholas Summerville, AuthorHouse

[Wallace Coleman] „Application and Improvement of Software Reliability Models” , Dolores Wallace, Charles Coleman, SATC
(Software Assurance Technology Center), NASA

[Grottke Dussa-Zieger] “Prediction of Software Failures Based on Systematic Testing”, Michael Grottke, Klaudia Dussa-
Zieger, University of Erlangen-Nuremberg

[NIST] http://www.itl.nist.gov, NIST - agency of the U.S. Commerce Department's Technology Administration.

[Podgurski Masri Yolanda] “Estimation of Software Reliability by Stratified Sampling”, Andy Podgurski, Wassim Masri,
Yolanda Mccleese, Francis G. Wolff, Charles Yang, Case Western Reserve University

[Crowe Feinberg] “Design for reliability”, Dana Crowe, Alec Feinberg, CRC Press LLC

[Schneidewind] “Measuring and Evaluating Maintenance Process Using Reliability, Risk, and Test Metrics”, Norman F.
Schneidewind, IEEE

[Everett] “Software Component Reliability Analysis”, William W. Everett, SPARE INC.

[Lyu] “Software Reliability Theory”, Michael Rung-Tsong Lyu, The Chinese University of Hong Kong

Author Information

Paweł Janczarek – Institute of Computer Science, Faculty of Electronics and Information
Technology, Warsaw University of Technology ; Nowowiejska 15/19, 00-665 Warszawa,
Poland ; e-mail: pawel.janczarek@gmail.com

