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Intelligent Gamma-Ray Data Processing for
Environmental Monitoring

5.1 Introduction: gamma-ray spectroscopy for environmental
monitoring and security

An important part of monitoring for environment and security is gamma-ray radioactivity monitoring.
It extensively uses gamma-ray spectroscopy techniques. Gamma-ray spectroscopy is the science (or
art) of identification and/or quantification of radionuclides by analysis of the gamma-ray energy
spectrum produced in a gamma-ray spectrometer [Ortec, 2010]. It is a widely used technique with
example applications in security and nuclear materials safeguards, geology and mineralogy, materials
testing and reactor corrosion monitoring, industrial process monitoring, nuclear medicine and
radiopharmaceuticals, health physics personnel monitoring, forensics, etc. Here we are especially
interested in environmental and security-related radioactivity monitoring.

This areas use both remote and close-range gamma-ray spectroscopy techniques. Close-range
gamma-ray spectroscopy analyses the spectra of individual objects or samples. Remote gamma-ray
spectroscopy is used when there is no possibility of approaching or close contact with the monitored
object, or when monitoring of vast territories or multiple sites is required.

Gamma-ray spectrometry is done ex-situ, i.e., by bringing the samples to laboratory, and in-situ, i.e.
from aircraft, field vehicles, on foot, in boreholes, on the sea bottom, etc. Classical methods of
gamma-ray spectroscopy involve taking samples into a counting room for analysis in a controlled
environment and geometry. However, with laboratory analyses, there is much labor involved, and a
long turnaround time for the analysis results. When the sample is spread over a wide area or is in a
fixed location such as a pipeline, it is much easier and less costly to measure samples in-situ
[Canberra)]. These measurements, while simpler to carry out and available immediately, are prone to
difficulty, usually related to calibration. Ex-situ and in-situ gamma-ray spectroscopy often
complement each other.

An important part of environmental gamma-ray monitoring is gamma-ray surveys [IAEA, 2003].
Ground and airborne gamma-ray measurements may cover large areas of the earth’s surface. They
often result in maps of terrestrial radiation and radioelement concentrations. Radiometric surveys
and maps of natural background levels are used for solving geological and environmental problems in
a number of fields, including mineral exploration or prospecting, geochemical mapping, soil mapping
for agriculture, environmental assessment, etc. In addition to geoscience, it can be also applied in
emergent situations to monitor environmental contamination in the event of an accidental release or
major nuclear event, including radioactive spill from nuclear reactors or during transportation and
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storage of radioactive wastes, accidental loss of industrial and medical radiation sources, etc. as well
as nuclear weapons incidents or tests.

Gamma-ray surveys provide a baseline against which man-made contamination can be estimated.
This makes the radiological assessment of the environment possible, showing general regional trends
in radionuclide distribution, etc. They may be used to estimate and assess the terrestrial radiation
dose to the human population and to identify areas of potential natural radiation hazard, to
determine the effectiveness of cleanup efforts after a spill or an industrial accident, to trace and to
clean up old contamination, and to verify that new contamination is not occurring. For example,
surveys are regularly carried out in the radiation risk zones around facilities where radioactive
materials are used or produced, such as nuclear power plants and other facilities dealing with
nuclear fuel cycle, radioactive waste and material repositories and their transportation routes,
science, industrial, and medicine sites, etc. Similar surveys are used to assess the contamination in
areas of former mining. Besides territories, of interest is gamma-ray monitoring of objects that use
radioactive materials or fuel, contaminated buildings, containerized waste, industrial processes,
laboratories, etc., as well as moving objects (vehicles, movable facilities, cargo, people, etc.).

Gamma-ray monitoring is also closely related to security, which in this context is mainly associated
with the dangers of nuclear proliferation and, more recently, radiological and nuclear terrorism.
Nuclear terrorism denoting the use, or threat of the use, of nuclear or radiological weapons ("dirty
bomb") in acts of terrorism is nowadays becoming an immediate challenge for the entire world
[Ruff, 2006], [Markman et al, 2003]. The challenges of coping with the consequences of possible acts
of nuclear terrorism or of the detection of radiological or nuclear materials in a planted device are
closely related to the issues of environmental gamma-ray monitoring and spectroscopy mentioned
above.

This also concerns the challenges of pre-empting nuclear and radiological terrorism that requires
detection, interdiction, and identification of smuggled nuclear materials, as well as preventing or
intercepting the illicit trafficking, theft and loss of nuclear and other radioactive materials and
weapons. Monitoring is required at the borders and ports of entry, including land, rail, marine, or air
border crossings, as well as the facilities where radioactive materials and weapons are produced or
stored. To detect illicit transport of radioactive material in vehicles, people, luggage, mail, cargo,
containers, etc., radiation portal monitors are commonly used.

All those mentioned pressing challenges and applications require ever-enhancing accuracy, precision,
stability, and reliability of gamma-ray monitoring. In its turn, this requires novel gamma-ray
spectroscopic techniques to employ state-of-the-art approaches and methods of intelligent data
processing and machine learning. In this chapter, we discuss gamma-ray spectrometry techniques for
both close-range and remote monitoring. First, we consider gamma-ray spectroscopy with
multichannel spectrometer both for reproducible and unknown geometry of measurements. Then,
techniques for airborne gamma-ray spectrometry are discussed. Results of experimental comparison
are provided to illustrate the performance of the employed machine learning techniques.

5.2 A machine learning approach to multi-channel gamma-ray
spectroscopy

Gamma-rays are the most penetrating radiation from natural and manmade sources. Radionuclides
emit gamma-rays of specific energies characteristic for elements and isotopes. Gamma-ray
measurements are conducted in two modes. Total count measurements register gamma-rays of all
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energies and are used to monitor the gross level of the gamma radiation field and to detect the
presence of anomalous sources. Gamma-ray spectrometers, on the other hand, measure both the
intensity and energy of radiation, thus enabling the source of the radiation to be diagnosed [IAEA,
2003].

In order to interpret spectrometer measurements in real-world conditions, a number of intelligent
data processing techniques have been developed or adapted. In this section, we review available
techniques, as well as machine learning approaches such as model selection, sparse approximation,
and blind source separation that we develop and/or apply to gamma-ray spectroscopy. Performance
of those techniques is illustrated using artificial and real gamma-spectrum data.

5.2.1 Gamma-ray spectroscopy for fixed and non-fixed geometry of measurements

Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. The
result of the gamma-ray spectrum measurement by a multi-channel spectrometer (Figure 78) may be
considered as L numbers z; (i=1,...,,L) each representing the count f(z) of gamma-rays of particular
energy z;. This output signal of the spectrometer can be decomposed as

f(z;) = Zj:l ..... n W i(z:) + €(z), (1)
where z; is the gamma-ray energy in the i-th channel, j; is the detector response function, w; is its
weight, N is the number of detector response functions in the decomposition, €(z) is the noise

realization.

The detector response function (z) (Figure 79) is the
spectrometer output when the input is gamma-rays having the
energy z. Since a multi-channel spectrometer should be able to
deal with the gamma-ray sources of any energy from its working
range, one needs to have detector response functions for all z
(i=1,...,,L). However, real monochromatic gamma-ray sources do
not exist for much energy. Therefore, the detector response
functions are usually generated using Monte-Carlo simulations of
gamma-ray interactions with the detector crystal [Zerby, 1963],
[Breismeister, 2000], [Hendriks et al, 2002], [Sempau et al, 2003].

The task is, using the results of spectrum measurement f(z;) and
Figure 78. Multi-channel knowledge of the detector response function set corresponding to

spectrometer "Vector" possible radionuclides, to estimate non-zero w; (weights or
activities) and thereby to identify radionuclides with their
activities that produced the measured spectrum (Figure 80).

Gamma-ray spectrometry is considered in fixed and non-fixed geometries of measurements. For
measurements in a fixed geometry, position of the detector relative to the radiation source and
geometry of the source are known; if the radiation source is shaded by a substance that absorbs
radiation, the geometry and nature of this screen are known as well. So, detector response functions
can be generated for this known geometry. Since the maximum number N of detector response
functions is equal to the number of channels L, and each function has its value in each of the L
channels, the total set of detector response functions forms the LxL matrix.

Gamma-ray spectrum measurements in a fixed geometry are used to estimate the radionuclide
content in the samples of food, soil, construction materials, etc., often using the Marinelli beaker.



Intelligent Data Processing in Global Monitoring for Environment and Security 139

The task is complicated by fluctuations in the natural radiation background, low levels of radionuclide
activity, a complex spectral composition of radiation.
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Measurements in a non-fixed geometry (unknown and complex) have the following peculiarities:
position of the detector relative to the radiation source and the geometry of the source are
unknown; the radiation source is shaded by a substance that absorbs radiation, geometry and nature
of this screen are unknown.

So, the detector response functions for a non-fixed geometry of measurements cannot be generated
in advance, and the decomposition of Eq(1) cannot be immediately applied to this case. To cope with
this problem, we proposed [Zabulonov et al, 2004a] to split each detector response function into
three separate functions $”(z), $(z), Y°(z) corresponding to three characteristic spectrum regions:
the total absorption peak, the Compton part and the reverse flight peak. So, each detector response
function is represented as

B(z) = wh P*(z) + wE P(2) + W' BR(2). (2)
Therefore, for this case the maximum set of detector response functions becomes
Ui, j = 1,...,L, s={A,C,R} and those functions form the Lx3L matrix.

Gamma-spectroscopy in a non-fixed geometry of measurements often occurs in practice, since
placing the assessed environmental objects into the fixed geometry conditions is often difficult or
impossible. It concerns radiation assessment of cargo, vehicles, facilities, field sources, as well as
gamma-ray surveys, etc.

5.2.2 Previous gamma-ray spectroscopic methods

Some traditional approaches to gamma-ray spectroscopy are shown in Figure 81.

The traditional Regions-of-interest (ROI) method and its modifications [Desbarats and Killeen, 1990]
make spectrum analysis in certain regions of interest. Usually the number N of those regions is a
small fraction of L. At the calibration stage, the "contribution matrix" is calculated. Its columns
correspond to the expected radionuclides, rows correspond to ROIls, and elements are the gamma-
ray counts registered in the appropriate ROl from the expected radionuclides.
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The measured spectrum is processed as
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Figure 81. Regions-of-Interest and Full Spectrum approaches

to gamma-ray spectroscopy

counts in the ROls.

Thus, traditional methods require a-priori

knowledge of radionuclide composition in

order to estimate radionuclide activities and are not intended to assess samples of arbitrary
composition. In order to overcome this drawback, full spectrum processing techniques were
proposed [Minty, 1992], [Hendriks et al, 2001], [Guoa et al, 2004], [De Meijer, 2007], [Newman et al,
2008]. Here, the total matrix of detector response functions ¥ is used, and the activity vector w is
obtained by the Ordinary Least Squares (OLS) solution:

w="VP'f, (3)
where W' is the pseudoinverse matrix.

However, due to the noise, this method assigns non-zero weights to nuclides actually not present in
the spectrum. To increase noise resistance, maximum noise fraction (MNF) [Dickson and Taylor,
1998; 2000] and noise-adjusted singular value decomposition (NASVD) [Minty and McFadden, 1998],
[Minty and Hovgaard, 2002], [Mauring and Smethurts, 2005] are sometimes used. Regretfully, those
techniques require information about noise.

For a non-fixed geometry of measurements, performance of the traditional methods is even poorer
than for a fixed geometry. If one uses Eq.(1), detector response functions should be known for all
possible geometries and their proper set should be chosen in-situ, that cannot be implemented in
practice. If one considers Eq.(2), the drawbacks of the traditional methods described above become
more severe since the number of weights (activities) to be estimated grows.

Another approach to the non-fixed geometry spectroscopy consists in the following. Some
hypotheses about the composition and activity of nuclides in the measured spectrum are set up.
Then the Monte Carlo simulation of photon transport is done for those hypotheses, taking into
account the particular geometry of measurements. If the measured spectrum is exactly
reconstructed by the simulation, the desired composition and activity are found [Gal et al, 2001],
[Toubon et al, 2006] This approach has a large computational complexity and so cannot provide real-
time results, since a lot of hypotheses should be verified in case of poor a-priori information.
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5.2.3 Intelligent data processing methods for spectrometry
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Figure 82. Gamma-ray spectroscopy by machine learning

To improve the accuracy and stability of radionuclide activity estimation, we develop an approach to
full spectrum processing using machine learning methods of model selection, sparse approximation,
and blind source separation (Figure 82).

v' Model selection and sparse approximation

Model selection is a problem arising in the areas of machine learning and data mining. Given data
usually consisting of input-output pairs, a model is built to relate the input and the output. A number
of approaches have been proposed to build the model, including linear models, neural networks,
classification and regression trees, kernel methods, etc. The task of model selection is to choose a
close-to-optimal model in terms of the particular model usage and application.

A number of model selection methods use various model selection criteria [Akaike, 1974],
[Mallows, 1973], [Hansen and Yu, 2001]. Model selection criteria are formulated in such a way that
they balance the model complexity vs. the approximation error, and so automatically reduce the
model complexity with increasing noise levels. At the optimal models, criteria reach minimum. Model
selection criteria have been developed based on various assumptions, i.e. using predictive training
error [Mallows, 1973]; generalization error [Sugiyama and Ogawa, 2001], [Niyogi and Girosi, 1996]
and related criteria, such as based on information statistics [Akaike, 1974], description length
[Rissanen, 1978; 2002], etc.

.....

noise. The predictive training error is adopted as the error measure [Sugiyama and Ogawa, 2001]
between estimated and true values at sample points contained in the training set:

lore = Ec| [By—Yol |* = | [Byo—yol |” + tr(BQB'), (4)
where B=X,(X,"X,) X" is the mapping from y to its estimation by the model, Q is the noise covariance
matrix, X is the data for the model corresponding to s<N non-zero components of w corresponding

to the model, E; denotes the ensemble average over the noise, ||.|| denotes the norm, tr(-) denotes
the trace of an operator.

The Mallows criterion C, [Mallows, 1973] gives an unbiased estimate of the predictive training error:
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Cp = RSS + 20%s. (5)
where RSS is the residual sum of squares, o’ is the noise variance.

Generalization error is the difference between the expected risk of the obtained solution f,, and the
expected risk of the "optimal" (true) solution f, [Niyogi and Girosi, 1996]:

l=I(fu,)=1(fo), fu,,=argmin¢cy lemp(f), |emp(f):1/|- Y=, V(i f(x), (6)
where fy is the solution obtained using the limited data set of length L and the model H with limited
parametrization, lemp is the empirical risk, V(:) is the loss function.

Subspace Information Criterion SIC gives an unbiased estimate of the generalization error [Sugiyama
and Ogawa, 2001]. For least mean squares learning,

SIC = [(Ty,y) = &* tr(T)], + & tr(Ts"), T=Ts" = T TsTs = T Ts T + T, (7)

where (-)* denotes the matrix pseudoinverse, Ts and T; are the LxL matrices with the elements
obtained by calculation of kernel function values K(x,x') for the selected X; and for the whole X
respectively, [-]. is defined as [t]. = max(0,t).

Akaike's information criterion [Akaike, 1974] evaluates the generalization error from the information
statistics point of view. It is calculated as

AIC =25 +LIn RSS, (8)

where L is the number of observations, s is the number of parameters.

Minimum description length criteria for regression can be written as

ImoL = DL(Y | X) + DL(s), (9)
where DL(y|X;) is the description length of y by the model of complexity s, DL(s) is the description
length of the model.

In [Hansen and Yu, 2001] expressions for LyMDL and gMDL criteria were proposed, whose minima
correspond to the minimum description length criterion:

LyMDL = 0.5(y"y — FSS)/o” + 0.5 s; [1+ log(FSS/ (o°s))]+ 0.5log(L) for FSS>sa?,
L(y) = 0.5(y"y) o otherwise, (10
gMDL = 0.5L log(RSS/(L—s1)) + 0.5s log(F) + log(L) for R* > s/L,
gMDL = 0.5L log (y'y/L) + 0.5 log(L) otherwise,
where FSS = yXs(Xs'Xs)™ X'y, F= (L=s)(y'y-RSS)/ (s RSS), R is the usual multiple correlation
coefficient.

(11)

For the spectroscopy task, the model selection approach is assumed to avoid the situation when the
model includes elements actually not present. In order to use the approach, we must generate the
models and choose the one with the minimal model selection criterion value. Since exhaustive search
is impossible for practical settings, we use greedy techniques based on the ideas of sparse
approximation [DeVore, 1998], [Donoho et al, 2004].

The field of sparse approximation is concerned with the problem of representing a target vector
using a short linear combination of vectors drawn from a large, fixed collection called a dictionary
This problem arises in applications as diverse as machine learning, signal and image processing,
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imaging sciences, communications, numerical analysis and statistics. It is known that sparse
approximation is computationally hard in the general case. Nevertheless, it has recently been
established that there are tractable algorithms for solving these problems in a variety of interesting
cases. It was also shown that, under certain conditions, sparse approximation and Support Vector
Machine technique proposed by V. Vapnik give the same solution [Vapnik and Chervonenkis, 1970].

Sparse approximation methods are used to solve Yw =y, for the complete basis ¥ (i.e. the basis that
exactly represents yg) with the maximum sparseness in terms of the lp norm (w*=ming| |w| |o). They
include step-wise regression [Seber, 1977], k-term approximation [Temlyakov, 2003], matching
pursuit [Mallat and Zhang, 1993], [Tropp and Gilbert, 2007].

Matching pursuit at the (k+1)-th step calculates the approximation of y, fi.1=fi+Wi.1 Wi choosing Wi
(Y1 < ¥ without W) and wy.; that minimize the residual sum squared | |Re—wy| |%:

(Wie1, Wir) = argmin y | [R-wy| |2, Rezy—f. (12)
The drawback of matching pursuit is that its application to noisy y requires stopping criteria.
We proposed to use model selection criteria as stopping criteria [Revunova, 2007b]. It works as
follows.
Initialize fo=0, Ry=y.

Find the basis function (column y) of X that maximizes the scalar product with the current residual
Rkl

Vi =argmaxi-1,.n | (X(-,i),Ri )| (13)

In order to get a more accurate solution proposed in the framework of orthogonal matching pursuit
[Tropp and Gilbert, 2007], recalculate the solution for the already chosen basis functions ¥, by
performing the OLS fitting:

Wk=\Pk+ Y. (14)

Calculate a new residual:

R =y—w, ¥e (15)

Calculate the value of the used model selection criterion CR(k). If CR(k)>CR(k-1), select the model
with s=k—1 as optimal. Otherwise, go to Eq.(13) and repeat the cycle.

Let us compare traditional methods and our model selection approach for spectroscopy in a fixed
and non-fixed geometry of measurements [Revunova, 2008], [Zabulonov et al, 2004b], [Zabulonov et
al, 2009a]. In our approach, ¥ contains detector response functions, and y is the result of spectrum
measurement.

For a fixed geometry of measurements, we compared the relative error of the traditional region of
interest (ROI) and stripping (STR) methods vs. orthogonal matching pursuit with the stopping by the
model selection criterion (MPCR). Fixed geometry of measurements was ensured by placing the test
samples in a standard 0.5] Marinelli beaker and using a detector with a collimator. Traditional ROI
and STR methods were set up for processing of *’Cs (Cesium) and “°K (Potassium). Without changing
this setup, an additional nuclide >*°Th (Thorium) or two additional nuclides **°Th, **Ra (Radium) were
then added to the sample.
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The relative error was estimated for the radionuclide with the lowest energy **’

is "hidden" by the other radionuclides. Model selection criteria of Mallows, Akaike, Bin Yu were used
with MPCR. Slightly better results were obtained for the Mallows criterion Cp. The experimental
results are given in Table 3.

Cs, since its spectrum

Table 3. Relative error of *’Cs activity in the multi-nuclide sample obtained by ROI, STR, MPCR

Nuclides | Cs, K Cs,K, Th |Cs, K, Th, Ra

ROI 0.1% 11% 19%
STR 0.5% 5% 12%
MPCR 0.35% 0.94% 3%

When processing the spectrum of known composition (**’Cs, “°K), the ROl method provides the best
relative error, as it was set up precisely for those nuclides and is influenced by noise only inside its
regions of interest. MPCR provides a smaller error compared to STR. When processing the spectrum
with additional radionuclides (Th or Th, Ra) unknown to the ROI and STR methods, MPCR provides

137

the smallest relative error measuring of the ~>’Cs activity.

For the first experiment in a non-fixed

geometry of measurements, the samples

including ®°Co(Cobalt) (2 spectrum lines), ﬁ%u?t —o— Cs-137 E=662
B7cs, B%Cs, *Mn (Manganese) have been ] —*—Cs-134 E=795
simulated by their 3-part detector response 80 4 —o—Mn-58 E=834
functions Eq.(2) (Figure 83). The weight of ] —2—Co-60 E=1173
the reverse flight peak was 0 and the weight 60 - —+—Co-60 E=1332
of the total absorption peak was 1 for all ]

radionuclides. The weight of the Compton 40 1

part was 2 for *’Cs and ***Cs and 1 for the )

. . . . . 20 g
remaining radionuclides. This simulates the Channel
I/ Z ann
situation when **'Cs and ***Cs which fell on . m‘f il ¥
Lo LI
the soil surface gradually seep into its lower 0 50 100 150

levels and thus the gamma-rays from the

total absorption peak redistribute to the  Figure 83. Detector response functions of the true model
Compton part, so that their coefficients in

Eq.(2) become different. The reverse flight

peak in this situation is practically not observed and so its coefficient is set to zero.

So the number of non-zero detector response functions was 5x2=10. Then the full spectrum was
simulated by the linear model Eq.(1), where the activities of radionuclides were set to w(**’Cs)=3,
w(***Cs)=4.5, w(**Mn)=4, w(®°Co)=7. At last, a realization of an additive noise with the Gaussian
distribution was added to the spectrum. To simulate unexpected radionuclides, 15x2=30 additional
detector response functions y were added to ¥, so the total number of basic functions in ¥ was
N=40. The number of spectrometer channels L was 512. The tested methods used to estimate the
radionuclide activities were: OLS with all basis functions (FULL), OLS with the detector response
functions actually in the model (TRUE), MPCR using model selection criteria of Mallows C,, Akaike
AIC, BinYu Ly (MDL). We compared the errors calculated as the |,-norm of the difference between the
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true activity vector and the estimated activity vector at different noise levels. The results in Figure 84
show that MPCR for all model selection criteria and all noise levels performs better than FULL, but
worse than TRUE. The error for MPCR with MDL is somewhat less than that for C, and AIC.

The next experiment was conducted using the
really measured spectra of a point gamma

- Error ——Cp
radiation source on the background of a - MDL
distributed source with a higher energy. ROI, S AIC

STR, and MPCR with the MDL model selection 500
criterion were compared. In the experiment, the
point source was **’Cs and the distributed source
was “°K; the “°K activity was 51% of the *’Cs 300

activity. ROl and STR were set up for **’Cs and 200
137

—o—FULL

400

“9K. The relative error of the **’Cs activity was

92% for ROI, 85% for STR, and 12% for MPCR. 100 )
Noise Level

0 10 20 30 40 50 60 70 80 90 100

v' Model optimality tests

In order to determine why different model Figure 84. Radionuclide activity error vs noise level

selection criteria vary in accuracy, we compared for various models and model selection criteria

[Revunova, 2008], [Zabulonov et al, 2004a],

[Zabulonov et al, 2009a] the dependence of the model dimensionality and the model error on the
noise level. The comparison showed that the best accuracy is provided by the criterion that keeps the
true dimension of the model at the higher noise levels than the other model selection criteria.

In [Gribonval et al, 2006] a test was proposed for checking if the particular set of basic functions in
the model is true. It is based on the notion of ly-optimal solution that provides both the minimum
approximation error and the maximum model sparsity. Experiments showed [Revunova, 2008] that
with the increasing noise levels the error using such a test is smaller than that of the traditional
model selection criteria [Revunova, 2005a], [Revunova and Rachkovskij, 2005], [Zabulonov et al,
2005].

The drawback of this model optimality test is that it can only be used for some bases with valid "basis
connectivity" condition [Gribonval et al, 2006]. So, research on how to solve this problem for certain
types of detector response basis functions could lead to further improvement in the accuracy of
radionuclide activity estimation under noisy conditions.

v Blind source separation

Blind source separation (BSS) is the separation of a set of signals from a set of mixed signals, without
the aid of information (or with very little information) about the source signals or the mixing process.
In machine learning, BSS is considered as one of the most powerful unsupervised learning
techniques. Unsupervised learning is distinguished from supervised learning and reinforcement
learning in that the learner is given only unlabeled examples. Theoretical foundations of the BSS
methods are well developed [Chichocki and Amari, 2002], [Comon, 1994], [Hyvarinen, 1999].

The most straightforward case is linear BSS with the number of observed mixtures equal to the
number of unknown sources. Here the data D, are represented by the set of L mixture vectors y;e R":

1o
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full rank mixture matrix AeR™™ is unknown. The task is to obtain L unobserved vectors x (matrix
XeR"M) using L known vectors y (matrix YeR"™M) by estimating the un-mixture matrix
B=(by,....by)" € R"™ and then calculating X=YB.

Well-known approaches to solution of the BSS problem use a priori information about the sources.
The sources are supposed to be statistically independent and having nongaussian distribution
(independent component analysis ICA [Amari and Cichocki, 1998], [Amari et al, 2002]), or
uncorrelated and having the Gaussian distribution (principal component analysis PCA [Chichocki and
Amari, 2002]), or sparse (sparse component analysis SCA [Li et al, 2004]), etc. Based on those
assumptions, a cost function is constructed (e.g., mutual information of sources) and then minimized
by the optimization algorithms, providing the solution.

Usually, BSS-related methods such as MNF [Dickson and Taylor, 1998; 2000] are used in spectroscopy
for noise suppression. We propose using BSS in spectrometry to reconstruct detector response
function as follows [Zabulonov et al, 2009b]. A system of several detectors located at various
distances from the radiation sources simultaneously measures the gamma radiation spectra. Those
multiple measured spectra are processed using the BSS method and at the output we get the
separated detector response functions of individual radionuclides as reconstructed mixture
components. This BSS approach to spectroscopy does not require measurement of the background
radiation, knowledge of detector response functions, and the number of reconstructed hidden
sources only depends on the number of detectors.

We carried out experiments [Zabulonov et al, 2009b] investigating BSS performance in spectrometric
tasks. In one of the experiments, the radiation sources Cs**” and K*° were measured simultaneously
by three detectors located at various distances from the sources.

The measured spectra (Figure 85) were input to the Independent Component Analysis algorithm
FastICA [Hyvarinen, 1999] belonging to the BSS family. The separated hidden sources corresponding
to **’Cs, *°K and background radiation are presented in Figure 86.

mix 1 7 1 —o—Cs-137
mix 2 1 —a—K-40
————— mix 3 6 i

----- Background

Channel Channel
-1 — T
0 50 100 150 0 50 100 150
Figure 85. The results of gamma-ray spectra Figure 86. Independent components separated from
measurements by 3 detectors. ¥7¢s, “°K, and are the spectrum mixtures: ¥7¢s, K*, and background

mixed in the spectra

The BSS methods are sensitive to noise and require large data sets, so that their usage in non-
stationary applications is rather problematic [Bach and Jordan, 2002]. To improve BSS performance
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in this situation, we have developed a cost function based on the algorithmic complexity approach,
and algorithmic mutual information in particular [Grunvald and Vitanyi, 2003]:

I(x1:x2) = K(x1) = K(x1| x2), (16)
where K(x;) is the algorithmic complexity of x;, K(x1|x,) is the complexity of x; conditioned upon x.
The algorithmic information theory provides much of the foundation of machine learning and
statistical and inductive inference. However, it is non-trivial to calculate it. We propose [Revunova,
2005b; 2005c] to calculate K(-) using minimum description length [Rissanen, 1978; 2002] based on a
universal model nMDL proposed by Bin Yu [Hansen and Yu, 2001]:

nMDL = (L/2) log(RSS/(L — k)) + 0.5 k log(F) + log(L—k) — 3/2log(k),
F=(x'x = RSS)/(k RSS/(L—k)), RSS = | | x — Pw | |

Here x is described by a linear model M as x=Y.;, w; y;, where weR* are model parameters, ye R

(17)

are basis functions selected in process of constructing M and used to approximate xeR", L is the
number of data samples used to construct the model, k is the number of parameters, y; compose
matrix ¥ e R“*.

The developed cost function demonstrated robust performance in the BSS tasks in the presence of
noise as well as a higher signal to noise ratio compared to FastICA at small level of noise and to PCA
in the whole range of tested noise values [Revunova, 2007a, 2007b]. We believe that application of
the BSS methods will increase the quality of nuclide identification.

Research of combined blind source separation approach and sparse approximation with model
selection approach to gamma-ray spectroscopy looks promising (Figure 82).

5.3 Machine learning with regularization for airborne gamma-ray
surveying

Airborne gamma-ray spectrometry is a remote sensing technique that reconstructs the surface
density of radioactive sources. It is an important part of remote environmental radioactivity
monitoring and is used for the direct detection of ore bodies and as a lithological mapping tool,
assessing health risks associated with radon in houses, ground water discharge and salinity studies,
soil mapping, the mapping of fallout from nuclear accidents, etc. [IAEA, 2003].

Airborne gamma-ray spectrometry measures gamma-ray emissions from radioactive isotopes within
the earth’s near surface (<0.5 m) or from the surface itself. Generally, 512-channel spectra are
collected and analyzed. Each radiometric measurement represents a complex average of a relatively
large region, with areas closer to the aircraft contributing more than those do farther away. Hence,
individual features on the ground appear blurred in the aircraft image. This blurring of spatial detail
can be removed partially by intelligent data processing, the quality of the result depending on the
noise level within the data, the sampling density, and the mathematical model describing the
smoothing process [Billings and Hovgaard, 1999], [Billings et al, 2003], [Dickson, 2004].

In this section, we consider two reconstruction techniques for. First, we observe best available
convolution-based signal processing approach and its solution using the Fourier transform. Then, we
consider an alternative machine learning method that we develop based on direct regularized
solution to the ill-posed discrete problem in space domain. We get a stable solution based on
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random projections, pseudoinverse, and show that its accuracy is comparable to the Tikhonov
regularization, but is less expensive computationally.

5.3.1 Airborne survey technique

Airborne gamma-ray surveying is done as follows.
The aircraft, a plane ("fixed wing") or helicopter that
carries a gamma detector (Figure 87) moves over the
target area with a given topographic relief
(topography). Airborne geophysical surveys are
normally flown on a regular grid along parallel lines
("flight lines"). The height and line spacing of a
radiometric survey determine the spatial and
spectral resolution that can be achieved. The line
spacing (generally 100-400 m) controls the sampling
density in the across-line direction, which can be
significantly less than the sampling density along the
line (generally 50-70 m). The footprint of a single
measurement increases with flying height, while the
count level decreases, thus reducing both spatial and
spectral resolution. Ideally, to maximize both spatial
and spectral resolution, a survey should be flown at
the lowest possible safe altitude. Since gamma
radiation is completely absorbed by the air layer of
200-300 m, surveys are typically flown at a constant height above the ground of between 40 m and
100 m, with helicopters able to fly considerably lower than most fixed-wing aircraft. There is
obviously a trade-off in data acquisition between the observed count rates, and hence the accuracy
of the measurements, and sampling time, aircraft speed, and spatial resolution of the data. Survey
grids and traverse spacing should reflect the expected strength, size and distribution of sources
[Billings & Hovgaard, 1999], [IAEA, 2003].

Figure 87. Onboard airborne gamma-ray system

Airborne gamma-ray spectrometric data can be severely distorted in rough terrain as follows: the
radiation signal decays at an approximately exponential rate with increasing distance to the source;
the rate of decay of radiation signal with distance depends on the source geometry; the resolution of
discrete sources decreases with aircraft height; terrain clearance varies from line to line; the source
geometry varies depending on the aircraft height and the severity of the topography; the geometry
of the detector may have a directional bias.

Gamma-ray data are collected at height, and the detector cannot be focused like a camera. This
results in a blurring of spatial detail, which gets worse as the height increases.

The height of the (x, y) point relative to some zero level is h (x, y). The time interval during which the
gamma-ray count is accumulated before its recording is called the exposure time. Gamma-ray
spectrometric data are usually acquired over a sample interval of one second. Thus, each flight line
results in the array F(t), i=1,..,N° of detector readings. The carrier coordinates (xd(t),yd(t)),
topography h(x,y), and height h® = h*(x%(t),y"(t)) are considered known.

Survey results are usually reported in units of gamma-ray dose rate (total-count surveys) or
concentrations of the radioelements (spectrometer surveys). Measured count rates are dependent
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not only on the ground radioelement concentrations, but also on the equipment used, and on the
nominal height of the survey. This is undesirable, as measuring units should have a direct significance
and be independent of the instrumentation and survey parameters. Count rates should therefore be
converted to ground concentrations of the radioelements.

5.3.2 Problem formulation and intelligent data processing techniques

The task is to restore the radionuclide surface density function g(x,y) by the detector readings
F(x%y%). Due to the large angular aperture of the collimator, the measurement results (detector
readings, count rates) are smoothed and do not reflect in detail the surface density pattern (Figure
88).

Figure 88. The surface density function (left) and its measurements (right)

Let us consider intelligent information processing techniques for reconstruction of the surface
density. The detector count rates are related to the unknown surface density by a Fredholm integral
equation of the first kind. For the case of stationary detector placed above the point (x°y°) at the
height h? this equation is

[T dx dy g(xy) K(x*,y%,hx,y,h) = f(x",y*,h?), (18)

where f(x%y%,h?) is the number of gamma-rays counted per time unit, g(x,y) is the surface density
expressed in the number of decays per square meter per second, h(x,y) is the topography altitude at
the point (x,y), K(xd,yd,hd,x,y,h) is the kernel function (also known as "point spread function" [Billings
et al, 2003]) describing the smoothing process. The aircraft movement can be easily taken into
account given solution to Eq.(18) [Billings et al, 2003], [Zabulonov et al, 2006].

Recent progress in the processing of airborne gamma-ray data was connected with multichannel
processing techniques. For example, NASVD [Hovgaard and Grasty, 1997], [Minty and McFadden,
1998], [Minty and Hovgaard, 2002], [Mauring and Smethurts, 2005] and MNF [Green et al, 1988],
[Dickson and Taylor, 1998; 2000], see also [Dickson, 2004], [Ramos et al, 2007], use information
contained in the whole 512-channel spectrum to reduce the noise and improvement the quality of
measured data f and thereby in the sought-for g.

Assuming small variations in survey altitude and topography (h=const) the kernel (point spread
function) of the integral equation Eq.(18) is presented as

K(d,c,h) = K(d—c,h), (19)
where d=(xd,yd), c=(x,y), so that Eq.(18) becomes the convolution equation.

In [Billings and Hovgaard, 1999] the kernel is expressed as
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K(d—c) = D(d—c,h) exp(—ur) C/r°, (20)

where C is a constant that can be determined by standard calibration procedures,
r= ((x*=x)? + (y*=y)+hZenet) /% is source-detector distance; p is the linear attenuation coefficient of the
air, and D incorporates the detector response.

The exponential term accounts for attenuation of gamma-rays in the air, a factor 1/r ? accounts for
geometrical dispersion, and 1/r arises from attenuation within the earth (with its own attenuation
coefficient). The detector model is derived from geometrical arguments. [Gunn, 1978], [Craig, 1993],
[Craig et al, 1999] present a point spread function for deconvolving airborne radiometric data that
neglects aircraft movement and assumes that the detector response is non-directional. The point
spread function, which take into account aircraft movement and the detector characteristics, is
considered in [Billings and Hovgaard 1999], [Billings et al, 2003].

In deconvolution approach, solution of Eq.(18-20) is obtained in the frequency domain using the
Fourier transform (Figure 89). In the Fourier domain, Eq (18) has a very simple form

W(u) = K(u) G(u), (21)

where and u = (uy, uy) is the spatial frequency, and upper case means Fourier transformation.

A naive way to estimate G(u) is by spectral division

G(u) =W (u) / K(u). (22)

However, W(u) is not known exactly and at high frequencies it is dominated by noise. Since K(u)
decreases rapidly with frequency the spectral division amplifies noise. So, the reconstruction usually
uses the Wiener filter V(u):

G(u) =W (u) V(u). (23)

The quality of the resulting deblurring of spatial detail depends on the noise level within the data, the
sampling density, and the kernel describing the smoothing process. The improvement achieved by
the deconvolution is limited by the noise levels in the data and the degree of smoothing imposed by
the detector height.

' Fouri Filtrat q I Fouri Deconvolution |
: . ourfler > DI ra |onI et[_n > nv_lt_arse fc>ur|er approach ;
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radionuclides regularization f— . PP .
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Figure 89. Deconvolution and regularization machine learning approaches to airborne gamma-ray surveying

The deconvolution approach has the following drawbacks. Derivation of the Wiener filter requires
knowledge of spatial statistics of both the actual distribution density g(x,y) and the measurement
noise g(x,y). Since both are unknown, some assumptions should be made, that may be not always
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valid. For example, determining the noise levels after multichannel processing such as NASVD, and
particularly after application of the adaptive filter, is difficult. So, in [Billings et al, 2003], after getting
a ballpark estimate of the noise, manual adjustments are used to visually tune the deconvolution.

Also, the blurring in the data is assumed to be the same everywhere. This means that no
accommodation can be made for changes in the detector height or for 3D terrain effects.

The noise is assumed additive and the same everywhere. Due to the Poisson nature of radioactive
decay and gamma-ray detection, this is clearly not the case. To mitigate this effect, sometimes an
adaptive 2D Lee filter [Ristau and Moon, 2001] is used to remove random noise from an image while
maintaining image edges.

In situations where the terrain clearance (variations in survey altitude and topography) and noise
vary significantly over the survey area, a partial solution would be to break the survey up into smaller
segments and apply deconvolution separately to each sub-area.

An alternative approach [Zabulonov et al, 2006] is to use a full space domain formulation. For a
particular example, let us consider a detector whose field of view is defined by a vertically oriented
collimator of the horn type with a rectangular cross section and angular aperture (64,06,),
e.g. 0.50, = 0.50, < 60°. Therefore, the detector's field of view looks at a square piece of the surface
topography, called "window" hereafter. The window size is determined by the angular aperture of
the collimator and the height of detector. The window movement during the exposure time makes a
rectangular exposure strip.

This setup is described by Eq.(18), where integration is over the area of the browsing window on the
ground surface s and

K(xy, x%,y%) = s a(x®,y%,x,y) exp(-up)/4np?, (24)

where q(x%y%xy) = (h*=h(xy))/p, p = ((h%h(xy))* + (xX*=x)* + (y*=y)’)*? is the distance from the
detector to the surface point, q(xd,yd,x,y) is the detector sensitivity function. s is the effective area of
the detector inlet, including the calibration constant, and taking into account, for particular
radionuclide, the quantum vyield, the detection efficiency, and the inlet area. Here, only surface
radiation sources resulted from fallout are taken into account.

1/2

The major drawback of this full space domain formulation of the airborne gamma-ray survey
problem is that it requires solution of discrete ill-posed inverse problem. Below, we consider an
approach to a stable solution of this problem.

5.3.3 Regularized solution of the ill-posed inverse problem for a full spacedomain
formulation

After discretization of the Fredholm integral equation Eq.(18), we get

Ax=b, (25)
where the matrix Ac R™" and the vector beR" are obtained from discretization of the kernel K and
f(x%), respectively; x represents the unknown g(x,y=const) along the flight line to be reconstructed.
The vector be RV is distorted by the additive noise eeR": b=bg+e.

In case when the singular values c; of A decay gradually to zero, the ratio between the largest and

the smallest nonzero singular values is large, the problem is known as discrete ill-posed problem
[Hansen, 1998]. Actually, these properties are present in the spectrometry task considered here.

Approximate solutions of discrete ill-posed problems as the least squares problem
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x'=argminy | |b-Ax| |5, (26)

using standard methods of numeric linear algebra such as LU, Cholesky, QR factorizations are
unstable. It means that small perturbations in the input data lead to large perturbations in the
solution.

To overcome the instability and to improve the accuracy of solutions to discrete ill-posed problems,
regularization methods have been proposed [Hansen, 1998], [Tikhonov and Arsenin, 1977],
[Morozov, 1984], [Engl et al, 2000]. In the fields of machine learning and inverse problems,
regularization involves introducing additional information in order to solve an ill-posed problem or to
prevent overfitting. This information is usually of the form of a penalty for complexity, such as
restrictions for smoothness or bounds on the vector space norm. Regularization imposes some
constraints on the desired solution that stabilizes the problem and leads to meaningful and stable
solution. For example, Tikhonov regularization [Tikhonov and Arsenin, 1977], [Hansen, 1998]
penalizes solutions with large |,-norms.

The standard form of Tikhonov regularization problem is formulated as follows:
Xreg = argminy (| |Ax=b| [+A[[x]]>), (27)
where A is the regularization parameter.

Regularization has a rich history, which dates back to the theory of inverse ill-posed and ill-
conditioned problems inspiring many advances in machine learning, support vector machines and
kernel based modeling techniques. Determination of the regularization parameter in the Tikhonov
scheme is considered an important problem.

Solution of Eq.(27) can be obtained by the method of filtered SVD [Hansen, 1998]:
Xreg = \' diag (fl / Gi) UT Y, (28)
where f; = 6% /(0% + \?) are filter factors.

One problem here is using the SVD of A, since it is a computationally expensive decomposition
method. Another problem, that may appear even more important, is selecting the proper
regularization parameter A.

A number of methods for selecting the regularization parameter have been proposed [Engl et al,
2000]. The L-curve method [Hansen and O’Leary, 1993] makes a plot of | |X.eg| |2 VS | |AX.eg=b | |, for
all valid regularization parameters. For discrete ill-posed problems the L-curve, when plotted in log-
log scale, often has a characteristic L-shape appearance, hence its name. A distinct corner separates
the vertical and the horizontal parts of the curve. The regularization parameter not far from the
corner is selected as optimal.

The discrepancy principle [Morozov, 1984] chooses the regularization parameters such that the
residual norm for the regularized solution satisfies | |Ax.; — b||, = | |e| |, where e in the norm of
perturbation of the right-hand side, and therefore requires an estimation of | |e| |,, i.e. noise.

The generalized cross-validation [Wahba, 1990] method is based on the idea that an arbitrary
element b; of the right-hand side b can be predicted by the corresponding regularized solution, and
the choice of regularization parameter should be independent of an orthogonal transformation of b.
This leads to choosing the regularization parameter that minimizes | |Ax.; — b||*/ D?, where D is a
squared effective number of degrees of freedom (which is not necessarily an integer) that can be
calculated as D = m—2Xf;. Here the errors of b are considered as uncorrelated zero-mean random
variables with a common variance, i.e., white noise.
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v’ Solutions using random projections

The drawbacks inherent in the methods of solving discrete ill-posed problems based on Tikhonov
regularization include their high computational complexity and the difficulty of selecting the proper
regularization parameter (penalty weight) which influences the solution stability. At the wrong values
of the regularization parameter, the error of solution may be substantial. Therefore, alternative
approaches are required for solving discrete ill-posed problems that would have the accuracy
comparable to Tikhonov regularization at lower computational costs.

We develop such an approach using the ideas of random projections [Johnson and Lindenstrauss,
1984], [Papadimitriou et al, 2000], [Achlioptas, 2003] and of our previous work on distributed
representations (e.g., [Misuno et al, 2005]) inspired by the idea of information representation in
neural networks of the brain. Random projections have recently appeared as a tool for
dimensionality reduction and have been used to produce a number of interesting results, both
theoretical and applied, including those in context of inductive supervised learning using machine
learning methods [Halko et al, 2009], [Revunova and Rachkovskij, 2009s].

The technique plays a key role in several breakthrough developments in the field of algorithms. In
other cases, it provides elegant alternative proofs. Recently, researchers working in the area of
numeric linear algebra applied similar ideas to get fast randomized algorithms for the least squares
problem, matrix factorization, principal component analysis, etc. [Sarlos, 2006], [Drineas et al, 2007],
[Rokhlin and Tygert, 2008], [Tygert, 2009], [Halko et al, 2009]. It is therefore of interest to study
those techniques and apply them to discrete ill-posed inverse problems.

Let us use the randomized algorithms not only to accelerate, but also to stabilize the solution x' of
the ill-posed problem, as follows [Revunova and Rachkovskij, 2009s]. Multiply both sides of Eq.(25)
by the matrix QeR“™, K<N, whose elements are realizations of a normal random variable with zero
mean and unit variance. The number of columns N of matrix Q is determined by the dimension of
the matrix A, the number of rows K is a priori unknown since the numerical rank of A is ill-
determined and the required numerical rank of approximation is unknown. We obtain

QA x = Qb, where QA e R*", QbeR". (29)
Then the least-squares problem is
Xpr = argmin, | | QA X —Qb] |,. (30)
Signal reconstruction based on pseudo-inverse using random projection Q is obtained as
Xpiner = (QA)" Qb. (31)

Signal reconstruction based on the pseudo-inverse using the projection matrix Q obtained by the QR
factorization of QA is done as
Xeina= (Q'A)" Q'b. (32)
The pseudo-inverse P of a matrix P is actually computed based on SVD as:
P" =V diag (¢i/ o) U', iff o;>tresh di=1, otherwise ¢; =0. (33)
tresh = max(K,N) eps(max(ao;)),

where U, V, S are obtained by the SVD of P = USV'; o, = diag S are singular values, the elements of a
diagonal matrix S; floating-point relative accuracy eps(z) is the positive distance from abs(z) to the
next larger in magnitude floating point number of the same precision as z.
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In order to compare the quality of reconstruction of the surface density of radioactive sources, we
conducted an experimental study of techniques for solving discrete ill-posed problems using the
simulated data of radioactivity monitoring at h=100m.

The matrix @ (i.e., A in Eq.(25)) obtained by discretization of the kernel Eq.(24) has dimensionality of
200x200 (Figure 90), large condition number (Gma/0omin>>1), and singular values o; gradually decaying
to zero. The right-hand side y (i.e., b in Eq.(25)) is distorted by an additive noise with the Gaussian
distribution and various amplitudes. Figure 91 shows the measurement y produced by the doublet
signal x to be restored.

6E+61
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1E+61

Coordinate

Figure 90. The kernel matrix @ for gamma-ray Figure 91. The modeled 1D surface density x, the
surveying measurement y, and the restored density x* for
gamma-ray surveying

First, we have compared performance of three kinds of techniques: the pseudo-inverse solution
Eq.(26), the Tikhonov regularization Eq.(28) with the selection of the regularization parameter A
using the L-curve, the generalized cross-validation, and the discrepancy principle [Hansen, 1998],
[Wahba, 1990], [Morozov, 1984], and the pseudo-inverse with projection using the random matrix Q
Eq.(31) and with the ortogonalized matrix Q Eq.(32). The random projection matrix Qe R“™, N=200,
K<N is the Gaussian random matrix with the entries of zero mean and unit variance. Three noise
levels are used {1072,107°,107'%). The results in terms of the signal reconstruction error vector norm
are given in Table 4.

Without projection, the standard pseudo-inverse provides an acceptable error ep;, only at the lowest
noise level and cannot be used at all at the larger noise levels due to very large error. The errors for
the Tikhonov regularization with the selection of A by the L-curve egegr Lcur, the generalized cross-
validation egegr GCV, and the discrepancy principle egegr Dsc are generally comparable for all three
noise levels. However, we observe an outlier for egegr GCV at the noise level 10°°, giving the instance
of unstable regularization parameter selection. The lowest signal reconstruction error is provided by
the Tikhonov regularization with the L-curve.



Intelligent Data Processing in Global Monitoring for Environment and Security 155

Table 4. The signal reconstruction error for the discrete ill-posed problem of gamma-surveying
obtained by the regularization methods without and with random projecting. K is the
dimensionality of projection matrix.

Error, solutions Min error, Error, Error,
Noise without projection with projection with projection with projection
level o €RegT | ©RegT | €RegT €pinR €pinaR €pinR €pinar €pinR €pinaR
" lleur| Gev | Dsc |  (K) (K) | gMDL(K) | gMDL(K) | Leur(K) | Leur(K)

102 |7.310°|48.9| 473 | 64 |53.8(26)50.3(29) | 53.8(26) | 51.3(27) | 53.8(26) | 51.9(30)
10° |7.310*|21.1|1.610° | 22.8 | 21.9(35) | 21.7(39) | 21.9(35) | 21.8(35) | 22.0(36) | 21.7(39)
10 | 11.1 | 9.4 | 11.1 |15.5|9.01(77) | 8.3(47) | 21.9(35) | 12.5(45) | N/A N/A

With the random projection, the pseudo-inverse becomes stable and the reconstruction error values
at the minimum (with the proper choice of K) are comparable and small for the projector matrix Q
(Eq.(31)) epinr and Q (EQ.(32)) epinar-

In order to see how to choose the optimal K for

the projective methods, let us consider the 1.E+08 T ePinQR ——ePinQR 1e2 -gMpL
—e—ePinQR 1e-6
—e—ePinQR 1e-10
——gMDL 1e-2
—o—gMDL 1e-6

—o—gMDL 1e-10

dependence of the signal reconstruction error
epingr ON the dimensionality K of the projector
matrix Q (Figure 92, left Y-axis). The error
minimum can be observed for all noise levels.

1.E+06

With increasing noise level, position of the error 1.E+04
minimum shifts to the lower values of K and the
error value at the minimum increases. To choose 1 E+02
the projection matrix dimensionality K at which
the solution error is close to the minimum for

real situations, i.e. where the exact solution is 1.E+00

0 10 20 30 40 50 K 60

unknown, we propose using various types of

model selection criteria: Figure 92. Dependence of the signal reconstruction

(1) Criteria for model selection discussed above error epinqr (left Y-axis) and gMDL values (right Y-
in context of sparse approximation and axis) on the dimensionality K of the projection
matching pursuit [Mallows, 1973], [Akaike, matrix at the noise levels 107, 10, 10*°. Minima
1974], [Hansen and Yu, 2001]; are at close K

(2) Criteria proposed to select the regularization
parameters of Tikhonov-like regularization using the L-curve, the generalized cross-validation, and
the discrepancy principle [Hansen, 1998], [Wahba, 1990], [Morozov, 1984].

Figure 92 (right axis Y) shows the values of Bin Yu model selection criterion gMDL Eq. (11) vs K. We
observe that the minimum value of gMDL is near the true solution minimum. The results of K
selection using gMDL, as well as those obtained with the L-curve, are shown in Table 4 and
demonstrate the reconstruction error near or equal to the optimal one. An example of the
reconstructed result x* is shown in Figure 91. So, the model selection criteria can be used for getting
the required K providing the near-optimal solution.
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Figure 93 shows the computation times of
different techniques vs. K. As expected, the 0.07
solution based on pseudo-inverse without
random projection has a constant and rather

large computation time compared to the 0.05 R+Pinv
- = = QR+Pinv

solutions using random projection at the
smaller values of K. For example, at K=30, the
computation time with random projection 0.03
(~0.003s for both considered projection 0.02
methods) is 20 times less than that of ordinary
pseudoinverse without random projection
(0.06s). This time reduction is because the 0
singular value decomposition is performed on 0 25 50 75 100 125 150 175 200

0.04

0.01

the resulting (NxK) matrix after the projection,

. . . Figure 93. The computation times of pseudo-inverse
where K is a small fraction of N of the original

i ' ' solutions vs K: Pinv — ordinary, R+Pinv — with random
(NxN) matrix @. Particularly large gains are projection, QR+Pinv — random projection
achieved at the higher noise levels because orthogonalized

their optimal K is small.

Thus, the study and application of intelligent

regularization-based techniques for solving discrete ill-posed problems based on pseudo-inverse with
a random projection is a promising direction due to the lower computational costs, and also because
of their stability, manifested in the smooth change of the signal reconstruction error with the
increasing noise and K.

Directions of further work in this area include:

— solution methods that take into account nonnegativity of solution, such as non-negative matrix
factorization, non-negative least squares, etc.;

— techniques for a computationally efficient choice of the optimal K based on the knowledge about
solution, such as its smoothness, nonnegativity, etc.;

— high-performance hardware implementation for real-time applications using efficient systolic
architectures [Brent, 1988], [Brent and Luk, 1985], [Zabulonov and Revunova, 2006].

5.4 Discussion

In this chapter, we discussed machine-learning techniques for intelligent processing of gamma-ray
spectroscopy data in environmental and security-related monitoring.

In particular, we developed and applied to intelligent processing of multichannel gamma-ray
spectrometer data the supervised learning techniques of sparse approximation with model selection
that resulted in a substantial increasing of data processing quality. Development of a new model
selection test is suggested for further improving the quality of gamma-ray spectrometry. For this
task, we also considered blind source separation approach of unsupervised learning, including a
novel objective function based on algorithmic complexity. It is expected to become an important step
in the development of the new generation of intelligent information technologies for multichannel
and multidetector gamma-ray spectroscopy under a complex and unknown geometry of
measurements.
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We also described an advanced approach to processing of airborne gamma-ray spectrometry data in
order to reconstruct the surface density of radionuclides. This approach requires solution of the
discrete ill-posed inverse problem resulting from direct space domain problem formulation. In order
to improve the speed and stability of the Tikhonov regularization traditionally used to solve such
problems, we developed and employed a novel method based on random projection, which is
conceptually close to distributed representations in neural networks. This resulted in substantial
computational savings for noisy measurements, which is always the case. Again, model selection
criteria were employed to choose the random projection parameter.

We would like to note that the developed and deployed intelligent data processing techniques are
not limited to the case study of particular gamma-ray processing task considered. They can be
applied to other kinds of environmental gamma-ray monitoring, as well as to other kinds of
environmental monitoring in many areas beyond those considered in this chapter — those that
require machine learning techniques for solving inverse problems that are ill-conditioned or ill-posed
and call for model selection and regularization.

In addition to the machine learning methods considered in this chapter, another way to increase the
level of intelligence in monitoring for environment and security is construction of and integration
with knowledge bases and expert systems, particularly those employing analogical reasoning and
knowledge mining [Gladun 1994], [Gladun and Vashchenko, 2000], [Gladun et al, 2008], [Markman et
al, 2003], [Rachkovskij, 2001; 2004], [Rachkovskij and Kussul, 2001], [Slipchenko and Rachkovskij,
2009s]. This requires formation of data and knowledge bases and other intelligent memory
structures accumulating the measurement results together with the results of their processing for
varied monitoring situations, as well as with their expert estimations. Those bases could be used
both for machine learning and for example-based reasoning in order to further raise the intelligent
component of gamma-ray monitoring and of other kinds of environmental and security-related
monitoring. An advanced access to available and emerging worldwide, national, and local databases,
and their computation-intensive processing would benefit from the high-performance intelligent
computations and multi-source data integration of geographically distributed Grid computing
technologies.



