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11
Polyhedral Coherent Risk Measures and their
Application to Investment Decisions Support
under Catastrophic Flood Risks

11.1 Introduction and some definitions

The results of managerial decisions are influenced by numerous factors, parameters, and processes
that impart them a stochastic, or even, to a certain extent, an uncertain character. It is caused by as
the fundamental impossibility to describe fully enough and to forecast future processes in advance,
as the stochastic nature of some factors and parameters of these processes (for example,
fluctuations in financial markets, natural cataclysms caused by the coincidence of some conditions
and phenomena, and so on). This concerns in full degree various decisions in economic and financial
fields, which are sensitive enough to numerous risks. Similar properties have a special significance in
development and realization of important (global) decisions with long-term consequences, because
appropriate uncertainties and risks essentially increase in a long-term prospect. Therefore, the
development of a methodology for decision-making under risk and uncertainty, and appropriate
models and methods of search of optimal (effective) decisions take a critical meaning in the present
conditions of global interferences of various processes.

As a rule, risk arises in those cases where there is a possibility (probability) of adverse consequences
(damages, losses), hence, where considered processes cannot be described by deterministic values.
Besides, risk can be caused by essentially stochastic nature of parameters and characteristics of
processes, or by the impossibility to predict and describe them in advance (uncertainty), or by
imposing of both specified circumstances.

In various applications, especially in financial and economic ones, the choice of concept of efficiency
is transparent, as a rule, it is a profit, return, utility, etc. At the same time, a question how to
estimate risk remains methodologically difficult and ambiguous. Certain functions which describe risk
guantitatively are called as risk functions, or, according to terminology [Artzner et al, 1999], as risk
measures. What kind should be a risk measure? An inappropriate choice of such measure can lead to
inconsistent decision-making results, to difficulties in searching optimal decisions for studied
problems, etc.

In the process of development of the theory and applications to support of economic and financial
decisions in conditions of risk and uncertainty, different functions were used as risk measures: a
dispersion (deviation) [Markowitz, 1959], a semi-deviation [Ogryczak and Ruszczynski, 1999], VaR
(Value-at-Risk) [Jorion, 1996], an expected absolute deviation [Konno and Yamazaki, 1991], and
others.
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However, none of them is perfect. For instance, the dispersion is a traditional measure in the theory
of errors for the estimation of a deviation from the mean; however, for financial area measures
characterizing downside deviations from some level (loss) are more suitable. Therefore, the
dispersion [Markowitz, 1959] estimating both a downside deviation (losses), and an upside deviation
(profit), is not an adequate risk measure for financial and economic problems. The same concerns
the semi-deviation [Ogryczak and Ruszczynski, 1999] and the expected absolute deviation [Konno
and Yamazaki, 1991].

Currently, VaR is the most popular risk measure in financial applications [Jorion, 1996]; it came there
from the insurance area and was propagated by the RiskMetrics methodology. The measure has
simple and clear interpretation for risk-managers; however, it has drawbacks as well. In particular, it
is not subadditive that can lead to the following paradox: a portfolio diversification can increase its
risk (in terms of VaR as the risk measure). Besides, it ignores risks of high losses. Therefore, in 2000
the Basel committee on bank supervision did not recommend to use VaR, as well as dispersion, for
measuring risks.

Later, in [Artzner et al, 1999] four axioms have been formulated, to which from a theoretical point of
view a risk function should satisfy to claim to be a successful measure of risk, and the corresponding
class of risk functions was called as the class of coherent risk measures (CRM). We remind that such
functions should be: 1) translation invariant; 2) subadditive; 3) positively homogeneous; 4)
monotonous.

Then in [Rockafellar and Uryasev, 2000; 2002], CVaR (Conditional VaR) risk measure was proposed,
which, on the one hand, is interpreted as integrated VaR (integral of the appropriate tail
distribution), and, on the other hand, belongs to the class of CRM. Remarkable properties of this
measure allow to reduce portfolio optimization problems with CVaR objective or/and constraint
functions to linear programming problems (LPP).

Later, in [Kirilyuk, 2003; 2004a; 2004b], a class of polyhedral coherent risk measures (PCRM) was
introduced, which, on the one hand, is a subset of CRM class (hence it possesses all theoretically
attractive properties); on the other hand, it allows to reduce various portfolio optimization problems
with such risk measures to LPP. The class contains CVaR and some other important risk measures as
special cases.

Let us notice that a considerable interest to CVaR in the financial literature and attempts to consider
it as reasonable alternative to VAR currently are observed. However, a question of a choice of the
risk measure for concrete problem settings remains open. Use in important problems not only one
risk measure, but also a whole set of measures, for instance, in constraints on risk levels which are
described by these risk measures, looks quite reasonable.

In this paper we review some results of the PCRM theory from [Kirilyuk, 2003-2007], consider their
applications to decision making support in conditions of risk, and develop numerical methods for
searching optimal decisions. As a particular application, an investment decisions making under
catastrophic flood risks is considered (section 5).

Let there be a certain amount of money (resources), which need to be distributed among several
instruments (financial assets, branches, programs, etc.) in such a way that the total result obtained
was optimal with respect to efficiency-risk ratio. Accordingly, such instruments are called as the
portfolio components, and their total result is called as the portfolio result. Such problems often
arise in financial and economic applications.
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We consider decision-making models guided definitely by the scenario analysis. Suppose that there is
some set of developed scenarios, which allow describing price evolution for each portfolio
component. For example, this can be done from the analysis of corresponding prehistory (a statistical
data analysis) and a certain forecast of future events. In case when probabilities of the developed
scenarios are known, it is clear that distributions of all portfolio components are known as well.
Accordingly to terminology [Knight, 1921], we say then that decisions are made in the condition of
risk.

A situation, when scenario probabilities are not known but some of their estimates are available, is
more difficult and requires certain additional methodological efforts. In this case, the situation is
characterized as partially uncertain incomplete information on distributions).

Let us consider now discrete random variables (r.v.) taking n values, which are called scenarios. Then
each scenario i = 1, ..., n has some probability p;> 0, that is, a vector of scenario probabilities

Py = (p?,...,pg),p? >0,i = 1n27p,0 =1 is given, and a r.v. X is characterized by its distribution x =
(X1, ..., Xa) € R"on these scenarios, hence, it is identified with this n-dimensional vector.
Consider a function of the following form

p(x) = max{E,[-X] / peP} (1)

where Ep[-X] = <—x, p> is the mean value of r.v. (—X) with a discrete probability measure p, and P is a
convex closed set of probability measures.

Let's remind that functions of form (1) which have a certain sense and where the set P is
described in the form of a convex hull of a finite number of points, are called by the polyhedral
coherent risk measure (PCRM) [Kirilyuk, 2003]. More exactly, if P is a set of the following form

P = co{p;: i=1,...,k},
Alternatively, it is equivalent,
P={p:Bp<c,p=0} (2)

where B and c are a matrix and a vector of appropriate dimensions, the relations (1)—(2)
unambiguously describe a polyhedral coherent risk measure.
Note that as P is a set of probability measures, its description in the form of (2) should include the

n n n
condition ZP/ =1,ie, ZP/ <1- zpi <-1.

i=1 i=1 i=1
Hence, the first two rows of the matrix B are (1, ....,, 1) and —(1, ...., 1), and the first two components
of the vector care 1 and —1.

Consider known risk measures, which satisfy this PCRM definition. Because of all of them are set in
form of (1), for the full description of a concrete measure it is enough to describe the set P from
relation (2).

1) WCR is the worst-case risk on all distribution of a r.v. [Artzner et al, 1999]. In the case, WCR(x) =
max {—x;: i = 1,..., n}. Then, as it is easy to see, the set P has the following form

PWCR = {p = (pl;---; pn): pl2 O/ i= 11'--/ n, Z:p[ =1}'

2) CVaR, is the conditional average of losses on a-tail of a r.v. distribution (Conditional VaR)
[Rockafellar and Uryasev, 2000;, 2002]. It has the form of (1), where appropriate set P is described as

0 .
PCVaRa = {p = (pll"'l pn): plgpl /a ’ pi Zor = 11---r n, Zq’pl :1}1
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where pg = (p?,...,p,?) is the vector of initial scenario probabilities.

3) WCE , is the worst conditional expectation of r.v. [Artzner et al, 1999]. Appropriate set P is
0 : .
PWCEa =co{(py,..., pn)/ for ZTPI, >a, p = pg /ZTpg,j <mp; = 0,j>m}

4) SCRM is the spectral coherent risk measure [Acerbi, 2002]. As it shown in [Kirilyuk, 2006],
SCRM (x) =) A,CVaR, (x)
1
therefore,

m n
Pscrm ={P = (P1,-..,Pn): P} < (Z(ﬂj /aj)jp,o, pi 20, i=1,..,, n, zpi =1},
1 1

pg) is the vector of initial scenario probabilities.

As it shown in [Kirilyuk, 2004], the following measures are PCRM as well:

5) & (x; r) is a measure on the semideviation from the mean value of a r.v. [Ogryczak and Ruszczynski,
1999], where

3s(x; r) = —E[x] + r E[(E[x] —x)];
6) Oa (X; r) is @ measure on the absolute deviation from the mean value of a r.v. [Ogryczak and
Ruszczynski, 1999], where

Salx; r) =—E[x] + r E[ |x—E[x]]| 1.
These measures can be presented in form of relations of (1)—(2) as well.
Besides, the PCRM class is invariant relatively to the following operations [Kirilyuk, 2004]: 1) convex
combination; 2) maximum functions; 3) infimal convolution.

Thus, it is possible to generate new such risk measures by application of the specified operations to
representatives of the class, and it is easy to describe the obtained measures, having specified
appropriate sets P from (1). It means that the class PCRM is wide enough and includes all (known for
authors) coherent risk measures.

Now in PCRM terms we consider models of support of portfolio optimal decisions on efficiency-risk
(return-risk) ratio. These models are put in the following forms. Let a certain sum (set) of money
(resources) which need to be distributed on tools (financial assets, branches, programs, other) which
are called as portfolio components, is given. It is necessary to distribute it so that the total result
obtained thus was optimal on efficiency-risk ratio. The following sections of the paper are devoted to
the problem.

11.2 Models of support of optimal portfolio decisions on return-risk ratio
in conditions of risk (known distributions)

Let distribution of efficiency (return) of portfolio component z, j=1,..., k be described by matrix H of
nxk dimension where a j column describes the distribution of j-th component. A vector u = (uj, ..., Uy)

k
which describes a portfolio structure, it is considered as a variable, where 21 u=1,u>0,i=1,..k.

It is necessary to find such portfolio structure u, which optimizes a total portfolio result on a
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efficiency-risk ratio. In case of known component distributions (in our problem statement it is
described by matrix H of component distributions according to scenarios and by the known vector of

probabilities of scenarios p, = (pf,...,pg)), as an efficiency indicator the average efficiency, and as a

risk measure some PCRM are considered. It is clear that, the more the average efficiency and the less
the portfolio risk level, the more preferable it to be for a decision maker (DM). However, these
characteristics are much interconnected and, as a rule, improving one of them, simultaneously we
worsen the second one. Suppose that a DM has certain knowledge about what risk levels are
acceptable and what efficiency levels are desirable. He optimizes one of these criteria under
constraints on another. On this way, the following two interconnected problem statements are
possible.

Risk measure minimization problem under average efficiency guaranteed. Fix the lower admissible
value of average efficiency E,[Hu] which the investigated portfolio should guarantee, by the value
in the form of constraints, and minimize its risk measure p(Hu):
min  p(Hu)
:lul:l,u,ZO (3)
EPo [Hulzp

Average efficiency maximization problem under risk measure constrained. Fix some level of risk
measure p(Hu) which the investigated portfolio should not exceed, by the value o in the form of
constraints, and maximize its average efficiency E, [Hu]:

max E [Hu]
z:ul:l,uizo 0 (4)
p(Hu)<o

Let remind the results obtained in [Kirilyuk, 2004], relatively to reduction of these problems to LPP.

Theorem 1. A solution of portfolio problem (3)—(1) is the component u of a solution (v, u) of the
following LPP:

—BTv—Hu<0
Au<b

v20,u>0

<c,v>

(5)

Theorem 2. A solution of portfolio problem (4), (1)—(2) is the component u of a solution (v, u) of the
following LPP:

T
max < H pgu>

—-B"v—Hu<0

<c,v><o (6)

lel u;=1

v20,u>0

Where

A=|-1-1..-1|,b=| -1 | B=|-1-1..—1|,c=]| -1
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It is easy to see that the matrix By and the vector ¢y, which define some PCMR, are supplemented
with technical restrictions from units and a minus of units (the first two rows) and in the form of B
and c accordingly are used in LPP (5) and (6).

It is important sometimes that under the average efficiency maximization, a number of constraints
on risk measures, which guarantees certain reliability of obtained solutions within the bounds of
some concept of risk management, should be satisfied. For instance, it is important for a DM that
certain risk measures should not be exceeded by some critical levels. In the case, problem (4)
contains m constraints on risk measures (PCRM), it has the following form

max  E[Hu]
z:’ u,=1,u;20 (7)

p; (Hu)<o,i=1,...,m
where p;(.), i =1, ..., m are appropriate risk measures:
pi(x) = max{E,[-X] / B p < ¢;, p 2 0} (8)
Then the result formulated in the form of the following theorem takes place.

Theorem 3. A solution of portfolio problem (7)—(8) is the component u of a solution (vy, vy, ..., Vi, U)
of the following LPP:

T
max(vl,...,vm,u) <H Do>t >
—BITVI—HMSO

...... T (9)
_Bmvm_
<¢,, V>0,

n
1

v;20,...,v,, 20,u=0

u;=1

Let us remark that in this case, appropriate LPP has more large dimension (in proportion to the
number of constraints on risk measures), than the one in the conditions of theorem 2. That is, a
charge for performance of all formulated constraints is the essential increase in dimension of the
problem, which should be solved.

Let us notice that the PCRM concept supposes certain generalizations, which allow operating with a
wider class of risk measures, without losing thus the basic remarkable property of this class as a
possibility of reduction of portfolio optimization problems on return-risk (efficiency-risk) ratio to LPP.
Besides, the mathematical technique, which is used, becomes complicated not essentially, and within
certain technical details only [Kirilyuk, 2006].

11.3 PCRM in conditions of partial uncertainty

Essentially other looks a situation at which a matrix H of the component distributions in accordance
with scenarios remains known and a vector of scenario probabilities Py = (p?,...,pg) is not. As a rule,

identification of probabilities of the future scenarios is essentially more a challenge, than a
development of such scenarios of future events. Especially, it is important for so-called rare events
[Ermoliev et al, 2000a,b]. For example, how many years should to fix flooding to guarantee, that a
flooding of a certain capacity occurs only once in hundred years?
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Nevertheless, it is clear that certain information on probabilities is available. Moreover, sometimes it
is possible to estimate these scenario probabilities in certain bounds, or, more mathematically, in the
form of an inclusion: py € P, where P is a polyhedron. However, at once such situation adds principal
difficulties to the problem, because of it is impossible to operate even with average values
(mathematical expectations) under unknown probabilities po.

Therefore, in [Kirilyuk, 2006; 2007] the following mathematical technique has been proposed.
Together with a risk function in the PCRM form

p(x) = max{E,[-X] / peP} (10)
an efficiency (return) functional is considered as well
8(x) = max{E,[X] / pe P} (11)

where P is a convex closed polyhedral set of probability measures, which is described in the form
of (2):
P ={p: Bp <c, p=0}=cofp;: i=1,...,k} (12)

Let's notice that, generally speaking, sets P from (10) and (11) can be different (various risk measures
pi () can use different sets P;), however they are identical in the most simple case when these sets
are interpreted as an estimation on scenario probabilities in the form pg € P.
It is easy to see that

p(x) = max{E,[-X] / peP} =—min {E,[X] / peP} (13)
and together with (11), the average value of a r.v. X can be estimated from above and from below by
the interval [- p(x), g(x)], since

—p(x) = min {E,[X] / peP} < Ep[X] < max{E,[X] / pe P} =g(x).

Hence, it is clear that in terms of these criteria under decision-making it is necessary to shift the
interval [- p(x), g(x)] to the right, increasing both its ends (if X describes "positive" outputs: efficiency,
return, others). Or, in terms of efficiency and risk, it is necessary to maximize the efficiency functional
g(.) and to minimize the risk functional p(.).
Consider now certain aspects of construction of risk measures on set P, that estimates a vector of
scenario probabilities po, and the appropriate mathematical technique for it from [Kirilyuk, 2008].
Address now to examples of risk measures from the PCRM class considered in section 1. As it is easy
to see, sets of probability measures P for all them from the relation (2) depends on the vector of
scenario probabilities po. That is, the set P from (2), generally speaking, is some set-valued map
(s.v.m.) on the vector p,.

Consider now a construction, in which set of probability measures P for design of risk measures p (.)
is described by some s.v.m. a(.) on a vector of scenario probabilities p, with closed convex images:

p(x) = sup{E,[-X] / pea(po)} (14)
As it is easy to see, since the image of a(.) is the subdifferential of the function p(.) accurate within
sign, a(.) has been named the subdifferential s.v.m. [Kirilyuk, 2008].

Consider now a construction of risk measures for the case of partial uncertainty, that is, such
construction on set Py that estimates a vector of scenario probabilities pg. Let now there be some
CRM, given on a known vector of scenario probabilities po in the form of (14).

Definition 1. The risk measure induced by the initial CRM and the uncertainty set P,, the following
function is called as
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p(x; Po) = sup{E;[-X] / pe P(Po)} (15)
where
P(R)=co(a(B)) a(B)=Ja(p,) (16)

Here co means the convex hull, M means the closure of set M. Obviously, p (x;Po) is a CRM through
its construction.

Remind that a s.v.m. a (.) is called as convex in a range of definition dom a, if
a(Ap,+(1-A)p,) 2 Aa(p,)+(1-A)a(p,) Vp,,p, edoma VA e(0,1).

Proposition 1. If Py is convex set, and a subdifferential s.v.m. a(.) of an initial risk measure p(.) is a
convex s.v.m., then appropriate set P has the following form

P(P)=a(B) (17)
Definition 2. We will say that s.v.m. a(.) is quasilinear in a range of definition dom a, if
a(Ap,+(1=A)p,)=Aa(p)+(1-A)a(p,) Vp,,p, edoma VA e (0,1) (18)
Proposition 2. Subdifferential s.v.m. for risk measures WCR, CVaR, and SCRM are quasilinear.

From quasilinear properties of s.v.m. a(.), as it is easy to see, the following proposition follows at
once.

Proposition 3. If Py is a polyhedral set, i.e. it is described in the form of (12), and a subdifferential
s.v.m. of an initial risk measure p(.) is a quasilinear s.v.m., the set from (17) has the following form

P(P) =cofa(p!).i=1,...k,} (19)

cees by

Corollary 3. If in conditions of proposition 3 an initial risk measure is a PCRM, i.e. its subdifferential
s.v.m. has polyhedral images in the extreme points of P:

a(p))=co{p,(p).j=1,om(p)}.i=1,...k,

then set from (19) has the following form

P(B)=col{p,(p)).j=Lom(p)i=1,...k,}. (20)
Corollary 4. For PCRM with a quasilinear subdifferential s.v.m. a(.), the composition operation is
invariant on the class:

pL)=pop, ()= p(x)=sup{E [-X]: peal(a,(p,))}.
Corollary 5. Corollaries 3 and 4 take place for WCR, CVaR, and SCRM.

11.4 Models of support of optimal portfolio solution in conditions of
partial uncertainty (incomplete information on scenario probabilities)

Turn now to the formulation of portfolio optimization problems on efficiency-risk ratio in terms of
functionals of efficiency g(.) and risk p(.). Let, as before, distributions of efficiencies of portfolio
components z;, j=1,.., k be described by a matrix H, and a vector u = (uy, ..., uy) which describes
portfolio structure, be considered as a variable.
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Risk measure minimization problem under average efficiency guaranteed. Begin from the
minimization problem of the portfolio risk measure p(-) under guaranteed return values g(-)> go. The
problem is formulated as follows
min  p(Hu)

> u;=1u>0 (21)

g(Hu)>g,
Average efficiency maximization problem under risk measure constrained. Connected with the
previous task, the maximization problem of the portfolio efficiency g(-) under constraints on its risk
measure of risk in the form p (-) < po can be formulated in the following form

max g(Hu)
> u;=lu=0 (22)
p(Hu)<pg
Consider now possibilities of a reduction of portfolio optimization problems (21) and (22) to certain
sequences of LPP obtained in [Kirilyuk, 2008].

Theorem 4. A solution of problem (21) is the part u of a solution (u, v) of the following problem

min{ min
1<i<k

wy <CV>Y

Zu,:l,uzo,vzo (23)
—BTv—Hu<0
<Hu,p;>>g,

where p;, i =1, ..., k are the extreme points of set P from (12) and denotations:

min < e,V >=+00
(u,v) ’

ZuI:l,uZO,VZO
—B"v—Hu<0
<Hu,p;>>g,

if constraints of the subproblem are not fulfilled.

Theorem 5. A solution of problem (22) is the part u of a solution (u, v) of the following problem

max{ max
1< j<k

< Hu,pj >}

Zu‘:l,uZO,vZO (24)
—B"v—Hu<0
<c,v><p,

where p;, j =1, ..., | are the extreme points of set P from (12).

Remark on the case of different sets P which can be used to define functionals of risk measure p(.)
and efficiency g(.) from (10) and (11) respectively. In theorem 4, p; from LPP (16) designate the
extreme points of set P for the risk measure p(.) from (10), and in the theorem 5, p; from a problem
(24) are the extreme points of set P for the efficiency functional g(.) from (11).

If there are various risk measures which keep the form of functional (10), but use various sets P;, for
example, for the purpose of more conservative behavior of a DM, etc (see the interpretation of risk
measures in [Kirilyuk, 2008]), the situation can demand the efficiency functional maximization under
constraints on these risk measures. The content of similar functionals in some sense can guarantee
some robustness of the obtained solutions relatively to risk.
So, let there be the efficiency functional (11) and some risk measures

pi(x) = max{Ep[-X] / p € Pi} (25)

where
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Pi={p:Bip<c,p=0}=co {pij, i=1,..,s}1<i<m, (26)
which should be taken into account in a process of search of optimal solutions.

Consider the return functional maximization problem g(-) under constraints of m risk measures p; (-)

from (25)—(26) by values ,0,.0 , 1<i <m accordingly which is formulated as follows

max g(Hu)

Zuj:l,uZO

py (Hw<p; (27)

Py (HW<py
The following theorem takes place.

Theorem 6. A solution of problem (27)—(25) is the part u of a solution (u, v, ..., vi,) of the following
problem

max {max

1<j<m

, < u,Hij >}

(U, V)55V,
Zui:l,u20,v20
—B['v,~Hu<0

<,V >S/J10 (28)

0
<Cm ’ vm >Spm
v,20,...,v,,20

where p;, 1 <j<m are the extreme points of set P from (12).

Various generalizations of these problem statements when, for example, various variants of
efficiency functionals gi(-) can be given and it is necessary to minimize risks under guaranteed values
of these functionals, are possible as well. Similar problem statements were considered in [Kirilyuk,
2006].

At last, make the following two useful remarks. First, in the case, when the set P of efficiency
functional g(.) is described as P ={py}, that is functional g(.):Epo[X] for known scenario

probabilities po, as it is easy to see, theorems 1-3 immediately follow from theorems 4-6
respectively.

Secondly, the weighed sum of the upper and lower estimations of functionals g(.) and —p(-) can be
quite a reasonable variant of the optimization criterion (so-called Gurwitz's criterion). Besides,
sometimes it has sense to consider so-called convolution of criteria in a case of use of a certain set of
different risk measures. Then it is easy to obtain the statements similar to theorems formulated
above which reduce appropriate portfolio optimization problems to certain sequences of LPP
[Kirilyuk, 2006].

It is quite transparent also, development of appropriate mathematical technique on the case of
multicomponent efficiency criteria looks. Then it is natural to apply already stated results under a
convolution of these criteria. According to author viewpoint, there is not any principal problem in a
reformulation of these results for more difficult case of the search of weak portfolio optimums:
optimization of a one of criteria under constraints on the guaranteed values of others, under ranging
of criteria by their importance, etc. It is clear that the value of necessary calculations for this grow,
however it is purely technical problems.
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11.5 Decision making on investments allocation under catastrophic flood
risks

Investments into the objects planned or located in valleys and near rivers, often appear more
favorable, than investments into objects remote from rivers. It can be explained by a smaller slope of
a landscape, the greater fertility of lands, availability of water as a resource, presence of
infrastructure, roads, affinity to consumers and manufacturers of goods or services that imply
smaller cost of construction and faster recoupment of projects. Volume of investments can take both
continuous and discrete values. However, in decision-making on investments it is necessary to take
into account risk of possible losses from flooding and risk of significant losses from catastrophic
flooding, and so to provide mitigation measures against these risks, for example, such as
diversification and insurance of the investments.

A similar problem arises before an insurance company aspiring geographically to diversify insurance
contracts in areas subjected to catastrophic flooding. On one hand, the closer to water, the higher
insurance tariffs, but on the other hand the greater risk of big dependent insurance claims.

Another example is an investment into structural flood mitigation measures (construction of dikes,
pools, etc.) characterized by more or less certain costs and by saved different property values under
possible future floods.

One of a complex methodological problems is that decisions are made today and the implementation
money are spent today, but a catastrophic flood may happen as in the nearest future as not to
happen at all. The problem is to compare today’s expenses with losses in uncertain and possibly
rather distant future. In the applied hydrology, this problem is considered for many years [USACE,
1992; 2000], [RAUFDRD, 2000]. Each decision (plan, portfolio of subdecisions, insurance coverage)
under uncertainty is characterized by a spectrum (distribution) of future outcomes and the problem
is to select decision corresponding to the most preferable outcome distribution. This problem setting
assumes the existence of certain order (stochastic dominance) in the space of outcome distributions
and has basically theoretical significance. In practice, decision making under uncertainty is made by
means of some functionals (expected utility or profit functions, variance and other risk measures and
etc.) on outcome distributions and thus defining corresponding order in the space of distribution.
There is a number of results connecting these functionals with (first or second order) stochastic
dominance [Ogryczak and Ruszczynski, 2001]. In financial theory and practice, many decision-making
problems concern to the structure of financial portfolios with random return. In an aggregate form
these portfolios are characterized by two criteria, mean and variance of return, and thus as a risk
measure the variance is used [Markowitz, 1959]. A more natural risk measure is the down-side (risk)
deviation of return from its mean value [Konno and Yamazaki, 1991]. Variance or down-side variance
of a decision outcome is an adequate risk measure if random outcomes are grouped around mean
outcome. However, if the decision maker concerns on large losses he has to take into account
characteristics of tails of outcome distributions. In this context tail related risk measures are now
used such as quantile, value at risk, conditional value at risk and others [Jorion, 1996], [Rockafellar
and Uryasev, 2000, 2002], [Pflug and Romisch, 2007].

Decision making problem under uncertainty assumes modeling decisions and uncertainty structure.
Decisions may include discrete and continuous components, and uncertainty may be represented
either by discrete tree of possibilities (scenarios) with associated probabilities, or through random
simulations. In most cases, this problem includes at least two-criteria, for example, expected
outcome and some associated risk measures. Each of these criteria is a specific functional defined on
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outcome distribution, for instance, some expected value, conditional value at risk, etc. Remark that
investment decision making problems under flood risk belong exactly to the latter case, small and
frequent floods need not be taken into account, but a considerable risk is connected with
catastrophic rare floods and thus with the tail of the decision outcome distribution. In this case, as a
measure of risk one can take, for example, a mean value of losses from rare catastrophic floods. The
arising stochastic programming problems admit a variety of modeling and solution techniques
[Ruszczynski and Shapiro, 2003], in some cases they can be reduced to large scale (mixed-integer)
linear programming problems [Rockafellar and Uryasev, 2000] and in case of very large (or
continuum) number of scenarios adaptive Monte Carlo technique may be useful [Ermoliev et al,
2000a,b].

The goal of the project "Integrated system for hazardous flood modeling and risks reduction: case
study for Tisza (Ukraine), Riony (Georgia) rivers" (2005-2007, Glushkov Institute of Cybernetics,
Institute of mathematical machines and systems (Kiev, Ukraine), Thilisi State University (Georgia) and
Science and Technology Center in Ukraine (STCU)) was to develop contemporary tools to support
non-structural measures for flood mitigation at mostly exposed to hazardous floods rivers Tisza
(Ukraine) and Rioni (Georgia), estimating the risks for the insurance and investment allocation in the
areas affected by catastrophic floods. Accordingly, the main project objectives were the following:

To develop a methodology and a prototype computer system for optimal investments allocation and
optimal insurance coverage in the areas, exposed to risk of hazardous flooding, on the basis of the
up-to-date technologies of stochastic risk optimization and numerical flood mapping;

To implement the developed methods and prototype software for the watersheds of Ukrainian part
of Tisza basin and Rioni river basin, Georgia, providing by this way to the regional and national
authorities the possibilities for mapping the hazardous floods and promotion of future investment
activities and developments of insurance coverage system in Tisza and Rioni basins and, after the
verification of the software and proposed methods, in other river basins of Ukraine and Georgia.

11.5.1 Structure of the modeling framework

The specifics of flood risks — unpredictable timing of flood occurrences, absence of spatially explicit
information about potentially inundated areas and related losses, long-term flood re-occurrence
patterns, complex dependencies between structural and financial flood defense and damage sharing
measures, socio-economic heterogeneities of various agents (such as individuals, farmers
governments, and insurers) — all these call for adequate model based approaches integrating socio-
economic, topographic, geophysical, policy related data and knowledge for evaluation of flood
prevention and reduction structural and financial measures.

Decision making under flood risks requires study of the influence of decisions on probability and
propagation of floods, impacts on economies losses and on their ability to recover after floods. In
turn, this requires integral (system) approach to flood modeling from their beginning, propagation,
up to impact upon economic objects. At each stage of modeling one has to take into account
inevitable uncertainties in data and knowledge, in particular a lack of data, uncertainty in the
structure and parameters of processes and their models, stochasticity, and uncertainty of decisions
outcomes. Adequate modeling and treatment of these uncertainties is a key issue for making sound
decisions under risk of catastrophic flood losses.

Typically, flood management framework combines geographically explicit data on property values in
the region with a stochastic flood risk scenario generator to give estimates of potential flood losses.
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In the project this idea is implemented in the form of blocks (modules): (1) discharge/rainfall scenario
generation block; (2) a river flow/rainfall-runoff module that assesses water flows in the region; (3)
inundation module for evaluation of inundated areas; (4) property/vulnerability module that
incorporates damage curves (structural and agricultural) for loss estimation; (5) decision support
block.

In more details each module is described as follows.

v’ Discharge/rainfall scenario generation block

There exists three basic ways to generate stochastic input data for flood modeling [Blokhinov, 1974],
[Kuchment and Gelfan, 1993; 2002], [Cameron et al, 1999]:

— sampling from historical data;

— discharge generation by means of maximal monthly/decade discharge distribution and standard
hydrograph;

— runoff generation by means of stochastic extreme weather (rainfall) conditions simulation and
their transformation into discharges by rainfall-runoff model.

In the project, all three options are utilized.

In particular, Institute of Mathematical Machines and Systems of the National Academy of Sciences
of Ukraine procured observation data on catastrophic flood occurrences in Zacarpattye in 1998 and
2001 on Tisza river and its tributaries. These data have a form of time series on water level at a
certain water gauge station. By means of specific for each site "stage-discharge" curves, these data
are transformed into a hydrograph (discharge as a function of time). Since there are a rather detailed
observation data on 1998 and 2001 floods in Zacarpattye these floods serve as a reliable examples
for river flow model identification and input generation. Input hydrographs of different probability
were simulated by scaling 1998 Tisza flood by means of maximal site discharge distribution. Remark
that it is rather difficult adequately to estimate the particular floods of 1998 and 2001.

Georgian school of stochastic hydrology [Svanidze, 1977], [Grigolia, 1994] developed original
methods for hydrological time series generation and for maximal discharge distributions. In
particular, it was proposed to use in hydrological modeling four parametric Jonson’s distribution with
a bounded support. This method was tested on more than 200 world largest rivers and was
recommended for application by "International handbook on basic hydrological characteristics
calculation" (Leningrad, 1984; Paris, 1987). In the project, this methodology was utilized by Thilisi
state University for calculation of the maximal monthly discharges of different probabilities for Rioni
river.

For flash floods modeling, it is possible to use maximal rainfall distributions with an appropriate
within month allocation for stochastic input generation for rain-fall-runoff model. In the project, this
approach was used at a certain site in a Tisza river valley.

The scenario generation block includes also the description of possible events leading to destruction
of hydrological constructions. Each such event forms a separate flood scenario.

Each flood scenario generation method contains a large number of different uncertainties starting
from incompleteness of our knowledge and models to errors in parameters and random factors
estimates. So an important problem is the evaluation of the robustness of modeling conclusions with
respect to these uncertainties. An example of uncertainty contemporary treatment is given in US
Army Corps of Engs flood damage analysis system HEC-FDA [HEC-FDA, 1997].
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v" River flow block

In the river, flow module two physical processes are considered: rainfall-runoff due to precipitation
and water flow in the river (channels) and the river dynamics process.

v' Rainfall-runoff submodel

Simulation of a rainfall-runoff process is made based on the TOPKAPI model methodology. TOPKAPI
belongs to the class of the so-called physically-based rainfall-runoff models and was developed by
Prof. Todini in mid 1990 [Todini, 1995], [Ciarapica and Todini, 2002]. The model is based on the idea
of combining the kinematic approach with the topography of the basin described by means of a
lattice of square cells, generally increasing in size with the scale of the problem, over which the
model equations are integrated. Each cell represents a computational node for the physical
characteristics of the model, namely the mass balance and the momentum balance. The flow paths
and slopes are evaluated from the DEM, according to a neighborhood relationship based on the
principle of minimum energy, namely the maximum elevation difference which takes into account
the links between the active cell and the eight surrounding cells connected along the edges or
vertices; the active cell is assumed to be connected downstream with a sole cell. At present, the
model version developed by UCEWP is structured around three modules, which represent the soil
component, the overland flow component and flow through the drainage network respectively. The
present version of the TOPKAPI model does not account for water percolation towards the deeper
soil layers and for their contribution to the discharges; this will be introduced as an additional model
layer in the future.

In the project rainfall-runoff model TOPKAPI-IPMMS (version by Institute of Mathematical Machines
and Systems Problems, [Kivva and Zheleznyak, 2005]) was calibrated for the watersheds of Tisza river
and its tributary Uzh. As input for the model precipitation time series registered at the closest
weather stations were used.

v" River dynamics submodel

A river dynamics submodel is developed to perform calculation of the flow for the specific river.
Water flow in open channels is simulated using unsteady flow 1-D model within MIKE-11 software
package developed by DHI Water & Environment, Denmark [Mike-11, 2004]. The basis objects of
river network are

— abranch - simplest part of a river channel;

— acomputational gridpoint — an element of a grid, in which flow related variables are calculated for
every computational time step;

— anode or ajunction — a connector of branches into more complex river network.

Therefore, each branch contains several computational gridpoints, and several branches are
connected with nodes into network.

The mathematical model of a branch is based on Saint-Venant system of partial differential equations
of 1-D flow mass and momentum conservation, which is solved numerically for every computational
gridpoint on a branch. Additionally, in every node the mass balance and level balance equations are
written. In a perfect case the information on river network structure and the cross-sectional profiles,
representing water capacity of a gridpoint, is extracted from a detailed DEM, but in many cases, it is
supplemented with manual river measurements. Additional information on structures along the river
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channel is introduced. The module transforms dynamics of input discharges into the flow dynamics
using a representation of conservational laws. Due to this it is possible to get water levels and
discharges along the river for the whole period of modeling.

v" Inundation block

The calculated by the RIVER module water levels combined with DEM information are further used
by the inundation module. For the calculated flood event dynamics, it is possible to reconstruct two
types of maps:

— inundation maps that show the depth of standing water. These can relate either to a certain time
or to the maximum level throughout the flood event;

— duration maps that represents for how long the water is standing on a floodplain.

For example, the module calculates inundation zones, in which the inundation level was 0-2 meters,
2-4 meters and more than 4 meters. Duration maps show zones, which were covered by water for
less than 12 hours, 12-24 hours, 24-48 hours, and more than 48 hours. The maps can be generated to
represent dynamics of inundation, say every 3 hours of flood event, but also the maximum inundated
area can be estimated. Combination of inundation and duration maps gives time-depth-area
detailization, which is used directly in the VULNERABILITY module for estimation of losses caused by
a flood.

The module can be utilized within a Monte Carlo framework, giving on the output
inundation/duration maps corresponding to flood events of different return period, for example 50-
year flood, 100-year flood, 200-year flood, 500-year flood etc. All the computations are made within
MikeGlIS package (DHI software), built as a project in ArcView 3.x GIS software.

v Vulnerability block

Combination of inundation and duration maps with so-called vulnerability curves gives immediately
estimation of losses. This task is performed by property/vulnerability module. The Vulnerability block
produces estimates of losses for a given pattern of flood. Potential structural damages or losses
associated with flood can be calculated in relative values for each type of the building in the region.
Here losses are described as a certain decrease in percentage of the whole property value. This
approach is especially applicable for the cases where detailed spatial information on property
distribution is not available now, but can be obtained later. Vulnerability block utilizes vulnerability
curves (Depth-Damage functions) — functions that represent losses depending on severity of
catastrophe event and the type of structure. This can be agricultural losses depending on the
inundation time, the crop and the time of the year; losses in building, depending on the depth and
duration of flood as well as building material (wood, concrete, brick etc.). Usually, vulnerability
curves are derived from historical observations, and are available for the modeling purposes. There
are a number of works on the utilization of the DD functions; see [USACE, 1992; 2000],
[Merz et al. 2004]. A nice discussion on the state-of-the-art of the problem is presented in
[Messner and Meyer, 2005]. In the most papers, duration factor is not taken into account, there are
only several approaches that consider a change of DD curve with increase of flood duration
[Penning-Rowsell and Chatterton, 1977], [Penning-Rowsell et al, 2003]. In some cases, there is no
detailed GIS information on structures’ types within the modeling region. In this case, loss estimation
can be done in relative or percentage terms. For example, in a certain sub-area of the region due the
losses for wooden houses to flood event would be 50%, for brick houses — 40%, and for concrete
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houses with pillars — 10%. Once the GIS distribution of house types becomes available, the produced
relative losses can be easily converted into absolute ones.

One of the direct applications of the Vulnerability block is estimation of effectiveness of a flood
mitigation structural measure in terms of reduction of associated losses in "what-if" scenarios. From
the other hand, as the Integrated System naturally supports Monte Carlo approach, the losses
probability distribution information becomes available in terms of mean estimates, histograms etc.

Furthermore, once potential flood losses can be described in financial terms different financial
oriented applications can be implemented, for example, investment allocation, insurance coverage
planning, catastrophe fund design etc. The broad number of applications appears starting with
estimation of the optimal premium for the fund, estimation of the current financial policies etc.

Options of input, editing and maintaining catalogue of the so-called "depth-damage relationships"
were implemented in HEC-FDA (1997) system.

In the project own "depth-damage relationships" database was developed based on Excel and
damage calculation module.

v Decision support block

Decision support block integrates information on the goals and constraints of agents that are
involved in catastrophe management and may potentially suffer, share or mitigate the losses. These
are households, farmers, local and central governments, flood defense offices, city planners,
insurers, investors, financial markets, etc. The methodology has been already tested for the analysis
of flood and seismic risks in Italy, Hungary, Poland, Russia, Japan, Ukraine [Baranov, 1999],
[Galambos et al, 2000], [Amendola et al, 2000], [Ermoliev et al, 2000a,b], [Ermolieva et al, 2003],
[Ermolieva and Ermoliev, 2005], [Linnerooth-Bayer and Amendola, 2003]. For example, procedures
for flood reduction plans evaluation are implemented in US Army Corps of Engs HEC-FDA system
[HEC-FDA, 1997].

In the project a special subsystem for investment/financial/insurance decision support was
developed. The subsystem was designed to plan and evaluate structural and non-structural actions
against flood damages to take into account a complex interaction between flood scenarios, river
topography and flood countermeasures.

v' Model based flood damage estimation

Within the proposed framework, we estimate potential flood-induced damages and explore feasible
financial mechanisms to share the losses between the stakeholders. Implementation of the
Vulnerability module is directed to estimate potential losses due to a flood. Once inundation maps
are constructed, they can be directly combined with the Depth-Damage Functions (DD functions, DD
curves) showing dependence of the structural damages caused by flooding. DD functions are derived
by statistical analysis of losses measured in the past. The curves take into account material of the
structure, depth of the flood and implicitly include the temporal flood pattern for the region in which
they were estimated, see [USACE, 1992; 2000], [Merz et al, 2004].

Potential structural damages or losses associated with flood can be calculated in relative values for
each type of the building in the region. Here losses are described as a certain decrease in percentage
of the whole property value. This approach is especially applicable for the cases where detailed
spatial information on property distribution is not available now, but can be obtained later.
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One of the direct applications of the Vulnerability module is estimation of effectiveness of a flood
mitigation structural measure in terms of reduction of associated losses in "what-if" scenarios. From
the other hand, as the Framework naturally supports Monte Carlo approach, the losses probability
distribution information becomes available in terms of mean estimates, histograms etc.

Furthermore, once potential flood losses can
be described in financial terms different % loss of yield - flood duration of 15 days
financial oriented Framework extensions can
be implemented, for example, Insurance
module, Catastrophe Fund module etc. The
broad number of applications appears
starting with estimation of the optimal
premium for the Fund, estimation of the
current financial policies etc.
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v’ Catalogue of functions "flood moment - yield losses"

Losses for agricultural crops are determined basically by moment and duration of flood and are
calculated by means of empirical functions "moment and duration of flood — percentage losses for
yield". A number of such functions for fixed flood duration are presented on Figure 168.

v’ Catalogue of functions "depth - damage to structure"

For calculation of flood losses functions
"depth — percentage losses to a Proportional loss curves
structure" are used. A number of such
functions is presented on Figure 169.
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Let for a given river, a set(a)s,ps) ,s=1,...,5, of flood scenarios has been developed, where o, is the

description of scenario s, for instance as a hydrograph (an input for modeling), p, is the probability of
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scenario s . Assume that each scenario is mapped into flood zone indexed s . According to flood
zones, and classifications of investment objects, percent damages to every object i can be found for
every scenario s . Let every object i is described by investment return & and potential percent

damage /,(w,) for every scenarios: i = 1,...,n,s=1,...,§. Thus, return distribution of every object i

looks like: (6,(w,)-1.(®,),p,),s =1,...,S, and return distribution of total portfolio is described as:

X(u,0) =" (6(@) =L (0))y, (29)
where variable o, describes  realizations of  corresponding scenario s  with
probability p.,s =1,...,§.

Under insurance the return function x(u,®) of insured portfolio looks like

Xu,v,0,)=x(u,0,)+gu,v,o,) (30)

where
g(u,v, a)s) = _Z:‘:l”i(vi) + ijl min{li(a)s)ui’vi} (31)
and 7,(v,) designates the insurance premium for compensation of damages with a maximum

compensation level v, .

Then the following optimization problems can be considered:
1) minimization of a risk measure under a guaranteed level of the return expectation;

2) maximization of expected return under constrains on a risk measure level, where as risk measure
it is proposed to use the polyhedral coherent risk measures (PCRM).

Another possible setting [Norkin, 2006] is to make such decisions that give maximal outcome in
normal conditions (no catastrophe scenario) and limit losses in abnormal scenarios (catastrophes of
different severity).

The class of polyhedral coherent risk measures (PCRM) contains the following risk measures (see
[Kirilyuk, 2004a,b; 2008]): 1) risk of an inexact estimation of scenario probability; 2) worst case risk
(WCR); 3) conditional loss expectation on a-tail distribution (CVaR,); 4) worst conditional expectation
(WCE,); 5) spectral coherent risk measure (SCRM); 6) measure, based on semi-deviation (absolute
deviation) on expected return etc.

Portfolio optimization problems on return-risk ratio 1) and 2) are described as

N . .
F(u5v) = s max ” {_Z s=1 x(u’v’ a)s)p\} - mlnuZO,vZO ’
Bpgc,sz;Z‘:I pox(u,v,0, )2/1;2,:] u;=i. :

u=0,v>0 7

S
G(u,v) = Zszlpjx(u,v,a)j) — max
N
maxg, . . {— - p.x(u,v, 605)} <o,

n —_—
Zi:lui =u, u; 20.

Here, depending on problem setting (with or without insurance) instead of x(-) either formula (29),
or (30)-(31) are used, and matrix B and vector ¢ describe the chosen risk measure.
Concerning mathematical methods, these problems were reduced to corresponding linear

programming (LP) problems [Kirilyuk, 2004a,b, 2008]. The obtained result allows solving very large
problems by standard LP technique by means of available software.
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Besides, optimal insurance coverage models (without and with reinsurance) were proposed. The
difference with respect to optimal investment allocation and optimal insurance coverage problems

consists in constrains on portfolio variables: u, >0, Z;”f =u, for the first problem, and u, € [0,1]

or uie{O,l} — for the second one. Concerning optimum insurance coverage models with

reinsurance, they are not convex and require special mathematical technique.

v Planning of investments in commercial objects and countermeasures in the areas
of catastrophic flood risks

Let index i=1,....,n marks position (including geographical location and type of the project) of

possible allocation of objects of investments. With every position some cost of investments c.,

1

profitableness 6. on a unit of cost of object i under normal operational conditions and relative

losses [, in catastrophic scenario j are tied-up. In this setting different types of objects of investing

which are located in one geographical place have different indexesi . An investor can fully invest a
project, or not to build it at all. A total volume of investments is limited by C . Let us introduce a
Boolean variable x, € {0,1}, which means that at x, =1 object i is built (invested) and at x, =0 the

object is not built. Let {/11.} is an admissible rate of losses of investments under catastrophic

scenario j.Then the task of making optimal decisions reads as [Norkin, 2006]:
To maximize over x = {x,} function
F(x)= Zi Oc.x,
subject to constraints
G, (x)= Zill.jcix,. Sﬂjzicixi s j=L..,m; chixi <C; x,€{0,1},i=1..,n.

More general mathematical model (nonlinear discrete optimization), which takes into account a
possibility of countermeasures, has the following form:

To maximize over investment plans xz{xie{O,l},izl,...,n} and countermeasures

y= {ys e{0,1},s = 1,...,k} profitableness function in normal conditions

F(x,p)=) 0cx, =, dy,

subject to constraints on relative losses in the case of a catastrophic event

Zilij(y)cl.xi + stsys < lfl.zicl.xl. , J=1..,m;
and constraints on available resources

Zi X, + Z:xdjylv <C,

where @, is index of profitableness of object i;
¢, is cost of object i;
d, is cost of countermeasure s ;

I;(y) is a coefficient of losses of investments in an object i in scenario j under condition of

implementation of plan of countermeasures y;
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C is a total volume of investments;

ry, j=1,...,m, is arate of relative risk.

v’ Algorithm of the problem solution

1. For the plan of countermeasures y and every catastrophic scenario j to model a
corresponding flood and to build inundation maps.

2. For every potential object i, plan of countermeasures y and scenario j to calculate
inundation levels and coefficients of losses /,(y) .

3. For every feasible plan of countermeasures ) to find the optimum plan of investments x(y)
and a corresponding profitableness F(x(y),y).

4. To find the plan of countermeasures y*, which corresponds to the maximal profitableness

F(x(y),y)=max s F(x(y),7).

v A continuous investments allocation task in the risky agricultural areas

Planning of agricultural production in the areas of risky agriculture (back-waters of the rivers, non-
irrigated droughty territories, mountain slopes) is an actual task. Thus there always is more costly
alternative to develop a production in the protected or irrigated territories. A problem consists in the
choice of sound compromise between a costly and reliable technology and cheap, but risky one. Let
there is only one type of investments, for example, in sowing of agricultural culture of certain kind.
Let x, designate sowing area in region i, c, is a cost of growing of the culture on a unit square in

region i, 6. is the productivity of the culture in region i at normal conditions, li/‘ is an expertly
determined coefficient of losses of sowing areas in region i at catastrophic scenario j, m; is an
experimental coefficient of losses of the productivity in region i at catastrophic scenario j, b, is the
maximal sown area in region i, /1j are admissible relative losses of sowing areas for scenario j, U,

are admissible relative losses of the total harvest for scenario j, I is a total volume of investments.

Then the task of investments allocation reads as follows [Norkin, 2006]:

To maximize over x = {xi} a function

F(x)=) 0x,
Subject to constraints
F(x)= Ziml.j@ixi < ,ujzi Ox,, j=1,.,m;
G, ()= Lx, <A %, j=lm;

z,cl.xl. <I1,0<x,<bh,i=1,..,n
1
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v’ Software for decision making under catastrophic flood risks

Besides hydrological modeling, the proposed modeling framework allows estimating potential flood
damages for regional economies and private investors; it can help to select investment allocation
plan, insurance and reinsurance arrangements in a catastrophic flood risk zone. For this, flood
damage models and flood loss mitigation (investment diversification, insurance, and reinsurance)
models are developed for study regions. In particular, V.M.Glushkov Institute of Cybernetics of the
National Academy of Sciences of Ukraine developed a catalogue of "depth-damage" functions, and a
software Decision Support subSystem "Catastrophic Flood Risk Manager" (DSS CFRM) for
investment/insurance decision support in a flood prone area. The developed software supports data
preparation and solution of a number of tasks related to optimal investment allocation (investment
portfolio), insurance coverage (insurance portfolio) planning and counter measures selection by
calculation and analysis of the risk-return relationships. The inputs to the subSystem are data on
potential commercial objects/projects and their inundation levels of different probabilities obtained
because of flood scenarios generation and simulation by means of hydrological models of the
modeling framework. The outputs of the subsystem are dependences of decision outcomes and
measure of risk. In the decision support subsystem contemporary approaches to decision making
under catastrophic risks are implemented, which numerically are reduced to solution of a number of
large scale linear and mixed integer nonlinear programming problems. The decision support
subsystem operates as a standalone MS Windows application with help, diagnostics, and graphics
facilities; data for the subsystem are prepared or imported through Excel, output results are
presented in a graphical form in output windows and are also put into Excel tables.

For solution of such problems within the modeling framework, the following preparation steps are
fulfilled:

By means of the scenario generation block a number of discharge scenarios of different annual
exceedance probabilities (p = 0.5, 0.2, 0.1, 0.04, 0.02, 0.01, 0.004, and 0.002) are formed;

By means of the river flow block for each flood scenario and a structural flood counter measure (if
such measures are potentially planned), flood wave propagation is simulated and maximal water
stage profile along a given river section is obtained;

By means of the inundation block water stage profiles are transformed into inundation maps of
different annual probabilities for the site of interest;

By means of geo-information system ArcView the site inundation maps are viewed, a set of places of
existing or potential structures is indicated and structure inundation levels corresponding to different
flood scenarios are calculated;

By means of Excel the existing or potential structure inventory is updated with structure information
(structure occupancy type and attributes);

By means of the vulnerability block (bank of depth-damage curves) and structure characteristics
percent damage to structure value and to its content is calculated.

As a result, coefficients of the value loss for each structure, each flood scenario, and each counter
flood measure are obtained. This information is an input data for setting and solution of a variety of
decision-making problems under catastrophic flood risks.

For the analysis of decision making problems a special subsystem "CATASTROPHIC FLOOD RISKS
MANAGER" was developed.
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Decision Support System CATASTROPHIC FLOOD RISKS MANAGER (DSS CFRM) is a standalone
computer system designated for decision support under catastrophic flood risks. Decision making
concerns careful resources allocation and countermeasures planning accounting for trade-offs
between costs, benefits and possibility of catastrophic losses. The subsystem implements decision-
making methodology, described in [Norkin, 2006, 2007], [Ermoliev et al, 2000, 2001], [Kirilyuk, 2003-
2008].

DSS CRM (Version 1.0) supports solution of the following tasks:

1. Selection of objects in a flood prone area for insuring (and levels of insurance) to get
maximum total premium under reasonable exposure to flood claims risks.

2. Selection of a reinsurance level and objects in a flood plain for insuring to get maximum total
revenue accounting for high reinsurance tariffs and flood claims risks.

3. Selection of potential projects in a flood plain to invest to get maximum total revenue under
reasonable exposure to flood damage risks.

4. Selection of flood mitigation measures and potential projects in a flood plain to finance to get
maximum total revenue under reasonable exposure to catastrophic flood damage risks.

5. Minimization of a certain (coherent) portfolio risk measure subject to a bound (from below)
on the portfolio means revenue.

6. Maximization of a financial portfolio expected return subject to a bound (from above) on a
certain (polyhedral coherent) portfolio risk measure and guaranteed mean revenue.

7. Maximization of a financial portfolio expected return subject to several constraints (from
above) on certain (polyhedral coherent) portfolio risk measures.

The class of polyhedral coherent risk measures (PCRM)contains the following risk measures (see
[Kirilyuk, 2004a,b, 2008]: 1) risk of an inexact estimation of scenario probability; 2) worst case risk; 3)
conditional loss expectation on a-tail distribution; 4) worst conditional expectation; 5) spectral
coherent risk measure; 6) measure, based on semi-deviation (absolute deviation) from expected
return etc.
Concerning solution technique, these problems were reduced to mixed integer linear and nonlinear
programming problems.
Tasks data are prepared and edited in Excel, results of tasks solution are put in Excel files and also in
output windows. The data describe characteristics of possible decisions, normal and catastrophic
scenarios, volumes of presently available resources, and acceptable levels of their deficits,
parameters of risk measures. Some (loss) data are calculated within the system based on
objects/projects data, scenarios hitting (inundation) levels and catalogue of "hitting factor-damage
functions" also are accessible for analysis in Excel.
The results represent dependences of decisions outcomes as functions of some risk parameter. As a
risk parameter can serve a level of reserve deficit, level of reinsurance, value of some specific risk
measure.

Interactive algorithm of solution of any task consists of the following steps:
— selection of a task;

— data/example/template selection and preparation/editing in Excel;

— attempts to solve the task and correction of (reaction on) errors in data;

— visual analysis of results in monitor windows and through Excel charts;
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— change in data/parameters and repeated solutions.

The look of the decision support system interface is presented on Figure 170.
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Figure 170. The look of the decision support system interface



