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12
Techniques for Robust Bayesian Estimation

12.1 Introduction

The sharp increase in global demand for energy caused by the emergence of such major industrial
economies as China and India accelerated approaching of time when sources of oil and natural gas
will be exhausted. The alternative to those fuels are nuclear energy, coal, and renewable sources.
Although coal is not a limiting source of energy today, it is highly polluting. Renewal energy sources
are "clear" types of energy, but they are still largely undeveloped. Therefore, only nuclear energy can
be a real alternative to fossil fuels today.

Unfortunately, the Three Mile Island and Chernobyl accidents caused the adverse public opinion that
has practically brought nuclear programs in many countries to a standstill. On the other hand, these
accidents caused an upheaval in nuclear safety analyses. Until the accident at Three Mile Island in
1979, the USA Atomic Energy Commission (now the Nuclear Regulatory Commission (NRC)), has
generally regulated Nuclear Power Plants (NPP) based on deterministic approaches, which consider a
set of challenges to safety and determine how those challenges should be mitigated.

The Three Mile Island accident has clear demonstrated how important it is to quantify both the
probability and the consequences of an accident. These are the key quantities that should be a basis
in regulatory and safety decisions. Besides, in the early 1960s F. R. Farmer introduced another fruitful
idea that predetermined future investigations in nuclear safety analyses, namely the idea of reactor
safety based on the reliability of consequence-limiting equipment [NUREG/CR-2300, 1983]. These
ideas substantially changed the character of the nuclear safety analyses resulting in a systematic and
comprehensive methodology to evaluate Severe Accident Risks known as Probabilistic Risk
Assessment (PRA).

First, PRA was systematically applied in 1975 for the study of core meltdown accidents in two
commercial nuclear power plants. Results of this study were reported in the Reactor Safety Study
(RSS) [WASH-1400, 1975]. This study identified a collection of accident sequences potentially capable
of resulting in significant releases of radioactive material from a NPP, estimated the radiological
consequences of these events, and the probability of their occurrence, using a fault tree/event tree
approach. This study indicated that the probabilities of such accidents were higher than previously
believed but that the offsite consequences were significantly lower. The study was peer-reviewed by
the "Lewis Committee" in 1977, which approved the methodology, but cautioned that the risk
Figures were subject to large uncertainty. That led to an NRC policy statement on the use of PRA
[WASH-1400, 1979].

To support increasing application of PRA techniques within the industry and the regulatory process,
the PRA Procedures Guide [NUREG/CR-2300, 1983] was developed. This document was intended to
provide an overview of the risk-assessment field and to identify acceptable techniques for the
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systematic assessment of the risk from nuclear power plants. This guidebook was very useful to
support PRAs that were performed in the 1980 and 1990 and in fact, much of it is still relevant today.

In 1988, the NRC requested information on the assessment of severe accident vulnerabilities by each
licensed nuclear power plant [NUREG-1150, 1990]. The assessment could be done with either PRA or
other approved means. In response, virtually all licensees indicated that they intended to perform
PRAs in their assessments. Results of such assessments in five commercial nuclear power plants of
different design was summarizes in NUREG-1150 [NUREG-1150, 1990]. This document provides
improved PRA techniques and perspectives on how the results may be used by the NRC staff in
carrying out its safety and regulatory responsibilities. To this day, the NUREG-1150 PRAs represents
the NRC's most outstanding contribution to the state-of-the-art of PRA.

Probabilistic risk assessment involves developing a set of possible accident sequences and
determining their outcomes. Accident sequences are sequences of events, which challenge the safety
of the NPP. These sequences are launched by initiating events, and are modeled with event trees,
and fault trees (system models). After occurrence of an initiating event, some standby safety systems
must be demanded, and other, normally operating, systems must continue operating to prevent or
mitigate serious undesirable consequences. Event trees depict initiating events and combinations of
systems successes and failures. Fault trees depict ways in which the system failures represented in
the event tree can occur.

To provide a quantitative assessment of the risk from accidents in NPPs, accident sequences must be
quantified. In order to quantify the frequencies of the accident sequences delineated in the event
trees, failure rates are assigned to each system model and frequencies are assigned to each initiating
event. Combining the appropriate system success and failure models with each class of initiating
events yields a logical representation of each accident sequence.

For a system to fail to perform its mission, several components must either fail or be unavailable. The
logic events in system models that represent these failures or modes of unavailability are called basic
events. Initiating events and basic events are modeled as resulting from random processes. These
models have one or more parameters that should be estimated using available data. In this paper we
consider only probability models based on exponential distribution. Detailed description of the
standard probability models for each event and statistical methods for estimating parameters of
these models can be found in the handbook NUREG/CR-6823 [NUREG/CR-6823, 2003].

Initiating events are commonly modeled with Poisson process defined by a rate of frequency A. This
model is appropriate, if simultaneous (common-cause) events do not occur. Traditionally, PRA
includes to the set of initiating events such events that directly affect NPP safety, for instance,
unplanned reactor trips, plant-centered loss-of-offsite power, and through-wall leak. The handbook
[NUREG/CR-6823, 2003] includes also some failures occurred in a continuously running systems (such
as sensor/transmitter failures) to the set of initiating events, following the viewpoint of probability
modeling, in which the important fact is not the consequence of the events, but the way that they
occur randomly in time. Failures occurred in a continuously running system are quickly revealed and
removed. In contrast to this type of failures, failures to run during mission are failures of components
or systems that do not run continuously. They are demanded to start when initiating event occur,
and then they should run during some mission time. If they fail during the mission, they are
nonrepairable, that is, they cannot be repaired or replaced quickly.

In PRA, components failures in both standby and continuously running systems are modeled by
exponential distribution with the single parameter A . This distribution is inherently associated with
the Poisson process. Namely, the time to first failure and the times between successive failures
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follow an exponential distribution and the number of failures in a fixed time interval follows a
Poisson distribution.

In order to use these models for quantification of accident sequences, the reliability parameters
should be estimated. These estimates are propagated through logical relations to produce an
estimated frequency of the undesirable end state, such as core damage. Uncertainties in the
parameter estimates must be also quantified and propagated through the PRA models to obtain the
uncertainty in the final estimate of risk.

Statistical techniques that are usually used for estimation of reliability parameters are based on two
main approaches: the classical sampling theory methods and the Bayesian approach. The sampling
theory methods are the preferred methods, if sufficient plant-specific data are available. In this case,
risk estimates derived from this information reflect the actual plant experience. However, sampling
theory methods are inappropriate for treating scarce data samples, which are usually available when
reliability parameters of highly reliable equipment are estimated. For some nuclear power plant
components, no failures were registered during many reactor-years of commercial operation. In
these cases, the use of the sampling theory methods in estimation procedures leads to significant
errors and makes it meaningless to use existing methods of probabilistic analysis.

One of the ways to overcome this shortcoming of the sampling theory is to utilize not only raw data
specific for current investigation of equipment reliability but incorporate also other relevant
information available from other data sources. Some possible sources of additional data are
operating data in different environments; engineering judgments and personnel experience; and
operating experiences with similar equipment. Several generic data sources are currently available
and used throughout the nuclear PRA industry as sources of additional data. As a rule, generic data
sources represent compilations of raw data, which have been collected directly from various NPPs. In
generic databases, the raw data have been statistically analyzed and generic values of reliability
parameters have been estimated. Uncertainties in the parameters estimates are presented in form
of the four characteristics of probability distributions: the mean, the median, 5" percentile, and 95"
percentile of the distributions. Unfortunately, the sampling theory methods are inappropriate for
incorporating this relevant information.

The weak place of the Bayesian approach is to select a true distribution function. Incorrect selection
of a prior distribution can result to significant errors and affect the confidence to results of a safety
investigation in PRA.

Here we, following to Robbins [Robbins, 1951] and Berger [Berger, 1984], take into account that
Bayesian procedures actually deal with a family of priors I" instead of a single prior distribution. The
uncertainty in the priors generates uncertainty in the posterior values of interest (e.g. mean,
variance) described by the range of the posterior values as the prior varies in I". Finding lower and
upper bounds for this range, we can evaluate sensitivity of the posterior values to the choice of the
prior from the class I".

To find exact lower and upper bounds for the range of the posterior values as the prior varies in I"
one should solve optimization problems with linear-fractional functional with respect to distribution
functions (priors). Detailed mathematical statements of such problems are presented in [Golodnikov
et al, 2004].

Methods of optimization in class of distribution functions has a long story and begins from works of
P.L.Chebyshev, who developed a basic inequality of probability theory called Chebyshev’s inequality,
and used the latter inequality to give a very simple and precise demonstration of the generalized law
of large numbers [Enc.Britannica, 2009]. A.A.Markov developed ideas of his teacher in [Markov,
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1898]. Detailed information about methods of optimization in class of distribution functions can be
found in fundamental works of M. G. Krein, and A. A. Nudelman [Krein and Nudelman, 1977] and S.
Karlin, and V. Studden [Karlin and Studden, 1966]. These works investigated only linear functionals
with respect to distribution functions and utilized analytical tools.

The first work suggested computer based approach to optimization in class of distribution functions
was the paper of Y. Ermoliev [Ermoliev, 1970]. Detailed description of idea underlying this work,
namely, use of modification of the revised simplex method, was presented in [Ermoliev, 1976]. These
works stimulated development of numerical methods of optimization in class of distribution
functions in two directions.

The first approach considers the original problem of optimization of some functional under several
constraints on other functionals as the optimization problem of infinite dimension. First, it was
supposed that functionals are linear with respect to distribution functions. Using the idea of limit
extremal problems [Ermoliev and Nurminski, 1973], the original problem of infinite dimension is
approximated by the sequence of linear programming sub-problems, which can be solved by
standard simplex methods [Golodnikov and Stoikova, 1978a], [Golodnikov, 1979b]. This approach
was a basis for building algorithms for optimizing linear-fractional functionals [Golodnikov and
Stoikova, 1978b], [Golodnikov, 2007] and nonlinear functionals [Golodnikov, 1982] with respect to
distribution functions. Using the idea of & - Quasigradient Method [Nurminski and
Zhelikhovski, 1977], numerical method was developed for solving minimax problem in which the
"inner" problem of maximization is linear-fractional functional with respect to distribution functions
[Golodnikov, 1979a]. Actually, this was the first algorithm for building robust Bayesian estimates. The
next works suggested methods for building robust Bayesian estimates, [Lavine, 1991], [Lavine et al,
1993] has appeared more than ten years later.

The second approach is based on ideas of duality. In the works of Y. Ermoliev, A. Gaivoronski, and C.
Nedeva [Ermoliev and Nedeva, 1982], [Ermoliev et al, 1985] the original linear problem of infinite
dimension is reduced to dual problem which is formulated as finite dimensional minimax problem
without concavity of "inner" problem of maximization. A vast amount of work has been done on
minimax problems but virtually all of the existing numerical methods fail if the inner problem is
nonconcave. To overcome this difficulty the work [Ermoliev et al, 1985] adopts an approach based on
stochastic optimization techniques.

In [Golodnikov et al, 2007] a new approach to selecting the Gibbs distribution in models of objects to
be recognized is proposed. This approach proposes to determine the lower and upper bounds for
probabilities of the object under study. The distance between these bounds may be used as a
measure of error in pattern recognition problems.

This chapter analyzes statistical techniques that are usually used for estimation of reliability
parameters. It compares two main approaches: the classical sampling theory methods and the
Bayesian approach. It is known that sampling theory methods are inappropriate for treating scarce
data samples. In contrast to sampling theory methods, the Bayesian approach allows naturally to
incorporate data from various sources in reliability parameters estimates by considering each source
as a sample from the same population. However, the justification of a prior distribution frequently is
a practical difficulty in the application of the Bayesian approach.

In cases when small datasets of past reliability data are available, it is desirable to estimate how far
the calculated Bayesian estimate is from the true Bayesian estimate. Therefore, when only partial
prior information is available it is necessary to search upper and lower bounds for Bayesian estimates
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which can be derived for any prior distribution satisfying the given partial prior information. The
chapter considers models for searching such bounds.

12.2 Methods of estimating parameters in risk models based on classical
sampling theory

One of the important steps of the currently used methodology of risk assessment is estimating
parameters characterizing the equipment reliability (failure rates and probability of demand-related
failures). The accuracy of parameter estimates obtained at this step significantly affects the accuracy
of ultimate result: risk assessment of the object.

Statistical techniques that are usually used for estimation of reliability parameters are based on two
main approaches: the classical sampling theory methods and the Bayesian approach. The classical
approach allows obtaining satisfactory estimates when detailed data concerning each component are
available.

12.2.1 Sample methods of point estimation of reliability parameters

Let f(x;0) be a probability density function of the random value X, where 6 is an unknown

parameter to be estimated. Consider method of point estimation of this parameter. Let
X,,X,,...,X, be arandom sample from f(x;6). The likelihood function for this random sample is

the joint probability density function of X, X,,....,X,,:

L(e;x1:x2,"':xn):Hf(xi;e):

i=1
which is considered as a function of 0.
The maximum likelihood estimate of parameter 0 is the value 6 such that
L(©;x;,x,,...,x,) = L(0;x{,X,,...,X,) for every value of 6. The maximum likelihood estimate is a

function of the observed random sample X{,X;,...,X, ,i.e.itis random.
Method of moments equates the distribution moments u'j = E(Xj) to the sample moments
n .
>

m' =22 for j:1,2,...,k,

/ n

Using the method one can easily obtain the estimate for parameter p of the binomial distribution,

which provides model for failures occurring when demand occurs. According to this model, the
probability P that x failures occur when n demands occur is calculated as follows:

P(x) = p (d-p)" (1)

n!
(n—x)!x!
The estimator for this probability is [Martz and Waller, 1991]:
X

p=x @)
n
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12.2.2 Sample methods of interval estimation of reliability parameters

Practice of implementation of sample estimators in investigating reliability parameters shows that in
many cases it is not enough to consider only point estimators. In cases when medium or small
samples are available, values of estimators may vary too greatly from experiment to experiment. For
this reason, they cannot be used as a stable estimator. That is why in addition to point estimators of
reliability parameters one should also consider their confidence intervals as a measure of
uncertainty.

Two-sided confidence interval for estimator ¢ of level 1-vy is a random interval (g,(x),&,(x)) such
that

P{sl(x)<8<82(x)}21—y_

Consider confidence intervals for the binomial model widely used in the probabilistic safety analysis.
Lower and upper bounds, g,(x),&,(x), of two-sided confidence interval for estimator of parameter p
in the binomial model is calculated as follows [Martz and Waller, 1991]:

X

O G X T (- 25+ 2.2) ’

(x+DF_,»(2x+2,2n-2x)
(n=x)+(x+1DF_,,»(2x+2,2n-2x)

€,(x) =

(4)

where Fi_,,(n;,n,) is the (1-y/2)-quantile of the F - distribution with (n;,n,) degrees of freedom.

12.2.3 Basic shortcoming of the sample methods of estimation of reliability
parameters

However, sampling theory methods are inappropriate for treating scarce data samples, which are
usually available when reliability parameters of highly reliable equipment are estimated. For some
nuclear power plant components, no failures were registered during many reactor-years of
commercial operation. In these cases, the use of the sampling theory methods in estimation
procedures leads to significant errors and makes it meaningless to use existing methods of
probabilistic analysis.

One of the ways to overcome this shortcoming of the sampling theory is to utilize not only raw data
specific for current investigation of equipment reliability but incorporate also other relevant
information available from other data sources. Some possible sources of additional data are
operating data in different environments; engineering judgments and personnel experience; and
operating experiences with similar equipment. Unfortunately, the sampling theory methods are
inappropriate for incorporating this relevant information.

12.3 Bayesian approach to parameters estimation. Analysis and methods
of investigation

In contrast to sampling theory methods, the Bayesian approach allows naturally to incorporate data
from various sources in reliability parameters estimates by considering each source as a sample from
the same population. While in the classical approach the parameters of underlying life distribution
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are assumed unknown constants to be determined, in the Bayesian approach the parameters are
considered to be random values to which is assigned a prior probability density function.

The basic elements of the Bayesian approach are the sampling model f(x;|6) — the conditional
probability density function of random value X; which depends on parameter 0; the prior model
H(0) - the prior probability distribution of parameter 6 with the density 4(0); the posterior model
G(0| x) — the posterior probability distribution of parameter 6 given sample data x with the density

g(0]x), and the loss function L(6,3) for the estimator § .

12.3.1 Choice of a prior distribution function

The prior probability density function #(0) accumulates the totality information available concerning

the parameter 0 prior to the observation of the sample data x. The prior information, which is
transformed into a prior distribution, can be obtained from objective or subjective sources. Objective
prior information includes operating data in different environments, observational data from
experiments conducted earlier, and operating experiences with similar equipment. Subjective prior
information may include the assessor’s personal experiences and judgments, and design information.

In cases when no prior information concerning the parameter @ is available or such information is
very limited, non-informative priors are selected. Such choice is based on the "Principle of
Insufficient Reason" which was first stated by H. Jeffreys in [Jeffreys, 1961]. This principle requires
the distribution on the finitely many events to be uniform unless there is some definite reason to
consider one event more probable than another does.

Ordinarily, one deals with cases when only partial prior information concerning the parameter 9 is
available which is insufficient to specify exactly a prior distribution. In such cases, there is a possibility
of incorporation of additional subjective unsuitable information during transformation of the partial
prior information to a full prior.

Transformation of the partial prior information to a full prior can be carried out by using various
techniques. The most popular techniques use the partial prior information to specify a particular
member of a chosen family of distributions. According to this technique, a prior can be obtained by
selecting a distribution family for the prior and fitting its parameters based on estimated moments or
quantiles of the prior. For example, the Reactor Safety Study assesses upper and lower values of the
failures rates of components and then fits a lognormal distribution by using these values as the 95-th
and 5-th percentiles of the distribution [Mosleh and Apostolakis, 1982]. This example demonstrates
that selection of the lognormal distribution family for the prior incorporates additional subjective
information, which does not belong to the prior information, into the full prior distribution.

For transformation of the partial prior information into a full prior which is as non-informative as
possible subject to partial prior information, the maximum-entropy method can be used [Jaynes,
1968], [Deeley et al, 1970], [Savchuk and Martz, 1994]. According to this method, the prior
probability density function #(0) of the parameter & is selected such, which maximizes the

Shannon-Jaynes entropy [Savchuk and Martz, 1994]:
I(g)=— j 1(0) In(h(0))d0 — max (5)
among all those distributions which satisfy the given constraint:
S(h(8)) =0, (6)

where S(#(0)) is functional constraint on A(0), which reflects given partial prior information.
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Frequently, assessor selects a prior distribution that possesses some useful properties to simplify
mathematical inference of Bayesian estimates. Conjugate prior distributions are important class of
such distribution functions. A conjugate prior distribution 4(6) for a given sampling distribution

f(x|0) is such that the posterior distribution g(0|x) and the prior #(0) are members of the same

family of distributions [Martz and Waller, 1991]. For example, widely used choice of a prior
distribution in the Bayesian estimating parameter p in the binomial model is the beta distribution

with parameters x,and n:

['(ng)
[(x)T(ng —xg)

h(p;xy,ny) = Pxo_l (1- P)no_xo_la nyg >xo > 0. (7)

With such prior probability density function, the posterior probability density function of p given
sample data x is [Martz and Waller, 1991]:
I'(n+ngy)

(x+xp)-1 1— (n+ny—x—xy)-1
8
F(x+x0)r(n+n0—x—x0)p (=p) ®

g(p|x;xg,ny) =

which coincides with the beta probability density function with parameters x+x,, n+n,. Thus, the

beta-distribution is the conjugate prior distribution for the binomial failure model.

12.3.2 Bayesian methods of point estimation of reliability parameters

For a quadratic loss function, the Bayesian estimating procedure is to minimize the posterior risk
given by

Ela(0-0) | x]z j a(0—0)2 g(0] x)d® (9)
This risk is minimized when
é:E(e|x)=je 2(0] x)do (10)
Thus, for a quadratic loss function, the Bayesian point estimator coincides with the posterior mean of
the posterior distribution.

If in Bayesian point estimating parameter p for the binomial failure model a beta distribution (7) is
used as prior probability density function, and x failures occur when n demands occur, then, the
posterior probability density function of p given sample data x is the beta probability density
function (8) with parameters X+ Xy, n+ Ny, and the Bayesian point estimator, which is the

posterior mean, is [Martz and Waller, 1991]:

~ X+ X
p=E(p|x;xy,ny)= 0. (11)
n+n

12.3.3 Bayesian methods of interval estimation of reliability parameters

In Bayesian estimation, unknown reliability parameter is considered to be a random value ¢ to which
is assigned a prior probability density function #i(g). For given sample data x the posterior

probability density function g(e|x) of & can be obtained. In Bayesian approach, analog of classical
two-sided confidence interval is a (1-y) level two-sided Bayes probability interval (g;,g,) for &

given by
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Ple;(x) <& <ey(0)} = [g(e|0de 21—y (12)

€

It can be found by solving the following two equations:

Pr(e<g| |x) = jg(s | x)de = %, (13)
0
and
1
Pr(e 26 2) = [ g(e | x)de =7 (14
)

for the lower limit ! and the upper limit 2.

Consider the binomial failure model. Assume that a prior distribution of parameter p is the beta
distribution with parameters x,and n,, and x failures occur when »n demands occur. Then, the
lower limit g,(x) and the upper limit ¢,(x) of (1-v) level two-sided Bayes probability interval (g,,¢,)

for parameter p are calculated as follows [Martz and Waller, 1991]:

X+ X
&(x) = (15)
x+xg+(n+ny—x—x)F_,,,(2n+2ny —2x - 2xy,2x + 2x,).
(x+x0)F_y 2 (2x +2x0,2n + 2ny — 2x — 2x;))
&(x) = (16)

n+ny—x—xo+(x+x0)F_, 2(2x +2x0,2n + 2ny — 2x — 2x;).

where Fl_y/z(npnz) is the (1—-v/2) -quantile of the F - distribution with (’11,”2) degrees of

freedom.

12.3.4 Methods of fitting parameters of a prior distribution function

When the prior distribution is assumed a member of a certain parametric family of distributions the
problem of fitting its parameters arises. It is unlikely that expert judgment can be quantified in terms
of statement, which gives directly values of parameters of the prior distribution. However, the
assessors are able to give more or less accurate values of quantiles and moments of the prior
distribution in quantifying their beliefs. Frequently these characteristics of the prior distribution are
used to specify a particular member of a chosen family of distributions. This can be easily done when
the characteristics and the parameters of the distribution are related through a simple analytic
relation [Martz and Waller, 1991].

Unfortunately, there are no simple analytic relations between the quantiles and parameters of the
gamma and beta distributions, which are widely used as the prior in Bayesian estimation of reliability
parameters [Martz and Waller, 1991]. For this reason graphical techniques [Waller et al, 1977],
[Weiler, 1965] or tables of the incomplete gamma or beta functions [Pearson, 1957], [Pearson, 1968]
are used. The existing graphical techniques cover a very limited range of quantiles or the parameters.
Tables for determining the beta prior are presented in [Waterman et al, 1976] for cases when 1) the
mean and 5" quantile or 2) the mean and the 95t guantile are given. The paper [Mosleh and
Apostolakis, 1982] presents techniques that facilitate estimation of the parameters of a gamma or
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beta distribution when two percentiles or one percentile and the mean value are known. The
problem of determination of the parameters of a beta distribution for the same types of available
prior information is also considered in [Duran and Booker, 1988].

When there is observational data from past experiments, it can be used to estimate parameters of
the prior distribution, which is assumed a member of a certain parametric family of distributions.
Two basic methods are usually used for this purpose: the method of matching moments and method
of maximum likelihood based on the marginal distribution [Martz and Waller, 1991]. The method of
moments is to equate the sample moments to their expected values and solve for the parameters.
The method of maximum likelihood chooses estimators that maximize the marginal likelihood
function.

Consider estimators for parameters x, and n, of a beta distribution. Assume that we have results

obtained in N binomial life test experiments conducted previously with the same or similar items.
Let p, denote the unknown value of the parameter p in jth experiment. We assume that the

underlying sequence p,,p,,...,py is statistically independent realizations of a random value, which
has beta distribution with constant x, and n, values for the sequence of tests [Martz and Waller,
1991]. Let for the j th experiment x; failures occur out of sample size n;. The classical estimator for
the parameter p in the jth experiment is p; =x;/n;. Then, the unweighted moment estimators

for ny,x, are [Martz and Waller, 1991]:

S NG, -my)
O Nm?-Kp 52’ 17
m, —Kp, —(N-K)p, (17)
)?O - ﬁopu’
where
- -2
7, =§:—f, m? =§:ﬁ, K =§:n;l. (18)
N N =

The marginal maximum likelihood estimates for parameters n,,x, can be obtained by numerical

solving the following system of equations [Martz and Waller, 1991]:

SY[ S o
j=1 i=0 ot j=l =0 o 0

(19)
Nnj—x/—l
2 5% =0.
o= o - x0+z S x i

12.3.5 Empirical Bayesian point estimation of reliability parameters

In order to avoid the necessity of identifying the unknown prior distribution empirical Bayesian
estimation was suggested in [Robbins, 1955]. The difference between empirical Bayesian and
ordinary Bayesian is that the former does not make explicit the form of the prior distribution in order
to make possible a Bayesian solution. Instead, the empirical Bayesian method depends on existence
of prior information in the form of past estimates of either parameter in question or some close
variation of it [Tillman et al, 1982], [Tsocos and Canavos, 1972].
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Empirical Bayesian procedures consists of 1) methods that attempt to approximate the Bayesian
estimator without explicitly estimating the unknown prior distribution [Clemmer and Krutchkoff,
1968], [Lin, 1972], [Martz and Krutchkoff, 1969], [Miyawasa, 1961], [Nichols and Tsokos, 1972], and
2) methods in which the unknown prior distribution is explicitly estimated [Bennet and Martz, 1972],
[Lemon and Krutchkoff, 1969], [Maritz, 1966; 1970].

One of the widely used empirical Bayesian estimators is the Copas estimator [Copas, 1972]. Consider
a sequence of binomial sampling experiments in which the jth experiment results in x; failures in

n; trials [Martz and Waller, 1991]. Let y;=x;/n;. ltis assumed that N-1 previous experiments have
been conducted prior to the current or N-th experiment. For convenience let x=xy,n=ny,y=x/n

and p=p,. Llet 4 and o’ denote the prior mean and variance, respectively. Then, the Copas

estimator [Copas, 1972] is given by

Pc = +Wyny)/(A+Wy), (20)
where
S 2 2
MlNZZyi/M Wy =l (= pyy)—oiy]/ nojy, (21)
i=1
< 1
N _ _
oty =max[0, {Z(yi — iy ) =k (1= )} (N =), k= Z 1 (22)

i=l i=1
Another empirical Bayesian estimator of binomial parameter is the Lemon and Krutchkoff estimator
[Lemon and Krutchkoff, 1969]:

N N
pL =05 A=) VD prA-P5)" 1, (23)
i=1 i=1
where Pi is given by
N | N
~ X+ =X X: =X
=Dy A=y )" Ty A=y )" N 22, (24)
Jj=1 Jj=1
and
yy=x;/n;. (25)

12.3.6 Basic shortcomings of Bayesian and empirical Bayesian estimation of
reliability parameters

A major shortcoming of the Bayesian approach is related to the ability of the investigator to select a
true distribution function. In cases when no prior information concerning the parameter 0is
available, the more appropriate selection is a non-informative prior distribution or the distribution,
which maximizes the Shannon-Jaynes entropy [Jaynes, 1968], [Deeley et al, 1970]. Difficulties of
implementation of the Bayesian procedures of estimation arise when the partial prior information is
available.

Most techniques of identification of a prior distribution considered above consist of two stages. At
the first stage, the family of distributions is selected. At the second stage, a particular member of this
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family is specified by means of estimating its parameters based on the available prior information.
The second stage can be considered as justified and formalized since it is based on the available prior
information. In contrast to the second stage, choice of the family of distribution functions on the first
stage depends on a subjective factor. At this stage, additional subjective information can be
introduced into decision procedure, which may not belong to the available prior information.

This shortcoming of the Bayesian approach is usually overcome by using empirical Bayesian decision
process that does not require accurately estimate a prior distribution function. Empirical Bayesian
decision procedure is an efficient tool for combining existing sets of either reliability data or
reliability parameter estimates from various sources. One of the advantages of such methods is their
asymptotic optimality. However, the rate of convergence of the empirical Bayesian risk to the
minimum Bayesian risk can be quite slow. Therefore, in cases when small datasets of reliability data
or reliability parameter estimates are available, the accuracy of the approximation of the Bayesian
estimator by the empirical Bayesian estimators is never really known.

Errors in Bayesian estimating reliability parameters resulted from incorrect selecting a prior
distribution can be significant and affect the confidence to results of a safety investigation of
ecologically dangerous objects.

12.4 Statement of the problem of robust estimating reliability parameters

One of the ways to avoid arbitrariness in selecting prior distribution based on partially available prior
information is to use I' -minimax approach that was originally proposed by Robbins [Robbins, 1951]
and was investigated by Berger [Berger, 1984]. The I' -minimax approach takes into account that
Bayesian procedures actually deal with a family of priors I instead of a single prior distribution. Any
distribution from the class T" has the same reasons to be used as a prior distribution. The uncertainty
in the priors generates uncertainty in the posterior values of interest (e.g. mean, variance) described
by the range of the posterior values as the prior variesin T'.

This range is used as a measure of robustness [Vidakovic, 2000], [Ruggeri and Sivaganesan, 2000],
[Carota and Ruggeri, 1994]. A small range means that uncertainty in the priors does not heavily affect
the posterior value, and it is robust with respect to the choice of the prior from the class TI'.
Conversely, a large range means that the posterior value is sensitive to the choice of the prior, i.e. it
is not robust. In the latter case, the statistician should pay attention to the least favorable prior in T
and use T" -minimax approach to develop robust estimates.

In the T -minimax approach, the estimate that minimizes the supremum of the cost functional over
distributions in ' is selected as a robust [Vidakovic, 2000]. In case of scarce prior information, the
class T is large and result obtained by using this approach is close to the result in minimax approach.
In other case when complete prior information is available, the class T contains a single prior and the
I -minimax approach is equivalent to the ordinary Bayesian approach.

The natural choices of the cost functional are

1. Bayesrisk

g (5(0) = [ [ L(8.5(x) f (x| O)dxdE (6) (26)
OX

2. posterior risk
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IL(G, 0)f(x|60)dH (0)

$ (5(x) = [ L(0,5(:x))dG(0 | x) =2 (27)
o [rx10)ar0)
e
3. posterior mean of parameter 8 given sample data x
[0 rx10)dH ()
6, =2 (28)

" [ rr 0 6)
(©)

From the point of view of the statistician a prior distribution, which maximizes Bayes (26) risk or
posterior risk (27), is the least favorable prior in I" since it corresponds to the worst estimation
accuracy. For any other prior from class I" the estimation accuracy can be only better.

According to conservative approach it is naturally to assume that the "true" prior always coincides
with the least favorable prior in I". Therefore, the estimator that minimizes Bayes risk or posterior
risk under the least favorable prior is robust.

The cost functional (28) corresponds to a Bayesian estimator when a squared-error loss function is
used in Bayesian inference. Calculating values of Bayes estimates éH for any prior H eI we obtain
the range of possible values (9*,6*). Suppose that upper bound 6" corresponds to some distribution

H el ,ie. 0" = @)H* . From the point of view of risk theory, the conservative assumption concerning

a prior is that H'is the "true" prior. Use of any other Bayesian estimate éH €(0.,0"), which

corresponds to any other distribution & €T, can only diminish the assessment of failure probability
and thus promote obtaining more optimistic result of probabilistic safety assessment. For this

reason, the upper bound 6" of the range of possible values (8.,0") of posterior mean is appropriate

for utilization as a robust Bayesian estimate in estimating reliability parameters for probabilistic
safety assessment.

If the cost functional is posterior risk then, the problem of seeking robust Bayesian estimate given
sample data x is reduced to the following stochastic minimax problem:

[20,8) (x| 0)aH (0)

min sup ¢, (8,x) = min sup 2
Her 8 per j f(x|0)dH(0)
e}

(29)

The objective functional in (29) is the linear-fractional functional with respect to distribution
functions. The inner problem in (29) is the problem of optimization of the linear-fractional functional
in the space of distribution functions that belong to class T .

If the cost functional is posterior mean of parameter 6 given sample data x then, the problem of
seeking robust Bayesian estimate is reduced to the following stochastic programming problem of
maximization of linear-fractional objective functional over distribution functions from class T :
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j 0 f(x|0)dH(0)

sup ) = sup ©
Her Her j £ (x| 0)dH (6)
®

(30)

12.5 Statement of the problem of seeking lower and upper bounds for
Bayesian estimates of reliability parameters

In order to investigate sensitivity of Bayesian estimates with respect to selection of a prior
distribution from class T" it is necessary to find low and upper bounds for the range of possible
values of the cost functional of interest. According to the Bayesian approach, if H(0) is the "true"

prior, the quality of the Bayesian point estimator @H(x) is measured in terms of the Bayesian risk

(04 (x)) (26), or the posterior risk d)H(éH(x)) (27). Now consider the case when instead of a single
prior H(B), class ' of such distribution functions is available. In this case the value ry (éH (x)) or
¢H(§H (x)) cannot be used for characterization of the quality of the Bayesian point estimator @H(x).
For this purpose the range (# (@H(x)),r*(éH(x))) of possible values of the Bayesian risk or the range
(d)*(éH(x)),d)*(@H(x))) of possible values of the posterior risk, obtained by varying prior in T, are
more appropriate.

In estimating reliability parameters for probabilistic safety assessment it is also of interest to know
how wide is the range (6.,0") of possible values of posterior mean of parameter 0 given sample
data x (Bayesian estimate), as the prior variesin I'.

The problem of calculating low r*(éH(x)) or upper r*(éH(x)) bounds for the range
(r*(éH(x)),r*(éH(x))) of possible values of the Bayesian risk associated with the Bayesian point

estimator éH(x) is reduced to the following optimization problems in the space of distribution

functions:

(0 () = inf [ [ L(0.0,4 (1)) (x| 0)dxdG(0) 1
0X

and

r (0 () =sup [ [ L(0,0,; (x))) f (x| 0)dxdG(0) 32)
Gel %

In (31), (32) objective functionals are linear with respect to distribution functions.
The problem of calculating lower <|)*(§H(x)) or upper ¢*(§H(x)) bounds for the range
(d)*(éH(x)),d)*(éH(x)) of possible values of the posterior risk associated with the Bayesian point

estimator éH(x) is reduced to the following optimization problems in the space of distribution

functions:
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[ £00,6,, (1) f (x| 0)dG(0)

* é = i f ©
$+ (04 (x)) Infl jf(x|e)dG(e) (33)
€]
and
IL(O,éH (x))f (x| 0)dG(6)
0" (0 (x)) =sup? (34)

Ger j £(x|0)dG(9)
0

In (33) and (34) objective functionals are linear-fractional with respect to distribution functions.

The problem of calculating lower 6. or upper 6" bounds of the range (0.,0") of possible values of

posterior mean of parameter 0 given sample data x (Bayesian estimate), is reduced to the following
minimization or maximization of linear-fractional objective functional (posterior mean) over
distribution functions from class T :

je £(x|0)dG(6)

0. = inf 2 (35)
G<r [ £(x10)dG(0)
(C]

and

j 0 f(x|0)dG(0)

0" =sup

e (36)
Ger j £(x|0)dG(0)
®

Now consider the problem of seeking two-sided Bayes probability interval for the parameter 6. We
assume that the parameter 0 is one-dimensional and 6 €[a,b]. In accordance with the Bayesian

approach (13), (14), symmetric (1-v) level two-sided Bayes probability interval for the parameter 6

can be calculated by solving the following two equations:

0x
0 [ £l 0)aH ©)
Pr(O < 0. | x) = [dG(O] x) =~ :% (37)
“ [ 71 0)aH 0)
and
b
) [ 7(x10)drH ()
Pr(0>0" | x) = [dG(O]x) =& :% (38)
" [ £l 0)aH ©)

a

for the lower limit 6. and the upper limit 6°. Thus
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Pr(6. <0<0" |x)=1-y

315

Now consider the case when available prior information is insufficient to accurately specify a single
distribution function. Instead of a single prior H(0) it defines the class I' of such distribution

functions, use of any of which as a prior does not contradict to available prior information. In this
case, if for any distribution H(0)eI' one determines symmetric (I-y)level two-sided Bayesian

probability interval (0.(H),0"(H)) by solving equations (37), (38), then, there is no warranty that

unknown parameter belong to it with the probability 1-y . In this case the generalized symmetric

(1-v) level two-sided Bayes probability interval (0.,0") for the parameter 0 can be determined by

solving the following optimization problems:

0. — sup
subject to
0.
0 [ £l 0)aH ©)
u Y
j dG(8| x) = <7
‘ [ £l 0)aH ©)
for any H(®)el )
and
0" —inf
subject to
b
) [ 7(x10)dr (6)
jdG(e|x)=2: s%
v [ 71 0)aH )
for any H(©®) el .

The problems (39)-(40) and (41)-(42) can be expressed in the following equivalent form:

0. — sup
subject to
0.
[ 71 0)at(6)
a Y
sup <=
Her 2
S (x|6)dH (0)
and

0" > inf

subject to

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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.
[ £l 0)ar )

1i1nfr Z >1-L (46)

[ £l 0)ar )

12.6 Classes of distributions

Methods of solution the problems that were stated in sections (3), (4) depend on types of classes
I of distributions. Commonly the following classes T are used in applications [Berger, 1994].

1. class of distributions of given shape, for example,
" = {all symmetric, unimodal priors};
2. class of distributions that have given system of quantiles

I'={H@®):0, <Pr(0e®,)<B,, i=1...,m}.

’

3. class of distributions that have given system of moments;

4, contamination class

I'={H=(1-¢)H,+¢F, Fe(Q}

where H is a base prior, 0_ is the allowed class of contaminations;

5 mixture classes
I =1{g(6) = [2(8] 0)dG(x), GO}

In our investigations, we consider the class of distribution functions that can be expressed by means
of the following linear constraints:

!) dH(0) =1 (47)
[ f:(©)dH(0) < d,,
(€]
i=12,....,m,
(48)

[g;(0)dH ()= u;,
e)
j = 1, ooy m2 N
where functions f;(0), i=12,...,m, gj(6’), j=L2,...,m,, can be discontinuous.

In  case when parametric space is one-dimensional, ® = [a,b], and functions
g; (0) = 0/, Jj=L2,...,m,, this class consists of all distribution functions that have given constraints

on the first m moments. If f;(0), i=12,...,m, are indication functions for some intervals of the

parametric space ® =[a,b], then this class consists of all distribution functions that have given
constraints on the quantiles.
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12.7 Discussion

The approach considered in this paper overcomes one of the shortcomings in the modern
methodology of evaluation of Severe Accident Risks on Nuclear Power Plants. Particularly, it provides
techniques for quantification of uncertainty in estimates of reliability parameters resulted from
insufficient data.

This approach was used in [Golodnikov et al, 2009], [Golodnikov, 2009] for conducting sensitivity
analysis of Bayesian estimates of reliability parameters with respect to selection of a prior
distribution in two widely used failure models: exponential and binomial.

For selected data we calculated lower and upper bounds for Bayesian estimates of Centrifugal pump
failure rate and Isolation valves failure probability per demand assuming that only two quantiles are
known about prior distribution.

Basing on results obtained we drew the following conclusions.

1. In the case of Centrifugal pump failure rate estimation (exponential model), Bayesian
estimates of failure rates are essentially sensitive to the selection of a prior distribution
function.

2. In the case of the Isolation valves failure probability per demand estimation (binomial model),
strength of sensitivity of Bayesian estimates of failure probability to selection prior distribution
depends on the number of failures occurred. When number of failures was less or equal 1 we
observed slight sensitivity. Therefore, in this case any distribution, which has the same two
qguantiles, may be used as a prior. When number of failures exceeded 1, we observed rapid
increasing of the sensitivity with the increase of number of failures.



