
ITHEA®

136

Automated transformation of algorithms

MODELS OF THE PROCESS OF AN ANALYSIS OF XML-FORMATTED FORMULAE
OF ALGORITHMS

Volodymyr Ovsyak, Krzystof Latawiec, Aleksandr Ovsyak

Abstract: This paper describes two analytical models of the process of an analysis of XML-formatted formulae of
algorithms represented in a special editor created for the algebra of algorithms. For identification and storage of
types and orientation of selected operations and uniterms, two XML-formatted model algorithms are developed.
The ability is shown for transformation of formulae of algorithms that results in 5-time reduction of a number of
uniterms while maintaining the functionality of the algorithm.
Keywords: Algebra of algorithms, algorithm formulae editor, transformation of algorithms.

Introduction
Algebra of algorithms [Ovsyak et all, 2011] provides means to describe algorithms as mathematical formulae.
Identity transformations are performed over formulae of algorithms just like those for mathematical expressions.
The aim of these transformations is to reduce a number of uniterms and algorithm formulae, thus reducing both a
time consumed to build and execute the code and a memory to store the code. An xml format is used to describe
operations in the algebra of algorithms. Applications of the algebra of algorithms in synthesis and transformation
of formulae of algorithms are illustrated by examples of two XML-formatted model algorithms, developed in a
formulae editor whose GUI is shown.
Construction of the two model algorithms is supported with four theorems, including the one that establishes the
functional equivalence of the two algorithms.

Elements of Editor of Algorithm Formulae

2.1. Main window of editor

Fig.1 shows the main window of the editor of formulae of algorithms, including the menu of commands, operation
menu and editing area.

Fig.1. Main window of editor.

Business and Engineering Applications of Intelligent and Information Systems

137

2.2. The encoding xml format for formulae of algorithms
Synthesized by the editor of the algorithm’s formulas stored in computer memory as files with XML - similar
format. For example, sequence of uniterms F(x, y) and S(z), to separate them using a semicolon and
arrangement - sign of operation of horizontal sequence has the following entries

 and is recorded into computer's memory as follows:

where the third line is an identifier of description of the sequence operation (s), uniterm's separator (sep =), a
separator ("sem"), orientation identifier (ori =) and value ("hor"), into the following are recorded identifier of the
uniterms (u) and their significance (F(x, y) oraz S(z)) sequence operation with horizontal orientation of the sign
sequence's operation

and uniterms separator by comma has the following description:

XML - formats of the description of elimination operation (e) and parallelization (p) has a similar description.
Beyond this operation of elimination has three uniterms elimination, separated by semicolons.

Description operation of cyclic sequence (cs) with horizontal (hor) and vertical (ver) orientation and condition of
the cycle (g-?) and uniterm H, bound with operation of cycle is as follows:

 amd

Operation of cycle elimination (ce) and parallelization (cp) have similar description.

Formulas of Analysis Xml - Format of Algorithms Formulas

For receiving in a computer's editor with XML - format formula algorithms necessary is to identify types of
transactions, which are sequence, elimination, parallelization, cyclic sequence, elimination and parallelization and
uniterms, data separator character and orientation of operations signs. With a view to optimizing the data from

ITHEA®

138

XML - files formulas algorithms was synthesized algorithms formula (1), where pu st (w∈@T) Txml (t∈@T,
n∈@Nod) - header of formula algorithm.

where pu - identifier of access, st - static property, (w∈@T) - is the input parameter w belongs (∈) to type T
subsystem (@) for uniterms processing , Txml - name of algorithm's formula, n∈@Nod) - input parameters t and
n - type subsystems T and Nod (abbreviated name of standard subsystem XmlNode [Petzold, 2002, MacDonald,
2008]); u∈@U - type variable U - subsystem "Uniterm " intended for uniterm processing ; u.par = t - attributing to
variable par value of input variable t; u.val = n.IT - attributing variable val value of uniterm n.IT, selected by
standard uniterm InnerText [MacDonald, 2008] from the input variable n; w = u. - attribution to input variable w
variable value u subsystems U and the end (.) of the algorithm implementation; ((n.IT.Le> 0) -?) - calculation
(n.IT.Le), using standard uniterm Length [3], the number of uniterm characters chosen by standard uniterm
InnerText [MacDonald, 2008] to xml – file and verification this number of marks for the majority from zero;
(n≠$)-? – verification wether xml – file is not empty ($); Exc(“$_xml”). – view by standart uniterm
Exception()[[Petzold, 2002, MacDonald, 2008] report $_xml about empty ($) xml – file and the end (.) of the
algorithm implementation; (N.Na.Eq ("u") -?) - in input variable n search of the name (Na) keyword "u" string xml -
file with using standard uniterm Equals() [MacDonald, 2008] compared Eq("u") ; (n.Na.Eq("s "))-? - compared
with the keyword s; s∈@S - a variable of the subsystem S, appointed for working on sequence process; s.par = t
- attributing value par to value of input variable t; s.sep = @S.Sep.Sem - attributing variable sep separator Sem;
s.sep = @S.Sep.Com - attributing variable sep separator Com; Exc("Błąd_s xml"). - view of error message
("Błąd_s xml") in the uniterm separator; n.Attri["sep"]. (Val.Eq("com") -?) - in n search (Attri["sep"]) using standard
unitermu Attributes [""] [Ptzold, 2002, MacDonald, 2008] keyword (sep) and comparison (Eq("com")), using

Business and Engineering Applications of Intelligent and Information Systems

139

standard uniterm Equals(""), its value is recorded in Val - standard variable Value [Petzold, 2002, MacDonald,
2008], with "com"; (n.Attri ["sep"].Val.Eq("sem") -?) - comparison with "sem"; s.ori = @S.Ori.Hor - attributing to
variable ori identifier of horisontal orientation Hor sign of sequence operation, which is in division Ori subsystem
S; s.ori = @S.Ori.Ver - attributing vertical (Ver) to orientation sign operation; Exc("Błąd_s_O xml") - view of error
message in describing of orientation of the sign operation; (n.Attri["ori"].Val.Eq("ver") -?) - comparing the value
orientation with ver; (n.Attri["ori"].Val.Eq ("hor") -?) - comparing the value orientation with hor; s.tA = Txml(s,
n.CN[0]) - choice (CN) uniterm value from position [0] xml - description of the algorithm formula using standard
uniterm ChildNodes[] [Petzold, 2002, MacDonald, 2008] and the algorithm Txml() attribution to variable tA first
uniterm value; s.tB = Txml(s, n.CN[1]) - the choice from xml - description of algorithm of second uniterm and
attributing its to variable tB; w = s. - attributing to input variable w value of variable s and the end (.) of the
algorithm implementation.
Formula A differs from elimination by condition (n.Na.Eq("s ")-?) the elimination by condition (n.Na.Eq ("e ")-?)
contains an identifier e; e∈@E - the creating variable e subsystem E working on elimination operation and using
variable e instead of variable s and with missing uniterm processing separator and presence uniterm cond =
Txml(e, n.CN [2]) - intended for attributing variable cond value of third uniterm, which is in xml - description of the
algorithm formula.

Formula B from elimination by condition (n.Na.Eq("s")-?) difference is in: in comparison by condition
(n.Na.Eq("p")-?) identifier p is used; p∈@P - creating of variable P subsystem for working on paralellization and
using variable p instead of the variable s.

ITHEA®

140

Formula D from elimination by condition (n.Na.Eq("e")-?) differs that: the elimination by condition (n.Na.Eq ("cs")-
?) identifier cs is used; cs∈@CS - the creating variable cs subsystem CS, appointed for working on process of
cyclic sequence and using variable cs instead variable e.

Formula I from elimination by condition (n.Na.Eq(“cs”))-? differs that: in comparison by condition (n.Na.Eq(“ce”))-?
identifier ce is used; ce∈@CE – the creating variable ce subsystem CE, appointed for workion on cyclic
elimination operation and using variable ce instead variable cs.

Business and Engineering Applications of Intelligent and Information Systems

141

 formula G from I differs by identifier and variable cp subsystem CP, appointed for working on operation of cyclic
parallelization.

 Theorem 1. If F is XML - formula of algorithm described by format, then formula of algorithm (1) is described
the identification in F operation algebra algorithms, their orientation, uniterms separators and uniterms selection
and detection of errors in XML - formulas describing algorithms.
Proof. Elimination by condition (n ≠ $) -? checking whether the input variable n is not empty xml - description. If
the variable is empty, the elimination by this condition is obtained by uniterm Exc("$ _xml"). with information ($
_xml) about error in the input variable n. Otherwise elimination by condition n.Na.Eq("u") -? checking whether the
line of the variable n contains uniterm identifier ("u"). If yes, then after the creating of variable u type subsystem
for uniterms processing U and attributing for variable par value of abstract input variable t, checking whether the
variable n is not empty ((n.IT.Le> 0)-?). Not empty value of the input variable is chosen (n.IT) and is attributed to
variable val (u.val = n.IT). Then the output variable (w) is attributing (w = u) value of variable u, which is the value
of uniterm (abstract or recorded by xml - format). This is ending the algorithm implementation. In case the

ITHEA®

142

condition is not executed n.Na.Eq("u") -? is the checking (n.Na.Eq ("s")-?) wether string of variable n contains the
name of identifier sequence transaction (s).
If the identifier xml (the description of sequence operation) is recognized - is creating variable sequence
operations (s∈@S). Uniterm (s.par = t) is attributing variable par value of input variable t. Elimination by condition
n.Attri["sep"].Val.Eq("sem") -? compared (Eq("sem")) wether value of attribute sep (n.Attri["sep"]) concordant with
the name of the uniterms separator (sem). If convergence than variable sep is attributed (s.sep = @S.Sep.Sem)
Sem value. When it is not the convergence , then is checking (n.Attri["sep"].Val.Eq("com")-?) wether com is
separator. If yes, then the variable sep is attributing (s.sep = @S.Sep.Com) Com value. Otherwise, there is a
view (Exc("Błąd_s xml")) of error in the description of the separator.
After identification and recording separator in elimination by conditions n.Attri["ori"]. Val.Eq("hor") -? and
n.Attri["ori"].Val.Eq("ver") -? performed the same identification and recording (s.ori = @S.Ori.Hor and s.ori =
@S.Ori.Ver) orientation for sequence operation s.ori=@S.Ori.Ver.
Next from xml - description is chosen line with uniterm (n.CN[0]), getting the uniterm using algorithm (Txml())
and attributing it to variable tA. Similarly is received second uniterm (tB) from xml - description. The output
variable w is attributed value of variable s by the last uniterm (w = s.) .
Thus it is proved that the algorithm (1) describes the identification in the XML - description sequence operation,
its orientation, uniterm separator and also choice of uniterms and attributing this data to output variable.
Similarly we can prove description by the algorithm (1) identification and read data from XML - description data of
elimination operation, parallelization, cyclic sequence, elimination and parallelization. Theorem proved
Theorem 2. If F is a description of the algorithm in XML - format, the formula of the algorithm (2)

, (2)

 where

mailto:s.ori=@S.Ori.Ver

Business and Engineering Applications of Intelligent and Information Systems

143

is describing an identification in F operations algebra algorithms, their orientation, uniterm separators and
uniterm choice and view of errors in xml – description of algorithm formulas.
Proof. Elimination by condition (n ≠ $) -? as well as formula (1) contains an elimination by condition n.Na.Eq ("u")
-? and uniterm about error (Exc ("$ _xml ").). Execution of condition goes to attributing to the output variables,
as well as in formula (1), an abstract value or the readout uniterm XML - format.
Let the variable i has value s. Then bi has the value of S. Uniterms i∈@ bi, Exc("Błąd"). and (n.Na.Eq("i ")-?),
elimination by condition (n.Na.Eq (" i ")-?), are as follows: s∈@S, Exc("Błąd"). and (n.Na.Eq("s ")-?). All of them
coincide with uniterm formula (1) for operation sequence.
Uniterm i.par = t i after replacement i to s has the form (s.par = t) which is the same as in formula (1). Elimination
by condition (i∈Q3) -? gives empty uniterm (*), which can be left out because it cannot change the formula.
The variables j and k get the value 0. Variables x0, y0, a0,0 are getting values of sep, Sep, Sem, which gives
elimination by condition n.Attri[“xj”].Val.Eq(“ak,j”)-? and formula:

Condition (0∈Q2) -? cyclic elimination is performed, thats why the value of variable increases by 1 and
becomes an returning to the cycle by variable k. We get expressions for variables uniterms x0, y0, a1,0 operation
sequence sep, Sep, Com. Substituting them to formula (3) we obtain the following expression:

ITHEA®

144

In the last expression condition (1 +1)∈Q2) -? not performed because elimination by this condition can be
replaced on uniterm Exc("Błąd_s")., which gives the formula:

Now variable of cyclical sequence j is increased by 1, and variable operation of cyclical elimination k becomes
to the initial value 0. Then for variables x1, y1, a0, we obtain such a value ori, Ori, Hor and for a1,1 we have a Ver.
Similarly, as we get the expression (4), we get the formula:

Now the variable z cycle takes the initial value of 0 and xz = ti = tA. Then condition ((s = e) | (0 ≠ 2)) -? elimination
is performed, which allows elimination from uniterm s.tA = Txml(i, n.CN [0]) and makes returning to the cycle for
the variable z, which takes the value 1. The second iteration xz = ri = tB, and the elimination condition ((s = e) | (1
≠ 2)) -? performed, giving the uniterm s.tB = Txml (s, n.CN[1]). On the third iteration z = 2. Condition ((s = e) | (2
≠ 2)) -? of elimination is not performed. Therefore there is receiving an empty uniterm, which can be left. From
the last line of formula (2) we get w = s.. Thus obtained formula is concordant with the corresponding fragment of
the formula (1):

Business and Engineering Applications of Intelligent and Information Systems

145

Thus it is shown that formula (2) in XML - description identifies data of sequence operation. Similarly, it can be
proved also for the operation of elimination , and for operations of description cycles and parallelization.
Theorem is proved.

Comparison Formulas Of Algorithms

As it was proven formulas (1) and (2) describe the same process of analysis XML - the description formulas of
algorithms. Lets compare formulas of the algorithms (1) and (2) due tue the number of uniterms. Formula (1)
contains 90 uniterms, while formula (2) has only 26 uniterms. Thus formula (2) has 3.5 times uniterms less.
Theorem 3. From formula (2) is derived formula (1).
The proof of the theorem is similar to the proof of Theorem 2.
Theorem 4. From formula (1) is derived formula (2).
 The proof is based on the axiom operations of elimination descriptions cycles of algebra algorithms.

5. Conclusion

Description of algorithms as formulas algorithms provides performance identical transformations of algorithms,
which reduced expenses needed for implement algorithms.

Bibliography

[Ovsyak et all, 2011] V. Ovsyak. Computation models and algebra of algorithms. Submitted to the Conference.

[Petzold, 2002] C. Petzold. Programming Microsoft Windows with C#., 2002.
[MacDonald, 2008] M. MacDonald. Pro WPF in C# 2008 Windows Presentetion Foundation with .NET 3.5.

Authors’ Information

Volodymyr Ovsyak – Full Professor, Department of Electrical, Control and Computer
Engineering, University of Technology, Box: 31, Sosnkowskiego, Opole 45-272, Poland, e-mail:
ovsyak@rambler.ru

He specializes in theoretical and applied computer science, theory of algorithms, programming,
information systems, mathematical modeling

Krzysztof Latawiec – Full Professor, Department of Electrical, Control and Computer
Engineering, University of Technology, Box: 31, Sosnkowskiego, Opole 45-272, Poland, e-mail:
lata@po.opole.pl
His research interests concentrate on system identification, multivariable control, adaptive and
robust control (also in networks) and fractional systems.

Aleksandr Ovsyak – Phd. National University of Culture and Arts, The L’viv Campus, Box: 5,
Kuszewicza, L’viv, Ukraine; e-mail: : ovsjak@ukr.net
He specializes in theoretical and applied computer science, theory of algorithms, programming,
information systems, mathematical modeling of systems, computer simulation and mathematical
modeling.

mailto:ovsyak@rambler.ru

	KNOWLEDGE DISCOVERY & KNOWLEDGE-BASED SYSTEMS
	DATA MINING, KNOWLEDGE ACQUISITION
	NATURAL LANGUAGE PROCESSING
	AUTOMATED TRANSFORMATION OF ALGORITHMS
	INTELLIGENT AGENTS AND MULTI-AGENT SYSTEMS
	ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
	BUSINESS INTELLIGENCE SYSTEMS
	INTELLIGENT APPLICATIONS: MEDICAL AND DIAGNOSTIC SYSTEM
	MECHANICAL ENGINEERING
	
	3.1. Network Flow Operations over Network Objects
	3.2. Network Flow Operations over Network Objects
	3.3. Network Flow Methods for Natural Text Processing
	3.4. Navigating Networks of People and Associated Objects
	3.5. Hybrid Recommender System in the Activity Centric Environment Nepomuk-Simple
	4.1 Similarity of Two Sets of Nodes
	4.2 Retrieval of Similar Sets in a Collection
	Justyna Stasieńko – lecturer, The Institute of Technical Engineering, The Bronisław Markiewicz Higher State School of Technology and Economics, Czarnieckiego Street 16, 37-500 Jarosław, Poland; e-mail: justyna.stasienko@pwste.edu.pl

