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MODELLING AND CONTROL OF COMPUTATIONAL PROCESSES  
USING MAX-PLUS ALGEBRA 

Jerzy Raszka, Lech Jamroż  

Abstract: In this paper we propose a modelling technique for the control of computational processes. The Petri 
Net model, particularly a Timed Event Graph (TEG) can be used for analyzing. The proposed model enables the 
determination of state equations. The max-plus algebra represents linear algebraic form of discrete systems and 
supplies new tools to their modelling. We develop a linear mathematical model under constraints in the Max-plus 
algebra. When using max-plus algebra with TEG, the arc weights are kept equal to one in order to be able to 
resolve the state equations. Structure of max-plus algebra is equipped with maximization and addition operations 
over of the real numbers and minus infinity. It can be used appropriately to determine marking times within a 
given Petri net and a vector filled with marking state at the beginning. Tools of max-plus algebra are useful to 
investigate properties of network models. Finally, numerical examples show the use of this model. 
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Introduction 

Recent technological achievements require advances beyond the existing computational models in order to be 
used effectively. For example the Internet has progressed from a simple store-and-forward network to a more 
complex communication infrastructure. In order to meet demands on security, flexibility and performance, network 
traffic not only needs to be forwarded, but also processed on routers. Pragmatic aspects of current and future 
computer systems will be modelled so that realistic estimates of efficiency can be given for algorithms and 
controlling of computations in these new settings. Proposed methods deals with the performance evaluation of a 
communication infrastructure system in terms of waiting times of data and starting points of computing in various 
connections. The behaviour of a system is studied in the framework of discrete systems  
Discrete systems and specially discrete-event dynamical systems often arise in the context of parallel computing, 
manufacturing systems [Jamroż, Raszka 1997], for project management, railway networks [Goverde, Rob 2007], 
telecommunication networks, etc. In the last years there has been a growing quantity of research on discrete 
systems that can be modelled as max-plus linear systems. Most of the earlier literature on this class of systems 
set included modelling, performance and properties  analysis, rather than control [Bacceli, Cohen and alt. 1992], 
[Jamroż, Raszka 1997], [Nait-Sidi-Moh, Manier 2009]  and many others e.g. J. Bernd Heidergott, Geert Jan 
Olsder, Didier Dubois, Jean-Pierre Quadrat and Jacob van der Woude. Lately there are articles on control for 
max plus systems [Maia, Andrade 2011]  [Nait-Sidi-Moh, Manier 2009], [Schutter, Boom 2001]. 
Two possible operating modes of discrete systems can be observed at each operating: periodic and no periodic 
mode. Two complementary tools, Petri nets and (max, +) algebra, are used to describe the network by a linear 
state model. This one can be solved after solving the structural conflicts associated to the graphical 
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representation. From the characteristic matrix of the mathematical model, we may determine eigenvalues and 
eigenvectors that we use to evaluate the operations. 
 Petri nets (PN) [Murata 1989]  are very popular formalism for the analysis and representation of parallel and 
distributed  computing in concurrent systems that has draw much attention to modelling and verification of  this 
type of systems. P systems, also referred to as membrane systems [Gutuleac 2006], are a class of parallel and 
distributed computing   models [6]. The interest of relating P systems with the PN model of computation lead to 
several important   results on simulation and decidability issues. Some efforts have been made to simulate P 
systems with Petri nets to verifying the many useful behavioural properties such as reachability, boundedness,   
liveness, terminating, etc.      
 When considering processes from manufacturing or chemical engineering, their behaviour can often be 
adequately represented by a discrete event model accounting for the typically discrete sensor and actuator 
equipment of such processes.  In addition, the behaviour of these processes is often adequately described by a 
sequence of transitions between discrete process states. The focus of this contribution is on a particular class of 
such discrete event systems where synchronization and controlling of computational processes occurs. This 
system class has gained significant attention in recent years due to the fact that the sequences of event times for 
such processes can be described by equations which are linear in a particular algebra, the so called max–plus 
algebra [Bacceli Cohen 1992]. The resulting equations exhibit a structural equivalence to system descriptions 
from conventional control engineering such as transfer functions or state space models. 
Thus, a system theory for these max–plus–linear systems has been developed, and various concepts well known 
from control engineering have been adapted to this system class in control design and diagnosis. 
Sometimes for modelling Timed event graphs (TEG's) are a subclass of timed Petri nets which can be used for 
modelling Discrete Event Dynamic Systems (DEDS) subject to synchronisation phenomena as manufacturing 
systems, multiprocessor systems and especially transportation.  
In this paper, we propose a deterministic Petri net model for the computational system that can be considered as 
a discrete event system. Moreover, such DES can be easily modelled with a subclass of Petri net for evaluation 
purposes, we suggest then a TEG approach to model, analyse and control a computational process From this 
TEG model, we formulate a mathematical model based on the max-plus algebra. The behaviour of this DES can 
be described easily by a linear system in this algebra.  In the second part, we introduce model of computational 
process. The third part presents an overview of max algebra theory and the specific model will be analysed. In 
the last part we present the simulations results. 

Computational Processes 

When considering computational processes that allows event-driven applications to take advantage of 
multiprocessors by running code for event handlers in parallel. To obtain high performance, servers must overlap 
computation with I/O. Programs typically achieve this overlap using threads or events. Threaded programs 
typically process each request in a separate thread; when one thread blocks waiting for I/O, other threads can 
run. Event-based programs are structured as a collection of call-back functions which a main loop calls when I/O 
events occur. Threads provide an intuitive programming model, but require coordination of accesses by different 
threads to shared state, even on a uniprocessor. Event-based programs execute call-backs serially, so the 
programmer need not worry about concurrency control; however, event-based programs until now have been 
unable to take advantage of multiprocessors.  Much of the effort required to make existing event-driven programs 
take advantage of multiprocessors is in specifying which events may be handled in parallel.   
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As example in this paper is consider the simple problem of designing control of system where the cost is chosen 
such that it provides a trade off between minimizing delays of time of end of operations of computational process 
(real time of complete of all tasks in computational periodic process, times of final results of one cycle) and 
periodicity of desired output (wished needed time) to complete process  
 
 
 
 
 
 
 
Simple computational process consist several tasks which linked by the waiting for I/O data (Figure 1). To 
illustrate our approach, we consider here a process that is constituted by three tasks: Ts1, Ts2, Ts3 which run on 
three processors: P1, P2 and P3.  Every one of these tasks is operated on the dedicated processor.  Within this 
process circulate information flows in several directions; these can be processing data input/output and signal 
data. Outer input data are processed as a first task on the P1 and its output data have to be saved in the memory 
waiting to be processed. The second and third processors operate in the same way but they input data are as 
output results from the first and second processor respectively. Moreover tasks Ts1 and Ts2 need an extra outer 
data.  
The aim of this modelling is to evaluate command for the process according to pre-established criteria. For 
instance, to have a continuous computation (on processor P3, we have to prepare time for input data to other 
processors P1 and P2 also enough of memory to save an input, output and temporary data. A good schedule will 
allow maintaining a minimal costs and optimising the size of memory required.  

Petri Net Model 

Petri nets, a graph-oriented formalism, allow to model and analyze systems, which comprise properties such as 
concurrency and synchronization.  
A Petri net model of a dynamic system consists of two parts: net structure and marking. A net structure is a 
weighted-bipartite directed graph that represents the static part of the system. A marking is representing a 
distributed overall state on the structure. This separation allows one to reason on net based model at two levels - 
structural and behavioral.  
Net structure is built on two disjoint sets of objects: places and transitions, which are connected by arcs. In the 
graphical representation, places are drawn as circles, transitions are drawn as thin bars and arcs are drawn as 
arrows.  Places may contain tokens, which are drawn as dots. The vector representing in every place the number 
of tokens is the state of the Petri net and is referred to as its marking. This marking can be changed by the firing 
of the transitions.  A Petri nets do not include any notion of time are aimed to model only the logical behavior of 
systems. The introduction of a timing specification is essential if we want to use this class of model to consider 
performance problem. 
More formally timed Petri nets (TPN) are 5-tuples  [Murata 1989] :TPN= (P,T,F,M0,τ), where 
P=(p1,p2,...,pn),⏐P⏐≠0;  T=(t1,t2,...,tm), ⏐T⏐≠0 is a finite disjunct set of suitable places and transitions; M0: P→ N 
is the initial marking function which defines the initial number of tokens for every place. (N={0,1,...}); τ: T→ R+ is 

P1  
Ts1 

P2 
Ts2 

P3 
Ts3 

Fig. 1. Structure of the  process 
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the firing time function,  and F ⊂ (PxT) ∪ (TxP) is the set of arcs.  The problem evoked above can be modelled 
by a Petri Net (Figure 2).  
  
 
 
 
 
 
 
 
 
 
The net has three inputs u1, u2, and u3 and one output y.  The firing time u1, u2, and u3 are the start times of task 
Ts1, Ts2, Ts3 respectively. Finally, the ending time of the process is represented by the firing time of the 
transition y.  

Max-Plus Algebra 

Define 
The basic operations of the max-plus algebra [Bacceli Cohen 1992] are maximization and addition, which will be 
represented by ⊕ and ⊗ respectively: max( , )x y x y⊕ = and x y x y⊗ = + for , { }defx y ε∈ = ∪ −∞� �  
The reason for using these symbols is that there is a remarkable analogy between ⊕  and conventional addition, 
and between ⊗  and conventional multiplication: many concepts and properties from linear algebra (such as the 
Cayley-Hamilton theorem, eigenvectors  and eigenvalues, Cramer’s rule, ...) can be translated to the max-plus 
algebra by replacing + by ⊕ and × by ⊗ . Therefore, we also call ⊕  the max-plus-algebraic addition, and ⊗  
the max-plus-algebraic multiplication. Note however that one of the major differences between conventional 
algebra and max-plus algebra is that in general there do not exist inverse elements w.r.t.  ⊕  in ε� . The zero 

element for ⊕  is defε = −∞  we have a a aε ε⊕ = = + for all a ε∈ � . The structure ( , , )ε ⊕ ⊗� is called the 
max-plus algebra. 

Let  r ∈ �  The r-th max-plus-algebraic power of x ∈ � is denoted by 
r

x⊗ and corresponds to rx in conventional 

algebra. If r ∈ �  then 
0

0x⊗ =  and the inverse element of x w.r.t. ⊗ is 
1

x x⊗−
= − . There is no inverse 

element for ε  since ε  is absorbing for ⊗ . If r > 0 then 
r

ε ε⊗ = . If r < 0 then 
r

ε ⊗ is not defined. In this paper 

we have 
0

0ε ⊗ =  by definition. 
The rules for the order of evaluation of the max-plus algebraic operators correspond to those of conventional 
algebra. So max-plus-algebraic power has the highest priority, and max-plus-algebraic multiplication has a higher 
priority than max-plus-algebraic addition. 
Max-plus-algebraic matrix operations 

The basic max-plus-algebraic operations are extended to matrices as follows. If , m nA B ε
×∈ �  and  m pC ε

×∈ �  
then: 

 
Fig. 2. Timed Petri net for simulation of the system process 
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( ) max( , )ij ij ij ijij
A B a b a b⊕ = ⊕ =  

( )
1

max( , )
n

ij ij ik kiij kk
A C a b a b

=

⊗ = ⊗ =⊕  
 

for all i, j. Note the analogy with the definitions of matrix sum and product in conventional linear algebra. 

The matrix m nε ×  is the m×n  max-plus-algebraic zero matrix: ( )m n i j
εε × =  for all i, j; and the matrix nE   is 

the n×n max-plus-algebraic identity matrix:  ( ) 0n i i
E =  for all i and ( )n i j

E ε=   i, j with i ≠ j. If the size of the 

max-plus-algebraic identity matrix or the max-plus-algebraic zero matrix is not specified, it should be clear from 

the context. The max-plus-algebraic matrix power of n nA ε
×∈ �  is defined as follows: 

0
nA E⊗ =  and 

1k k
A A A⊗ ⊗ −

= ⊗ for k = 1,2, . . . 

Model of processes 

Investigation 
The intend of this study is to show that, and discuss how, the process satisfying the above assumptions can be 
modelled in max-plus algebra, to determine the input vector u(k) for knowing values of y(k), evaluate the error 
between real and desired output and estimate cost of the resources.  
Let u(k) = [ul , u2, u3 ]T the input vector, x(k) = [xl , x2 , x3 ]T the state vector and y(k) the model output. For each 
transition xi, and ui is associated an indicator xi(k) and ui(k) responsibly, which corresponds to the steps of the k’th 
firing of transition xj (resp. uj), and in the same way we have y(k). The state system in the max plus algebra is 
follow:  

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 22 2 1 1

2 21 1

3 2 3

1 1

1

 

   

   

x k t u k u k t x k t x k

x k t x k

x k x k u k y k

= ⊗ ⊕ ⊕ ⊗ − ⊕ ⊗ −

= ⊗

= ⊕ ⊕ −

  

For example the k’th firing of transition x1 (when start Ts1), must wait of t1 units of time until that the k’th input data 
u1 for task Ts1 is ready and k’th input data u2 is given. Then, the linear equation of evolution in ε�  of this discrete 
event dynamic system is as follows:  

0 1 0 01 1( ) ( ) ( - ) ( ) ( - )x k A x k A x k B u k D y k= ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗   (1) 

Where 

1 22 1

0 21 1 0 0

ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=  ,  =  =  =, , .
t t t e

A t A B D
e e e

 
 

A solution of (1), is  

0 1 0 01 1*( ) ( ( - ) ( ) ( ))x k A A x k B u k D y k= ⊗ ⊗ ⊕ ⊗ ⊕ ⊗ −   

Where  
2 3

0 0 0 0
* ...A E A A A⊕ ⊕ ⊕=    
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22

0 21 0 1 22 21

21 22 21

* *, .
e t

A t e A A A t t
t e e t t

ε ε ε ε
ε ε ε

ε ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⊗ = ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗⎣ ⎦ ⎣ ⎦

       

1

0 0 1 21 21 0 0

1 21 21

* *, .
t e

B A B t t t D A D
t t t e e

ε ε
ε ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⊗ = ⊗ = ⊗ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗⎣ ⎦ ⎣ ⎦

          

Then, the model becomes:  
1 1( ) ( - ) ( ) ( ))x k A x k B u k D y k= ⊗ ⊕ ⊗ ⊕ ⊗ −   (2) 

By recurrence we obtain the expression:  
1

1 1 1
0 0 0

2 1
1( ) ( ) ( ) ( )

k k
k k k i

i i
x k A x A B u i A D y i

−
− − − −

= =

= ⊗ ⊕ ⊗ ⊗ ⊕ ⊗ ⊗∑ ∑     (3) 

To determine the command for the process, we have to define at first the whole order-l model, which describes its 
global behaviour:  

[ ]
[ ]

1 2 3

1 2 3

1 1

1 1 1 1

1 1 1 1

( ) ( - ) ( ) ( ) )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x k A x k B u k D y k
y k C x k

u u u u

x x x x

= ⊗ ⊕ ⊗ ⊕ ⊗ −⎧
⎪ = ⊗⎪
⎨ =⎪
⎪ =⎩

T

T

  

   (4) 

Where [ ]3C tε ε=  , 1( )u and  1( )x  are the initial conditions that we are going to determine below.  

Initials conditions  
To respect the previous assumptions, we determine the initial values of 1( )u and 1( )x  according to the end   
process y(1).  We suppose that initially there is at least one freight vehicle ready for departure:  

( ) ( ) ( ) ( )1 21 3 1 21 3 2 3 31 1 1 1 y t t t u t t u t u= ⊗ ⊗ ⊗ = ⊗ ⊗ = ⊗   

Then the initial control is:  

1 1 22 3

2 22 3

3 1 22 3

1 1
1 1
1 1

( ) ( ) ( )
( ) ( ) ( ) .
( ) ( ) ( )

u y t t t
u y t t
u y t t t

φ
φ

φ

⊗ ⊗⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗ ⊗⎣ ⎦ ⎣ ⎦

   (5)  

Where  “φ ” means “–“, in ε� . 

Consequently, the initial value of the state vector is  

1 1 1

2 21 2

3 3

1 1
1 1
1 1

( ) ( )
( ) ( ) .
( ) ( )

x t u
x t u
x u

⊗⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (6)  

These two initial vectors mean that, if the task Ts1 begins for instance at t = 0, t1 units time later, the data for task 
Ts2 (u2) is need be prepared and this task begins. This ensures a good starting up without delay for the evolution 
of the model.  
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Procedure  
As indicated first, the network operates under a schedule defined for final result; according to this schedule we 
find the suitable inputs of the model. We formulate the model output more explicitly as:  

1
1 1 1

0 0 0
2 1

1( ) ( ) ( ) ( )
k k

k k k i

i i
y k C A x C A B u i C A D y i

−
− − − −

= =

= ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗∑ ∑    (7) 

or 
1

1 1 1
0 0 0

2 3
1( ) max { ( ), ( ), ( )

k k
k k k i

i i
y k C A x C A B u i C A D y i

−
− − − −

= =

≥ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∑ ∑     

which is equivalent to: 
1

0 1( ) ( )ky k C A x−≥ ⊗ ⊗  (8) 

1
0

2
( ) ( )

k
k

i
y k C A B u i−

=

≥ ⊗ ⊗ ⊗∑   (9) 

1
1

3
( ) ( )

k
k i

i
y k C A D y i

−
− −

=

≥ ⊗ ⊗ ⊗∑    (10) 

We are interested rather in the second in equation (9) that we transform on its equation form:  

1

2
( ) ( )

k
k

i
y k C A B u i−

=

= ⊗ ⊗ ⊗∑   (11) 

It is straightforward now that from (11) we can formulate the command u(k) for process if the values of the output 
y(k) are known. For all the rest y(k) will be the desired of the final result.  
For k = 2, 3, 4,...:  

2 2( ) ( )y C B u= ⊗ ⊗   
13 2 3( ) ( ) ( )y C A B u C B u= ⊗ ⊗ ⊗ ⊕ ⊗ ⊗   (12) 

2 14 2 3 4( ) ( ) ( ) ( )y C A B u C A B u C B u= ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗     

. . .  
Since our aim is to compute u(k) for specified y(k), we have to solve the following equation:  

( ) ( )y k C B u k= ⊗ ⊗  (13) 

For example, to calculate u(2), a solution of 2 2( ) ( )y C B u≥ ⊗ ⊗ , we resolve its equation form (12) and we 
keep its smallest solution to be sure that it is verifies also the in equation. Note here that we proceed by a 
simplification of the terms such 2 12 1" ( ) .... ( )"C A B u C A B u k⊗ ⊗ ⊗ ⊗ ⊗ ⊗ −   in the expression of y(k). 
Indeed, these terms constitute the first condition of the desired output y(k). More explicitly, if we consider that all 
expression y(k) are equal to ( )C B u k⊗ ⊗ , we must then assure that:  

2 12 1⊗ ⊗ ⊗ ⊕ ⊕ ⊗ ⊗ ⊗ − ≤ ⊗ ⊗   ( ) ... ( ) ( )C A B u C A B u k C B u k   

Which means that we must have? 

  ( ) ( ) ( ) ( )1 21 3 1 21 3 2 3 31 1 1    y k t t t u k t t u k t u k≥ ⊗ ⊗ ⊗ − ⊕ ⊗ ⊗ − ⊕ ⊗ −  
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Periodic processing  
We assumed that we wish the output of final results of the process be once every time interval Tc. We shall see 
later how the network reacts according of various value of Tc.  

Let ( ) 0( )k
Cy k T y≥ ⊗   where CT  is the periodicity of desired output. We use in our computations this condition 

in the following form:  

( ) ( ) ( )1 21 3 1 21 3 2 3 31 1 1 max( ,  , ) /CT t t t u k t t u k t u k k≥ + + + − + + − + −   

Solve the equations (11) and determine the control vector as follows:  
2 3 1 1 2 3,( ) ( ) ( ) ; , ,...; , , .j i ju k y k C B k i and jφ= ⊗ = = =   

Where: 

[ ] [ ]
1

3 1 21 21 1 21 3 21 3 3

1 21 21

t e
C B t t t t t t t t t t

t t t e

ε
ε ε ε

⎡ ⎤
⎢ ⎥⊗ = ⊗ ⊗ = ⊗ ⊗ ⊗⎢ ⎥
⎢ ⎥⊗⎣ ⎦

      

More explicitly, for every / {1}k N∈ , the general solutions are:  

1 1 1

2 1 2

3 1 3

,

,

,

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

u k y k C B
u k y k C B
u k y k C B

φ

φ

φ

= ⊗

= ⊗

= ⊗

 (14) 

These equations determine the appropriate control of the modelled process. On the other hand, (8) and (10) 
contain two constraints for the desired outputs of the system. While TC is the periodicity of these outputs, 

( ) 1( )k k
C Cy k T y T≥ ⊗ =  the first constraint which ensues from (8) is:  

( ) 1 1
3 1 21 21 1C ( ) or  ( ) ( )k k k k

C Cy k T A x T t t t x− −= ≥ ⊗ ⊗ ≥ ⊗ ⊗ ⊗   

In practice, 2 1 21 21 1 ( ( )( ) ( )) /CT t t t k x k≥ + + − + means that periodicity must be superior at certain value in 
order to have a good control.  
The second constraint of TC  becomes from (10):  

1
1

3
( ) ( )

k
k k i

C
i

y k T C A D y i
−

− −

=

= ≥ ⊗ ⊗ ⊗∑   , this constraint is verified all time since the product 1− −⊗ ⊗ k iC A D  

is null.  To conclude this section we describe the preceding steps in the following algorithm:   
1- Determine the state equations in max plus algebra as (4).  
2- Calculate the global recurrence equation of the linear evolution of the system.  
3- Determine initials conditions.  
4- Calculate constraints of desired model output.  
5- Calculate control vector using max plus algebra operations.  

Simulation and Results 

For the simulation of the model of process we use a fixed interval TC for desired outputs, we have then: 
( ) ( )1 2 3; , ,...Cy k y k T k= − ⊗ = .Using (14), we can compute the vectors u(k) and we consider the initial 

values. Interested to the state of the places C12, C23 (Figure 2) which represents intermediate buffered data and 
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cost of its maximal length and calculate the error between wished outputs and real outputs. Figures 3 - 6 show 
time evolution interpolated values of count of processes - particularly finished  last tasks of following processes 
and generated input tasks appointed by signs blue  ▼ and red   ●  respectively. 
All the following examples results are obtained for various values of TC and  t1  (time of operations of task Ts1). In 
first example, computations have periodicity equal to 10. This value is enough large to contain all tasks of process 
and no error between wished and real outputs occur. Some differences in the following examples, can be 
reduced only by increasing resources - processors and / or memory units. Figures 8 and 9 show the time 
dependence of markers in places that represent changes in the allocation of memory (buffers).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 

Engineers who build discrete event systems have to confront dynamical problems as a matter of course. For the 
most part, they have had little mathematical support to do this, despite the considerable understanding of 
dynamical systems arising from classical methods. This article proposed and introduced max plus algebra - a 
new methodology which used to modelling and simulating discrete event processes.  A control of tasks of process 
on simple multi-processors computational system is using as an example.  This is only a part of the carried out 
studies, which require additional testing and even wider range of experience, especially practical applications. 
Further more, have to develop a way to control this processes and studied conditions for periodicity of the 
required results. An other research will include the application to larger models and improvements of the 

 
Fig. 3. TC=10 , t1 = 3 

 
Fig. 4.  TC=15 and t1=3 

 
Fig. 6.  TC=10 and t1=13 

 
Fig. 5. TC=5 and t1=3 

 
Fig. 8. TC=10 and t1=3, Places P7,   ▼  P8, ● 

  
Fig. 7. TC=7, Places P7,   ▼  P8, ● 
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optimisation procedure with respect to its efficiency. Specially topic for future research include all over methods of 
designing, synthesis controls of processes with output and/or state feedback and using models of predictive and 
adaptive control. 
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