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MACROMODELING FOR VLSI PHYSICAL DESIGN AUTOMATION PROBLEMS 
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Abstract: The paper summarizes the authors methodology for solving the intractable combinatorial problems in 
physical design of electronic devices: VLSI, SOC, PCB and other.  The Optimal Circuit Reduction (OCR) method 
has proved to be an efficient and effective tool to identify the hierarchical clusters’ circuit structure. The authors 
review the applicability of this method for solving of some problems, including hierarchical clustering, partitioning, 
packaging, and placement. Developed approach based on multilevel decomposition with the recursive use of 
global and local optimization algorithms at it every level for unique, not very large size subproblems. At every step 
we receive some initial solutions which are improved by optimization algorithms. Experiments confirm the 
efficiency of developed approaches. For some well-known test cases the optimal results were achieved for the 
first time, while for many other cases improved results were obtained. 
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Introduction 

Many of the most difficult in Design Automation are intractable combinatorial problems. They appear in physical 
design – partitioning, packaging, placement, routing as well as testing and other areas. Optimization are 
especially important for VLSI, SoC and PCB design. Rapid growth of electronic circuit complexity requires a 
further search for new robust, efficient and effective approaches to solve them with high quality. From mathematic 
point of view they belong to the very large-scale intractable combinatorial NP-class problems – nowadays chips 
have a few billions of transistors.  
Many of these problems have identical input data. The ideas to solve the large-scale problems are to transfer the 
full mathematical model to the aggregate mathematical notation that could significantly decrease the number of 
arguments and to operate by the not very large number of hierarchically built macromodels instead of original 
elements, the number of which is extraordinarily high. This enables us, to decrease the size of the problem in 
every step of decision making, to reduce the calculation consumption, to improve the quality of solution, as well 
as to easier trap into the zone of the global optimum. Basic approaches and algorithms were developed for 

• hierarchical circuit clustering:  
- free clustering,  
- partially enforced clustering, 
- enforced clustering; 

• partitioning and decomposition :  
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- serial, parallel-serial and dichotomy partitioning, 
- initial partitioning, 
- partitioning optimization; 

• packaging: 
- serial and parallel-serial packaging, 
- initial packaging, 
- packaging optimization; 

• placement:  
- hierarchical initial placement by multilevel macromodels, 
- multilevel placement optimization by scanning area method with macromodels. 

For these problems also were developed special algorithms for escaping from the local extreme.  
The proposed algorithms have such properties: 

- can be efficient for choosing the appropriate number of partitions to divide the circuit; 
- arbitrary division ratio can be chosen for partitioning; 
- many same procedures can be used for initial solution and their optimization; 
- close to linear computational complexity; 
- provide good quality of solutions; 
- are appropriate for large and very large-scale problems. 

Most likely, the first proposal to use the free hierarchical clustering for partitioning was in [Bazylevych, 1975]. It 
was further developed in [Bazylevych, 1981] and used for packaging and placement [Bazylevych, 2000, 2002, 
2007] with good results. More lately hierarchical clustering, especially enforced, was used for hyper graph 
partitioning [Garbers, 1990], [Cong, 1993], [Dutt, 1996], [Karypis, 1997], [Saab, 2000] and for others problems.  
For all test cases investigated, the results are not worse, and in many cases they are better comparatively with 
obtained by other known methods. For some cases, the optimal results were received for the first time.  

Main stages for solving the problems by hierarchical clustering 

For solving the large-scale intractable combinatorial problems at the first step we must perform aggregation. We 
divide large problems into the set of small ones that are simulated by macromodels. Every macromodel include 
the fixed number of initial circuit elements. The number of macromodels in aggregated circuit is also very 
important. It is possible to create multilevel model in such way that the number of macromodels and numbers of 
their elements at very level of decomposition must be not very large to receive good quality solution. We build 
multilevel system of hierarchically built macromodels. In such system every subproblem could be solved with the 
high quality for not large CPU time. The main decisions that we must make in such approach are: 

- how to chose the number of elements of basic subproblems that we can  solve with high quality in a 
reasonable running time, 

- what must be the number of level in macromodeling, 
- what method is desirable to use for solving the basic subproblems, 
- how merge the partial solutions of subproblems into one solution of whole problem, 
- do we need to use additional optimization (refinement) algorithms or not, 
- how to escape from the local extreme at every level of macromodeling ?  

One of the first problems that appear here is to create the hierarchical macromodel of initial system. Thereto we 
must receive multilevel aggregation of circuit.  One way is to reveal hierarchical built clusters. For this reason it is 
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possible in electrical system to use the Optimal Circuit Reduction method [Bazylevych, 1975, 1981]. By this 
method the problem solving is divided into the following steps (Figure 1): 

- the bottom-up free hierarchical circuit clustering; 
- the mathematical description of clusters by macromodels; 
- the top-down multilevel solving with receiving global initial solutions and theirs local optimizations with 
  macromodels at every level of decomposition.  

Fig. 1. Bottom-up (left arrows) hierarchical clustering and top-down (right arrows) problem solving 

   The main feathers of developed approach are: 
- the problem size as a whole (the number of variables) increases  step by step during the solution 

process from substantially reduced, initially (level 1) to real (level k); 
- the number of tasks which are to be solved increases on each recursive level. However, all of them 

would be not large, and are properly hierarchically inserted one into the other, and thus can be solved by 
the same basic procedure with high quality. 

The idea was to operate not by original elements, the number of which is extraordinarily high, but by the 
hierarchically built clusters of arbitrary sizes (not large) that could be mathematically described by macromodels. 
The (k+1)-level (Figure 1) shows that simulating the problem by 0-1 models (binary programming) will significantly 
increase the number of variables. This case can not simplify the problem solving. 
This enables us:  

- to essentially decrease the size of the problem, facilitating a solution and reducing the calculation 
consumption, the large size problem is reduced to recursive solving of small unique tasks; 

- to improve the quality of the solution by more easier trapping into the zone of the global optimum. The 
number of local extrema is significantly smaller.  

The Optimal Circuit Reduction Method   

The Optimal Circuit Reduction (OCR) method builds the Optimal Reduction Tree TR (Figure 2). It is a rooted 
(generally n-ary) tree which leaves (level 1) correspond to the set P = {p1 , … , pn } of  circuit elements and a root 
(level H)  - to all aggregated circuit.  

 
k-1 k k+1 
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Fig. 2. The Optimal Reduction Tree 

The main steps of TR generation are: 
- consider the set Ci  of all clusters in the level i. At the first level  we consider a set of all initial elements 

P = {p1 , … , pn }; 
- form a set for all pairs of adjacent clusters for every cluster of the set Ci; 
- calculate the merging criterion values for all pairs of adjacent clusters; 
- create the ordered list L(η) of pairs of adjacent clusters by the chosen merging criterion; 
- form the new set Ci +1 of clusters of the (i + 1)-th level. There are several possibilities. In the best case - 

free clustering - we merge only the maximum number of independent pairs of adjacent clusters with the 
best value of the merging criterion. It could cause a large tree’s height and consequently takes a lot of 
CPU time. The one possible way to reduce the running time is to take all independent pairs with ε given 
decreasing (increasing) of the best criterion value. The second way is to merge the first λ of all possible 
independent pairs, where λ (0 < λ ≤ 1) - is a reduction parameter. It is partially enforced clustering. In 
the last case when λ = 1 we merge all clusters. It is enforced clustering. Here a height of the ORT is a 
minimal and therefore it takes the minimal running time but results could be worse. This case 
corresponds to the enforced circuit reduction that might not generate good natural clusters, because at 
every level we must merge together some clusters that do not have good criterion’s value; 

- form the new (i + 1)-th level of the tree TR by including a set of the new clusters, defined by merging and 
the rest clusters from the previous level that are not merged. 

We must draw attention that we do not have to build binary Reduction Tree obviously. If, for example, one 
element creates two or more pairs with the same criterion’s value, it is possible to join three or more elements 
together at one step. It reduces the height of tree and, of course, the CPU time. It is not easy to choose the 
criteria for clusters merging to receive the best clusters. There are many possible merging criteria. The main of 
them are: 

- maximization the full number of the internal clusters’ nets; 
- minimization the full number of the external clusters’ nets; 
- maximization the full number of the subtraction of the of internal and external nets.  

H-1 
H-2 
i 
i-1 
3 
2 
1 

H 
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Fig.3. Circuit size vs time for TR  building 

There are possibilities of exploiting the various mixed merging criteria with the weight coefficients for the 
individual nets, the element numbers, the sizes of clusters, the time delay, etc. Very important is also the 
dependency circuit size vs time. As our experiments show, this dependency is close to linear by using the OCR 
method (Figure 3). Experiments are conducted with the library of the IBM01-IBM18 [Alpert, 1998].                                                       
   Figure 4 shows the example of the Reduction Tree TR and the dependency of the cluster external nets‘number 
vs reduction steps starting from element 11 for some circuit with 17 elements. It can help to receive the better 
dividing the circuit into partitions. The cutting χ8 at eighth level shows that partitions (1, 2, 3, 4, 5, 6, 6, 7, 8, 9. 10) 
and (11, 12, 13, 14, 15,16, 17) create the minimal cut with 5 nets. Other cuttings have more external nets. No 
other partitioning method has such possibility.  

 
Fig. 4. Example of the Reduction Tree and the diagram dependency 

of the external nets clusters’ number vs reduction steps    

Partitioning 

   It is necessary to obtain the partitioning P* = {P1 , … , Pk } for the set of elements P = {p1 , … , pn } so that the 
quality function is optimized: 

 Q(P*  ) → opt Q ( )P~ ,   P~ ∈   D,  

while satisfying such or some other constraints: 

(∀ Pi, Pj ∈ P* ) [|Pi | ≈ |Pj  |]. 
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   Set P~ is the arbitrary partitioning in the feasible region D, k – the number of partitions. The solution should 
also satisfy the following additional conditions: 

(∀  Pi∈   P* ) [Pi  = { pi1 ,…, pini }, pij ∈   P ; i = 1, ... , k;  j =1, … , ni ]; 

(∀ Pi∈   P* )(Pi ≠ ∅ );  

(∀ (Pi ,Pj ) ∈   P* )[Pi ∩  Pj = ∅ ]. 
The ni  is the number of elements of i-th partition.  
   By the OCR method we recommend to solve partitioning problem in the two stages: initial partitioning and 
partitioning optimization.  
Initial partitioning  
   Using the constructive method, it is desirable to find an initial solution at the first stage, which must be improved 
by the iterative method at the second stage. The important peculiarity of the approach developed is that it is 
recommended to use the hierarchical circuit clustering, obtained by the OCR method at the both stages. For initial 
partitioning it is possible to use following algorithms: serial, parallel-serial, and dichotomy. 
   By the serial algorithm on the Reduction Tree TR the vertex is found, whose number of elements is equal to or 
greater than the desired value. If the number of elements is what we desire, we create the first partition and move 
forward to the next partitions. If this number is greater then desired, the problem is to remove the necessary 
number of elements. The problem recursively continues to final solution.  
 

Fig. 5. Cuts in the Reduction Tree 

   Any cut of the Reduction Tree TR  by an arbitrary line forms subtrees (forest), the set of initial vertices (leaves) of 
each subtree can be considered as the set of elements of a single partition. For example, cut χ1  at the Figure 5 
can be used when it is necessary to split the circuits into the minimum number of partitions with a number of 
elements not greater than 2. Seven partitions are formed directly. The five elements remain ungrouped. For their 
assignment it is possible to construct the Reduction Tree in the subsequent repetition, and so on until the 
completion the problem. Cut χ2 creates the three groups for three elements. To form the remaining partitions it is 
necessary to continue the process as in the previous case. Cut χ3 gives good initial solution for three partitions 
(with 6, 5 and 8 elements). The first subcircuit can be directly incorporated into the solution as one partition, and 
then it would be necessary to transfer one element from the third to the second subcircuit. We obtain the 
partitions with 6, 6 and 7 elements. Cut χ4 dived the circuit into two partitions with 6 and 13 elements. For 
receiving two approximately equal partitions we need to transfer three elements from larger partition into smaller 
one.   
   Dichotomy algorithm performs the top-down circuit division with constraint on the number of elements that 
should be equally divided to the desired number of elements at one partition. In the first step we consider the two 
highest vertices. This determines the number of possible partitions that can be formed from each vertex and the 

χ 4 

χ 3 

χ 1 

χ 2 
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number of elements in the remainders. The next step is to transfer the remaining elements from one piece to the 
other in the optimal way. The problem is reduced to the two new problems of the same type but of lesser size. In 
both cases, we use identical procedures to transfer the small number of elements from one piece to another, 
procedures which are performed recursively on the sets that decrease from the step to the step. 
Partitioning optimization 

For partitioning optimization at the first step we build the separate ORT for two partitions TR1, TR2 and use the 
following procedures: 

- P1. The exchange: arbitrary element from one partition and arbitrary element (cluster) of other partition. 
- P2. The exchange: arbitrary clusters between two partitions. 
- P3. The exchange: arbitrary sets of clusters between two partitions. 
- P4. The transference: arbitrary element (cluster) from one partition to another. 
- P5. The transference: arbitrary set of clusters and elements from one partition to another. 

Fig. 6.  Procedures for partitioning optimization 

  
Some experimental bipartition 
results of test-case IBM01 
[Alpert, 1998] by using our 
approach are shown at Table 1. 
For 100 randomly generated 
initial solutions we perform 
optimization. For escaping from 
the local extreme we use the 
perturbations by replacing 
clusters with the smallest value 
of the solution’s worsening. The 
number of such perturbation is 
presented at the first column. For all initial solution we received the cut with180 nets that we think it is an optimal 
result (our conjecture), as was received from other investigators by using another approaches [Karypis, 1997], 
[Saab, 2000]. Forth column shows the number of the best solutions that were received for all randomly generated 
initial solutions. The fifth-eighth columns show the numbers of solutions that have 1, 2, 5 and 10 % deviation from 
the best solution. Last columns show the average solution, average number of iteration and average runtime.  

Packaging 

Table 1. Partitioning results for IBM 01 
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   It is necessary to obtain the partitioning P* = {P1 , … , Pk } for the set of elements P = { p1 , … , pn } so that the 
total number of partitions is minimized: 

 k → min ,  

while satisfying the given constraints: 

 ( ∀ Pi ∈   P* ) [( ni  ≤  ni max ) & (mi
ex ≤  mi max

ex)] . 

Here ni and mi ex are the numbers of elements and external nets (IO terminals) in each partition Pi that can not 
exceed the upper bounds ni max   and mi maxe. It should also satisfy the same additional constraints as for 
partitioning.  

  By the OCR method we also recommend to solve the packaging problem in two stages: initial packaging and 
packaging optimization.  

Initial packaging 

   The algorithm begins to operate on the cluster of the Reduction Tree TR, which appears first in violation of the 
constraint on the number of elements. From this cluster we form the first partition with as many as possible 
elements without violation on constraint on the number of external nets. Two strategies are used: to remove the 
minimal number of elements and to identify the best 
cluster without violation on constraints. The next 
step consists of the addition of the maximum 
number of elements. The experiments reveal the 
advantage of simultaneous combination of both 
strategies that perform iterative removal and addition 
of elements and clusters. The partitions separated 
first have a good density; but the final ones – bad. 
This is caused first of all by the “greedy” partitioning 
by serial strategy. As a result, the number of 
partitions can be greater than the optimal.  

Packaging optimization   

   The partitions with the number of elements lesser 
than the constraint merge into one or several without 
violating it. The next step is the optimization on the 
set of all partitions that allows to increase the 
number of elements, but not to exceed of constraints 
on the first group of partitions, which were not 
subject for merging. Often such optimization 
substantially decreases the number of external nets 
of final partitions up to the desired value. If this is 
impossible to obtain, then the new final partition is divided into two smaller ones.   The first partition should be 
without violations on constraints; the second may exhibit the violation on the number of external nets, if it is not 
possible to create it without violation, and so forth, up to the completion of the problem. 

Table 2:  Packaging Results for FPGAs 
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C3540 373 569 6 6 8 6 6 
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b) with 320 CLB and 144 IO (Xilinx XC3090) 
s15850 842 1265 4 3 4 3 3 

s13207 915 1377 7 6 6 4 3 

s38417 2221 3216 12 10 10 8 7 

s38584 2904 3884 17 14 14 10 10 
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  The experiments confirm the high efficiency of this approach on the set of some well-known test-cases. We 
merged only 20% of the better independent pairs at the every level of the Reduction Tree TR generation. The test 
results (#FPGAs) are shown at the Tables 2. We used the 64 CLBs and 58 IOs constraints (FPGA Xilinx XC2064) 
for the tests with Table 2 and 320 CLBs and 144 IOs (FPGA Xilinx XC3090) for the tests with Table 3. As one 
could see from the tables the obtained results are not worse, and in the 5 cases from 12 they are the best among 
the known and are optimal. If our results are not being theoretically optimal, they are close to the optimal 
solutions and differ from them minimally, i.e. only by one partition (circuits c5315, s13207, and s38417) or two 
partitions (circuit c2670).      

Floorplanning and placement 

   Combined hierarchical clustering and decomposition can be used for floor planning and placement. Such an 
approach is especially effective for large and very large-scale problems. The problem is solved in several stages:  

- the bottom-up free hierarchical circuit clustering;  
- the mathematical description of clusters by macro models at every level of decomposition;  
- top-down multilevel placement with global and local optimization at every level of decomposition by 

using macromedels. 

Fig. 7.  Bottom-up hierarchical circuit clustering (a) and top-down  3-level of decomposition for Steinberg test-case 

   Figures 7 and 8 show the results of exploiting the developed approach for the Steinberg placement test-case 
[Steinberg, 1961].  For the first step (a) we build the ORT, for the next (b) – the tree level of decomposition (with 
4, 16  macro models and 34 initial elements at the lowest level). At every level of decomposition we received 
some initial solution and performed it optimization using macro models (Figure 8 a, b and c) by Scanning-area 
method [Bazylevych, 1981, 1997]. We got the results of Le = 4119,7 (the summary length of all connections with 
the Euclidian metric), which is the best comparatively with the other known solutions. 
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                                                             Le = 4119,7 

 D4 D2 B4 B1  31 30 29 28 15 1 9 16 

D B D3 D1 B3 B2 
 

33 34 32 19 20 7 10 18 17 

C A 

 

C3 C4 A3 A2 22 21 23 14 12 13 4 8 2 

 C1 C2 A4 A1 
 

24 25 26 27 11 6 5 3  

    a              b                                                    c 
Fig. 8.  Multilevel placement for Steinberg test-case 

Conclusions 

   Hierarchical circuit clustering is a good precondition for solving the physical design problems of large and very 
large-scale electronic devices - VLSI, SOC and for PCB. For hierarchical clustering we developed the OCR 
method. Basic algorithms were proposed for partitioning, packaging, floorplanning and placement problems. They 
were used to obtain the initial solutions with not very large number of macromodels, as well as for their 
optimization. The proposed algorithms have some new properties, for example, they can be efficient in choosing 
the most appropriate number of partitions into which it is necessary to divide the circuit; arbitrary division 
coefficient can be chosen for partitioning; the same procedures can be used for initial solution and their 
optimization. The suggested algorithms have near linear computational complexity and provide good quality of 
results. For all test-cases investigated, the results are not worse, and in many cases they are better 
comparatively with obtained by other known methods. For some cases, the optimal results were received for the 
first time. 
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