
Artificial Intelligence Applications to Business and Engineering Domains

39

Bibliography

[Markuszewski, 2011] T. Markuszewski. The model of the system for algorithm formula transformations, In: Measurement
Automation and Monitoring, no 02/2011, pp. 201 – 204

[Owsiak, 2005] W.Owsiak, A.Owsiak, J.Owsiak. Teoria algorytmów abstrakcyjnych i modelowanie matematyczne systemów
informacyjnych. – Opole: Politechnika Opolska, 2005. – 275 s.

Authors' Information

Magdalena Niziołek – Opole University of Technology, Faculty of Electrical, Control and
Computer Engineering, ul. Sosnkowskiego 5, 45-271 Opole, Poland; e-mail:
m.niziolek@doktorant.po.opole.pl

Major Fields of Scientific Research: programming, theory of algorithms,

Volodymyr Ovsyak – Opole University of Technology, Opole, Poland and Ukrainian University
of Printing, L’vov , Ukraine ; ovsyak@rambler.ru

Major Fields of Scientific Research:Theoretical and applied computer science, theory of
algorithms, programming, information systems, mathematical modeling.

THE COMPUTER PROCESS OF OPTIMIZATION ALGORITHMS FORMULAS

Tomasz Markuszewski

Abstract: This paper presents a model of a computerized system to optimize formulas of algorithms. For this
purpose the algebra of algorithms. The computer process optimization formula of algorithm is very complex, and
were decomposed to simplify. The new model described in form of formulas algorithms, and contains variables,
function uniterms. The variables are used for storing interim and final data used in the optimization process.
Functional unierms are initiating variables, checking the possibility of optimization by introducing an additional
condition, optimizing single operation algorithm algebra, and for all algorithms operations algebra with introducing
an additional condition method. The built effect of the model is its simplicity. The primary benefit of
implementation a model is to protect transformation formulas of algorithms.

Keywords: algebra, formula, algorithm, transformation, optimization, model, decomposition.

ITHEA

40

Introduction

Algebra algorithms can write algorithms in the form of mathematical expressions called formulas [Ovsyak, 2005].
These formulas it's possible to transformed into a less complex (optimal) form by using the operations properties
of the algebra algorithms. Appling algebra [Ovsyak, 2005, 2008] allows for the creation of a computerized system
to optimize formulas algorithms [Markuszewski, 2010, Ovsyak, 2011]. The model of computerized optimization
algorithms formulas is presented in the expresions algorithm algebra, and contains submodels: @Gi – generating
indexes xml – description of the formula algorithm [Petzold, 2002], @Bo – supporting the optimization submodels:
@S – sequencing operation; @E – elimination operation; @P – paralleling operation; @C – cyclic sequencing,
cyclic elimination and cyclic paralleling operations; @R – inverting operation; @Eo – means the optimization
subsystem by introducing an additional condition; ~I – subsystem that provides the necessary data. The order
calls the subsystems of computer system optimization formulas algebra algorithms is presented in expression (1),
and contained in @Lo subsystem

Many processes to optimize the operation of formulas according to the properties of algebra of algorithms, and
optimization by introducing an additional condition, causing great difficulty in the induction of optimization. For this
reason the model is very complex and complicated, it is necessary to simplify the decomposition.

Intuitive Explanation Of Operations

The created a model shown in expression (2) contains variables used to store data, x – processed xml –

description of the formula algorithm, xi – variable of subsystem generating indexes (index or trackway is a string

indicating the xml fragments description of the formula, a record (xi @Gi) – the creating variable xi Gi subsystem,

ac – optimizes formulas by introducing an additional condition, i1, i2 – provides access to data necessary for

process optimization (the mark (~) indicates the sharing subsystem i1,i2), o – an array with variables subsystems

optimization and created functional uniterms making the process of optimization, loop – contains information on

whether the repeated optimization, isAddO – stores information on whether it is possible to optimize by the

introduction of an additional condition methods, and function uniterms: InitOp() – setting the initial values of

variables, ChkAddC() – checking the possibility of introducing an additional condition, OneOp() – making the

optimization for single operation algorithm algebra and Optima() – performing a full optimization for all operations

with optimization formulas by introducing an additional condition.

(1)

Artificial Intelligence Applications to Business and Engineering Domains

41

where: @xmld – name of standard subsystem XmlDocument [Petzold, 2002, MacDonald, 2008], @bool –

abbreviated name of standard subsystem bool .

The functional uniterm initialing variables

Function uniterm expressed in formula (3) contains the input parameters for entering, ss – the entire text xml –

description of the algorithm formula (@str – means standard subsystem string [Ovsyak, 2008, MacDonald, 2008])

and mode – how to enter an additional condition (if the value is true then automatically otherwise new condition

are set by user).

,

where prv InitOp(ss� @str, mode� @bool) – header of formula algorithm, prv – identifier of access private, o – an

array (the standard subsystem @object) for storing the optimization subsystems: o[0]�@S() – the creating of

subsystem @S and put its into an array of objects – uniterm o[0] – means the first element in o, o[1] �@E() – the

creating subsystem @E and put its into second position in array o, other systems are treated analogously, ac –

subsystem optimization formulas by introducing an additional condition, ac.auto=mode – attributing to variable

(2)

(3)

ITHEA

42

auto value of input mode (automatically when have value true or user mode), xi.Lox() – load xml data, xi.Cr() –

creating indexes for xml data, ac.SetArrayU(ss) – setting array available to optimize the conditions by introducing

an additional condition (ss – input parameter that contains only text entire formula of algorithm), and the variable

loop – used by the cyclic eliminations, to repeat the optimization until no further transformation is possible.

The functional uniterm checking the possibility of introducing condition

Function uniterm ChkAddC () represented by the formula (4)

,

where i – the number of processed index, isO – store information on whether the optimization has been xi.t[i] – an

array contains indexes xml – description of the formula, xi.y – the number of maximum index, IsAddC() – testing

whether for a given xi.t[i] the index is loaded by providing uniterm i1.txt can be performed optimization by

introduction an additional condition, break() – causes the exit from the cyclic elimination.

The functional uniterm for optimizing one operation
Function uniterm OneOp() expressed in the formula (5) performs the optimization of a single operation algorithms

algebra.

,

(4)

(5)

Artificial Intelligence Applications to Business and Engineering Domains

43

where j – the input parameter (@int – standard subsystem int for storing integers) indicate the position in the

array of objects o[] which optimization subsystem can be optimizing, i,k – represents the integers numbers,

uniterms i1, i2 – delivery indexes and the xml – description of the formulas algorithm to subsystems , i2 =

(IOp2)o[j] – loading the data from the uploaded uniterm i2 subjects and this being situated in an array of objects

o[], i2.xd = x – means load xml – description of the algorithm formula variable x to i2, x = i1.xd – ask the value of

processed xml– description of the algorithm, i1 = (IOp1)i2 – means that the uniterm i2 giving to i1 values (this is

made possible by the inheritance mechanism), i2.Blopt() – functional uniterm that contains a call to all

optimization properties single operation algebra algorithm, xi.y – the number of maximum index.

Function uniterm i2.Blopt() is predefined in optimization subsystems @S,@E,@P,@C, and @R, and uses

variables isO – storing the information about whether there have been optimizations, de – an array used to store

the order of operation an algebra inducing properties of algorithms and functional uniterm, A – contains

sequences repeatedly nested sequence of function uniterms names optimization (an example illustrated by the

formula (7)), and has function uniterm de[i]() – caller and the optimization of the properties of the operations of

algebra algorithms, ChkOp () – checking whether a formula optimization algorithms, de.Co() – returns the

maximum and number of functional uniterms placed in an array de (elements of an array are numbered from

zero).

 Function uniterm ~Op2.Blopt() presented in formula (6) gives a value of variable w, which takes true value if

made at least one optimization, or otherwise returns false, and the input parameter is d, witch update x –

processed xml – description of the formula algorithm, Uniterm pu means the identifier of access public, and the

end (.) of functional uniterm, * – empty uniterm, ci, – means returns to cycle,

,

Note that, uniterm ^Deleg means delegation uniterm (defined as: delegate [Petzold, 2002, MacDonald, 2008]),

and uniterm A for example of eliminating operation show in formula (7)

(6)

ITHEA

44

, (7)

where Abs – name of function uniterm (defined in @Bo (supporting subsystem)) performing the optimization by

property idempotency [Ovsyak, 2005], Ou, Ous – names of function uniterm absorption of uniterms,

Oe,Od,Oc,Oa – means names of function uniterms, witch performing the optimization by distributiveness

proprieties for operation of elimination algorithm algebra.

The names of optimization function uniterms, signed Oxx – where xx is the abbreviation of the property, which

they use when they optimize (eg Ous where xx = us – pointing to the uniterms of absorption).

The functional uniterm for full optimizing

Function uniterm Optima() presented in formula (8) making the full optimization formulas algorithm

,

where pu (v�bool)Optima(ss�@str, mode�@bool) – header of formula algorithm, pu – – identifier of access public,

v – output parameter, return information whether at least one optimization of the formula was made, ss – input

parameter string describing the whole xml – formula of algorithm, mode – the mode of introduction of an

additional condition (entered the user or automatically), Lox() – function uniterm is used to load the xml – the

formula describing the algorithm, Cr() – function uniterm creating all indexes and placing to xi.t tables

[Markuszewski, 2010], o.Co() – function uniterm that returns the maximum number object, (.) – the end of

functional uniterm, * – empty uniterm, ci,cloop,ck – means returns to cycles.

The variable loop “works” as long as it is not possible to further convert the formulas to the form of optimal

algorithms. In order to ensure the iteration, which must be done twice, since the finding that it is impossible to

(8)

Artificial Intelligence Applications to Business and Engineering Domains

45

further optimization was introduced as a counter variable k in the elimination of cyclic. Note that, the function

uniterm OneOp() change a state loop value of variable.

Conclusions

Made the decomposition @Lo subsystem simplified model, reduces complexity. Creating the computer system for

optimization of formulas of abstract algorithms automates and save the optimization processes. Application

uniterms array of objects and the elimination of cyclical loop ensure that the operations of algebra algorithms,

placed in arrays will perform in accordance with the order placed in the array. An important extension of the

elimination operation has been introduced in the paper, namely a multiconditional elimination has been offered.

The extension contributes to the reduction of a number of elimination operations and it simplifies the algorithm

minimization process, while improving the readability of algorithms.

An example illustrates the potential of the proposed theory and the underlying methodology for processing of the

algorithms. Some other application examples are presented/reported in a complementary paper [Ovsyak, 2011].

Bibliography

[Ovsyak, 2005] V.K. Ovsyak. Theory of Abstract Algorithms and Mathematical Modelling of Information Systems (in Polish),
Opole University of Technology Press, Opole, Poland, 2005.

 [Ovsyak,2008] V.Ovsyak. Computation Models and Algebra of Algorithms.
http://www.nbuv.gov.ua/Portal/natural/VNULP/ISM/2008_621/01.pdf

 [Ovsyak et. all, 2011] A.V Ovsyak. Models of the process of an analysis of XML-formatted formulae of algorithms. Submitted
to INFOS 2011, Rzeszów , Poland.

 [Markuszewski, 2010] T. Markuszewski. A Computer System For Optimizing of Abstract Algorithms, WOFEX 2010, 8th–
workshop Ostrawa 2010, pp. 352–357

 [Owsiak et. all, 2010] W. Owsiak Synthesis Model Subsystem Serach to Access to Trackways Uniterms xml–Formulas of
Algorithm, CSIT’2010, Lwów 2010. pp. 153

 [Petzold, 2002] C. Petzold. Programming Microsoft Windows with C#. 2002.

 [MacDonald, 2008] M. MacDonald. Pro WPF in C# 2008 Windows Presentetion Foundation with .NET 3.5.

Authors' Information

Tomasz Markuszewski – Department of Electrical, Control and Computer Engineering,
University of Technology, Box: 31, Sosnkowskiego, Opole 45-272, Poland, e-mail:

kemotmark@wp.pl

He specializes in theoretical and applied computer science, theory of algorithms, programming,
information systems, mathematical modeling

