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INFORMATION GEOMETRY APPROACH
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Abstract: We study differential-geometrical structure of an information manifold equipped with a divergence function.

A divergence function generates a Riemannian metric and furthermore it provides a symmetric third-order tensor,

when the divergence is asymmetric. This induces a pair of affine connections dually coupled to each other with

respect to the Riemannian metric. This is the arising emerged from information geometry. When a manifold is dually

flat (it may be curved in the sense of the Levi-Civita connection), we have a canonical divergence and a pair of

convex functions from which the original dual geometry is reconstructed. The generalized Pythagorean theorem

and projection theorem hold in such a manifold. This structure has lots of applications in information sciences

including statistics, machine learning, optimization, computer vision and Tsallis statistical mechanics. The present

article reviews the structure of information geometry and its relation to the divergence function. We further consider

the conformal structure given rise to by the generalized statistical model in relation to the power law.
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Introduction

A divergence function D[P : Q] between two points P and Q in a manifold M plays a fundamental role in

many engineering problems, including information theory, statistics, machine learning, computer vision, optimization

and brain science. It has dimension of the square of distance but is not in general symmetric with respect to

P and Q. The present article surveys the differential-geometric structure generated by a divergence function

[Vos, 1991], [Amari and Nagaoka, 2000], [Eguchi, 1983], [Amari and Cichocki, 2010]. When it is symmetric, it gives

a Riemannian metric and the Levi-Civita affine connection follows as was studied by [Rao, 1945]. However, when

it is asymmetric, we have a third-order symmetric tensor, which gives a pair of affine connections dually coupled

to each other with respect to the Riemannian metric. These are the central structure of information geometry

[Amari and Nagaoka, 2000] which studies an invariant structure of a manifold of probability distributions [Amari, 1985].

Many asymmetric divergence functions are used in application of information theory. For example, the Kullback-

Leibler divergence, which is frequently used in statistics, information theory and others, is a typical example of

asymmetric divergence. We study the geometrical structure arising from by an asymmetric divergence. It consists

of a Riemannian metric which is symmetric positive-definite second-order tensor and a symmetric third-order tensor

which vanishes in the symmetric case. A pair of affine connections is defined by using the two tensors. The Levi-

Civita connection is the average of the two connections. They are not metric connections but are dually coupled with

respect to the Riemannian metric in the sense that the parallel transports of a vector by the two affine connections

keep their inner product invariant with respect to the Riemannian metric. The duality can be expressed in terms of

the related covariant derivatives. See [Amari and Nagaoka, 2000] for details.

When a Riemann-Christoffel curvature vanishes with respect to one affine connection, it vanishes automatically with

respect to the dual affine connection. We have a dually flat manifold in this case, even though the Riemannian
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curvature with respect to the Levi-Civita connection does not vanish in general. A dually flat Riemannian manifold

has nice properties such as the generalized Pythagorean theorem and projection theorem. Moreover, when a

manifold is dually flat, we have two convex functions from which a canonical divergence is uniquely determined. The

canonical divergence generates the original dually flat Riemannian structure. Euclidean space is a special example

of the dually flat manifold which has a symmetric divergence given by the square of the Euclidean distance.

A dually flat manifold has two affine coordinate systems related to the two flat affine connections. They are

connected by the Legendre transformation of the two convex functions. The canonical divergence is given as

the Bregman divergence [Bregman, 1967]. The Legendre structure has a geometrical foundation in the framework

of the dually flat geometry.

What is the natural divergence function to be introduced in a manifold? We study this question in the case

of a manifold of probability distributions. We impose an invariant criterion such that the geometry is invariant

under bijective transformations of random variables [Chentsov, 1982], [Picard, 1992] (more generally invariant by

using sufficient statistics). Then, the Kullback-Leibler divergence is given as the unique canonical divergence.

We further extend our notions to the manifold of positive measures [Amari, 2009]. We have invariant structure

[Chentsov, 1982; Amari, 1985] and non-invariant flat structure [Amari and Ohara, 2011] which is related to the

Tsallis entropy

[Tsallis, 2009].

We finally study the structure of deformed exponential family [Naudts, 2011] which includes the Tsallis q-structure

[Tsallis, 2009]. We can introduce a dually flat geometry in this manifold, which is not invariant in general. We prove

that the invariant structure is limited to the α- or q-geometry, which gives non-flat dual geometry. However, we can

define a dually flat structure in the q-family which is not invariant, extending the geometry. We prove that the q-

or α-structure is unique in the sense that the flat geometry is given by a conformal transformation of the invariant

geometry [Amari and Ohara, 2011], [Amari, Ohara and Matsuzoe, 2012].

We do not mention applications of dual geometry, which are now hot topics of research in many fields.

See, e.g., [Banerjee et al., 2005], [Ikeda, Tanaka and Amari, 2004], [Takenouchi et al., 2008],

[Boissonnat, Nielsen and Nock, 2010], [Vemuri et al., 2011], [Liu et al, 2010], [Amari, 2009] and [Cichocki et al., 2009].

Divergence Function and Differential Geometry

Let us consider a manifoldM homeomorphic toRn. We use a coordinate system inM and denote the coordinates

of a point P by x = (x1, · · · , xn). We consider a function D[P : Q] of two points P and Q inM , which is
written asD[x : y] by using the coordinates x and y of P andQ.

Definition: A functionD[P : Q] is called a divergence, when the following conditions are satisfied
[Amari and Cichocki, 2010]:

1) D[x : y] ≥ 0 with equality when and only when x = y.

2) D[x : y] is differentiable and the Hessian with respect to x at y = x is positive definite.

It should be noted thatD[x : y] is not necessarily symmetric with respect to x and y. Hence, it is not a distance.

The triangular inequality does not hold either. It has dimension of the square of distance as will be seen below (cf.

[Chen, Chen and Rao, 2008]).
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Given a divergence functionD, for infinitesimally close two points x and y = x+dx, we have by Taylor expansion

D [x : x + dx] =
∑

gij(x)dxidxj +O
(

|dx|3
)

, (1)

where

gij(x) =
∂2

∂xi∂xj
D [x : y]

∣

∣y=x . (2)

Since gij is a positive-definite matrix, it gives a Riemannian metric derived from the divergence. For the sake of

notational convenience, we introduce the following abbreviation by using the partial differential operator (natural

basis of the tangent space),

∂i =
∂

∂xi

(3)

and define, for a number of operators ∂i, ∂j , ∂k , etc.,

D [∂i∂j : ∂k;x] =
∂3

∂xi∂xj∂yk

D[x : y]
∣

∣y=x . (4)

Here, the operators in the left part ofD operate on x, while those on the right operate on y, and finally the result is

evaluated at y = x. Then, we have, for example,

D [∂i : ·;x] =
∂

∂xi
D[x : y]|y=x = 0 (5)

D [· : ∂j ;x] =
∂

∂yj

D[x : y]y=x = 0 (6)

gij = D [∂i∂j : ·;x] = D [· : ∂i∂j;x] = −D [∂i : ∂j ;x] . (7)

The above properties are proved as follow. When y − x is small, we have from (1)

D[x : y] =
∑

gij(x) (x1 − yi) (xj − yj) +O
(

|x − y|3
)

. (8)

By differentiating this with respect to xi and/or yj , and then putting y = x, we have (5), (6), (7).

We can easily prove that gij is a tensor.

Define

Tijk(x) = D [∂k : ∂i∂j ;x] −D [∂i∂j : ∂k;x] . (9)

We can prove that Tijk is a tensor symmetric with respect to the three indices[Eguchi, 1983]. When D[x : y] is
symmetric, i.e.,D[x : y] = D[y : x],

Tijk = 0. (10)

A manifoldM having a divergence function is equipped with two quantities gij and Tijk derived from it. We write it

as {M,gij , Tijk}. Obviously the inner product of ∂i and ∂j is 〈∂i, ∂j〉 = gij .

We introduce affine connections in manifoldM equipped with metric gij and cubic formTijk , that is, {M,gij , Tijk}.

When gij is given, the Levi-Civita or Riemannian connection is given by the Christoffel symbol

Γ0
ijk(x) = [i, j; k] =

1

2
(∂igjk + ∂jgik − ∂kgij) . (11)

This is a symmetric connection (torsion-free) and the related covariant derivative∇0 in the direction ∂i satisfies

∇
0
∂i
〈∂j , ∂k〉 = ∇

0
∂i
gjk = 0. (12)
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When a cubic tensor Tijk is given in addition to gjk, we define the α-connection [Amari and Nagaoka, 2000] by

Γα
ijk(x) = Γ0

ijk −
α

2
Tijk, (13)

where α is a real scalar parameter. The α-covariant derivative∇α is characterized by

∇
α
∂igjk =

α

2
Tijk. (14)

The Levi-Civita connection is a special case of α-connection because it is given by α = 0. When α = 1, we call
the 1-connection simply the (primal) connection and when α = −1, the dual connection, respectively, derived from
the divergence. The duality will be explained in the next section.

Dual connections with respect to Riemannian metric

We search for geometrical structure of manifold {M,gij , Tijk}. Two affine connections Γijk and Γ∗
ijk (or their

covariant derivatives∇ and∇∗) inM are said to be dual with respect to Riemannian metric gij , when the following

relation holds for three vector fields A, B and C

A〈B,C〉 = 〈∇AB,C〉 + 〈B,∇∗
AC〉, (15)

where

〈B,C〉 =
∑

gijB
iCj (16)

is the inner product of B and C , and A is the directional derivative operator,
∑

Ai∂i, where A =
∑

Ai∂i,

B =
∑

Bi∂i and C =
∑

Ci∂i. The following theorem is known [Amari, 1985], [Amari and Nagaoka, 2000].

Theorem 1. The α-connection and −α-connection are dual with respect to the Riemannian metric gij .

Dually flat manifold

Manifold {M,gij , Tijk} derived from a divergence function is equipped with a Riemannian metric and two dual

affine connections. Hence, we may represent it by {M,g,∇,∇∗
} in terms of metric g = (gij) and two dual

affine connections (covariant derivatives) ∇ and ∇∗. ManifoldM is in general curved, having non-zero Riemann-

Christoffel curvature.

We prove that, when the Riemann-Christoffel curvature vanishes for the primal connection∇, the Riemann-Christoffel

curvature of the dual connection∇∗ vanishes automatically. But the Riemann-Christoffel curvature of the Levi-Civita

connection does not vanish in general. A manifold {M,g,∇,∇∗
} is said to be dually flat, when the curvatures for

∇ and∇∗ vanish.

Theorem 2. When the primal curvature vanishes, the dual curvature vanishes at the same time.

Proof. Let
∏

and
∏∗ be parallel transport operators of a vector due to∇ and∇∗, respectively. The duality implies,

in terms of the parallel transports, that

〈A,B〉P = 〈

∏

A,

∗
∏

B〉Q, (17)

when two vectorsA andB are transported from point P toQ along a curve connecting P andQ by the two parallel

transports
∏

and
∏∗. Let us consider a loop c starting from P and ending atQ. Then, when the primal curvature

vanishes, we have
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∏

c

A = A (18)

for any A. This implies
∗

∏

c

B = B (19)

for any B. This proves that the curvature vanishes for the dual connection.

WhenM is dually flat, the following properties hold. See [Amari and Nagaoka, 2000] for mathematical details.

Theorem 3. Let {M,g,∇,∇∗
} be a dually flat manifold. Then, the following holds.

1) There are two affine coordinate systems θ =
(

θ1, · · · , θn
)

and η = (η1, · · · , ηn) in which the coefficients
of the primal and dual connections vanish, respectively,

Γijk(θ) = 0, Γ∗ijk(η) = 0. (20)

We denote the components of θ by θi using the upper index (contravariant) and those of η by ηi using

the lower index (covariant) because of the duality. The two affine coordinates are unique up to affine

transformations.

2) There exist two potential functions ψ(θ) and ϕ(η) which are convex.

3) The Riemannian metric is given by the Hessian of the potential functions in the respective coordinate systems,

gij(θ) = ∂i∂jψ(θ), ∂i =
∂

∂θi
, (21)

gij(η) = ∂i∂jϕ(η), ∂i =
∂

∂ηi

. (22)

Here, gij and g
ij are inverse matrices,

∑

gijg
jk = δk

i , (23)

where
(

δk
i

)

is the identity matrix and the cubic tensor T is given by

Tijk(θ) = ∂i∂j∂kψ(θ), T ijk(η) = ∂i∂j∂kϕ(η). (24)

4) There exists a canonical divergence D
[

θ : θ′
]

, which is unique up to a scalar constant and is defined by

D
[

θ : θ′
]

= ψ(θ) + ϕ
(

η′
)

−

∑

θiη′i. (25)

The geometrical structure, the Riemannian metric and the dual affine connections ∇ and ∇∗, derived from

this divergence is the same as that of the original {M,g, T}.

5) A primal geodesic is linear in the θ coordinate system and the dual geodesic is linear in the η coordinate

system, so that they are given, respectively, by

θ(t) = ta + c, η(t) = tb + c′, (26)

where a, b, c, c′ are constant vectors.
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Convex function and Legendre duality

A dually flat manifoldM has two convex functions ψ(θ) and ϕ(η). Given a convex function ψ(θ) of θ inM , the
Legendre transformation from θ to η is

ηi = ∂iψ(θ). (27)

There exists a dual potential ϕ(η) which is convex with respect to η and the inverse transformation is given by

θi = ∂iϕ(η). (28)

The two potential functions can be chosen to satisfy

ψ(θ) + ϕ(η) −
∑

θiηi = 0. (29)

This gives the coordinate transformation between the primal affine coordinates θ and the dual affine coordinates η

on a dually flat manifoldM .

We can define the canonical divergence between two points θ and θ′ (or η and η′) by using the potential function.

D
[

θ : θ′
]

= ψ(θ) − ψ
(

θ′
)

−

∑

∂iψ
(

θ′
) (

θi
− θ′i

)

. (30)

This is known as the Bregman divergence [Bregman, 1967] and is written in the dual form as

D
[

θ : θ′
]

= ψ(θ) + ϕ
(

η′
)

−

∑

θiη′i. (31)

When a convex functionψ(θ) is given onM , a dually flat structure is constructed onM and conversely a dually flat
M possesses an affine coordinate system θ, a convex potential ψ(θ) and the canonical divergence D

[

θ : θ′
]

.

Generalized Pythagorean theorem and projection theorem in flatM

The generalized Pythagorean theorem holds in a dually flat manifoldM . Let P ,Q, and R be three points inM .

Theorem 4. When the primal geodesic connecting Q and R is orthogonal in the sense of Riemannian metric g to

the dual geodesic connecting P andQ, then

D [P : Q] +D[Q : R] = D[P : R] (32)

and when the dual geodesic connecting Q and R is orthogonal to the geodesic connecting P andQ, then

D[Q : P ] +D[R : Q] = D[R : P ]. (33)

The generalized Pythagorean theorem is a natural extension of that in a Euclidean space. Indeed, a Euclidean

space is a special case of the dually flat manifold, where Tijk = 0. In such a case, a primal geodesic and a dual
geodesic are the same because the two coordinate systems θ and η are the same, and gij reduces to δij (identity

matrix) in this coordinate system. The potential functions are written as

ψ(θ) = ϕ(η) =
1

2

∑

(

θi
)2

=
1

2

∑

(ηi)
2 (34)

and the divergence is

D
[

θ : θ′
]

=
1

2

∑

(

θi
− θ′i

)2
. (35)

Therefore, theorem 4 is a natural extension of the Pythagorean theorem.
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The projection theorem is a direct consequence of the Pythagorean theorem, which has many applications in real

problems. See, e.g., [Boissonnat, Nielsen and Nock, 2010], [Takenouchi et al., 2008], [Ikeda, Tanaka and Amari, 2004],

[Amari et al., 2003], etc.

Theorem 5. Let S be a submanifold in a dually flat manifoldM . Given a point P , the point P̂ ∈ S that is closest to

P in the sense of minimizing divergences D[P : Q],Q ∈ S is called the geodesic projection of P to S. The dual

geodesic projection P̂ ∗ of P to S is the point that minimizeD[Q : P ], Q ∈ S. The geodesic projection P̂ (dual

geodesic projection P̂ ∗) is given by the point that satisfies the following: The geodesic (dual geodesic) connecting

P and P̂ (P and P̂ ∗) is orthogonal to S.

Invariant divergence in the manifold of probability distributions

Let us consider a manifold of probability distributions. We consider the discrete case where random variable x takes

values on finite setX = {1, 2, · · · , n}. Then the set of all the probability distributions

Sn = {p(x)} (36)

forms an (n− 1)-dimensional manifold, called the probability (n− 1)-simplex. We may write

pi = Prob {x = i} . (37)

Then the probability simplex is specified by p = (pi), where
∑

pi = 1, pi > 0. (38)

We introduce a divergenceD[p : q] between two distributions p and q ∈ Sn that satisfies the following invariance

criterion [Chentsov, 1982], [Csiszar, 1991]. For this purpose, we partitionX into disjoint subsetsX1, · · · ,Xm,

X = {X1, · · · ,Xm} , ∪Xi = X, Xi ∩Xj = φ. (39)

Then, the partition naturally induces a reduced probability distribution p̄ on X̄ = {X1, · · · ,Xm} such that

p̄i =
∑

j∈Xi

pj. (40)

This is a coarse graining of observation of x such that we do not know x but know the subclass Xi to which x

belongs, so that there is loss of information. A loss is expressed in terms of the divergence as follows.

Invariance Criterion: A divergence is said to be monotone when

D[p : q] ≥ D [p̄ : q̄] (41)

holds for any partition ofX . Moreover, it is said to be invariant, when

D[p : q] = D [p̄ : q̄] (42)

holds, if and only if the conditional probabilities of x conditioned on anyXi are equal for both p and q,

p (x|Xi) = q (x|Xi) , i = 1, · · · ,m (43)

or

pi = cjqi, i ∈ Xj (44)

for constant cj .

A divergence is said to be decomposable, when it is written as

D[p : q] =
∑

d (pi, qi) (45)

for some function d. The following theorem is known [Amari, 2009], [Amari and Nagaoka, 2000].
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Theorem 6. The invariant divergence that gives dually flat structure is unique in Sn and is given by the Kullback-

Leibler (KL) divergence.

KL [p : q] =
∑

pi log
pi

qi
. (46)

Theorem 7. The invariant Riemannian metric of Sn is given by the Fisher information matrix,

gij(p) =
∑

x

p(x)
∂ log p(x)

∂pi

∂ log p(x)

∂pj
, i, j = 1, · · · , n− 1. (47)

The invariant third-order tensor is given by

Tijk(p) =
∑

x

p(x)
∂ log p(x)

∂pi

∂ log p(x)

∂pj

∂ log p(x)

∂pk

. (48)

Theorem 8. Sn is a dually flat manifold and the θ coordinates are

θi = log
pi

pn

, i = 1, · · · , n − 1 (49)

the dual η coordinates are

ηi = pi, i = 1, · · · , n− 1, (50)

the potential function is

ψ(θ) = log
{

1 +
∑

exp
(

θi
)

}

, (51)

which is the cumulant generating function, the dual potential function is

ϕ(η) =
∑

ηi log ηi +
(

1 −

∑

ηi

)

log
(

1 −

∑

ηi

)

, (52)

which is the negative of Shannon entropy, and the canonical divergence is the KL divergence.

Information geometry is applied to statistical inference, in particular to higher-order asymptotic theory of statistical

inference [Amari, 1985]. For example, consider a statistical modelM = {p(x,u)} ⊂ Sn specified by parameter

u = (u1, · · · , um), where m is smaller than n. When x is observed N times, the observation defines the
empirical distribution p̂,

p̂i =
1

N
♯ {x = i} . (53)

The maximum likelihood estimator û is given by the geodesic projection of p̂ to the statistical model M =
{p(x,u)} in Sn. The error of estimation is evaluated by the Fisher information (Cramér-Rao theorem and by the

embedding curvature ofM in Sn). Information geometry can also be applied to semiparametric statistical inference,

where a theory of estimating functions is established [Amari and Kawanabe, 1997]. We use a fiber-bundle-like

structure in this case, when x is a continuous variable and the manifold is infinite-dimensional. However, we should

be careful for mathematical difficulties in generalizing the above theory of the discrete case to an infinite-dimensional

case. There are lots of applications of information geometry to optimization, machine learning, computer vision and

neural networks.

Divergence introduced in the space of positive measures

Let us consider the setRn
+ of positive measures on X , wherem(x) gives a measure of x ∈ X . By introducing

the delta function δi(x),

δi(x) =

{

1, x = i

0, otherwise,
(54)



Mathematics of Distances and Applications 17

we can write

m(x,z) =
∑

ziδi(x), (55)

where zi > 0. R+
n is a manifold where z is a coordinate system. The probability simplex Sn is its submanifold

satisfying
∑

zi = 1. (56)

Let u(z) and v(z) be two differentiable and monotonically increasing functions satisfying

u(0) = v(0) = 0. (57)

Define two coordinate systems θ and η by

θi = u (zi) , (58)

ηi = v (zi) , (59)

which are non-linear rescalings of zi. We introduce the dually flat structure toRn
+ such that θ and η are dually flat

affine coordinate systems. The structure is called the (u, v)-structure, since it is defined by using two functions u
and v. Note that the dual invariant affine coordinates θ and η of (49) and (50) in Sn are given by

u(z) = log z, (60)

v(z) = z, (61)

within the constraint of (56). The following theorem is given by [Amari, Ohara and Matsuzoe, 2012].

Theorem 9. The potential functions of the (u, v)-structure are given by

ψ(θ) =
∑

∫

dθi

∫

v′
{

u−1 (θi)
}

u′ {u−1 (θi)}
dθi, (62)

ϕ(η) =
∑

∫

dηi

∫

u′
{

v−1 (ηi)
}

v′ {v−1 (ηi)}
dηi. (63)

Proof. Since the two coordinates are connected by Legendre transformations

ηi =
∂ψ(θ)

∂θi
, θi =

∂ϕ(η)

∂ηi
, (64)

by integrating them, we have (62) and (63).

Theorem 10. The (u, v)-structure ofR+
n gives a Riemannian metric

gij(θ) = ∂i∂jψ(θ)δij , (65)

and a cubic tensor

Tijk(θ) = ∂i∂j∂kψ(θ)δijk (66)

which includes only diagonal components since δij and δijk are 1 when i = j and i = j = k, respectively, and 0
otherwise. The metric is Euclidean so that the curvature due to the Levi-Civita connection vanishes.

There are lots of applications of the (u, v)-divergences, in particular in the following form. The (u, v)-structure
gives a dually flat affine structure to the Euclidean manifoldR+

n by rescaling the axes. We give examples of (u, v)-
structures. See [Cichocki, Cruces and Amari, 2011].
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1. Logarithmic structure

When

u(z) = log z, v(z) = z, (67)

we have

θi = log zi, ηi = zi (68)

so that

m(x,z) = exp
{

∑

θiδi(x)
}

. (69)

The potential functions are

ψ(θ) =
∑

eθi , ϕ(η) =
∑

ηi log ηi −

∑

ηi (70)

and the canonical divergence is

D
[

z : z′
]

=
∑

(

zi − z′i + zi log
zi

z′i

)

, (71)

which is the generalized KL divergence. The probability simplex Sn is the linear subspace given by

∑

ηi = 1 (72)

and therefore is also dually flat. This gives the invariant structure satisfying the invariance criterion.

2. (α, β)-structure [Cichocki, Cruces and Amari, 2011]

Define

u(z) = zα, v(z) = zβ (73)

for two real parameters α and β. Then

θi = (zi)
α
, ηi = (zi)

β (74)

and the potential functions are

ψ(θ) =
α

α+ β

∑

(

θi
)

α+β

α , ϕ(η) =
β

α+ β

∑

(ηi)
α+β

β . (75)

The divergence, named the (α, β)-divergence, is given by

Dα,β

[

z : z′
]

=
∑

{

α

α+ β
(zi)

α+β +
β

α+ β

(

z′i
)α+β

− (zi)
α

(

z′i
)β

}

. (76)

The probability simplex Sn is a subspace, but the derived structure is neither invariant nor dually flat in general.

It should be remarked that, taking limit α→ 0 carefully and putting β = 1, we have

θi = log zi, ηi = zi. (77)

Hence, (0, 1)-structure is the logarithmic structure.

3. α-structure (q-structure) [Amari and Nagaoka, 2000; Amari, 2007]

When α+ β = 1, we replace α by 1 − q = (1 − α̃)/2 and β by q = (1 + α̃)/2, having

u(z) = z
1−α̃

2 = z1−q, v(z) = z
1+α̃

2 = zq. (78)

The structure is called the α̃-structure or q-structure, where α̃ = 1 − 2q. We simply replace α̃ by α, omitting
˜ . The α-structure is used in information geometry, but the same structure is used in non-extensive statistical
mechanics by [Tsallis, 2009] and others under the name of q-entropy, etc.
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Theorem 11. The α(q)-affine coordinates are given by

θi = (zi)
1−α

2 = (zi)
1−q

, ; ηi = (zi)
1+α

2 = (zi)
q (79)

with potential functions

ψ(θ) =
1 − α

2

∑

(θi)
2

1−α =
1 − α

2

∑

zi ; (80)

ϕ(η) =
1 + α

2

∑

(ηi)
2

1+α =
1 + α

2

∑

zi. (81)

The α-divergence is defined by

Dα

[

z : z′
]

=
∑

{

1 − α

2
zi +

1 + α

2
zi − (zi)

1−α
2 (zi)

1+α
2

}

. (82)

The α-structure introduced in the probability simplex Sn is not dually flat. However, the α-divergence is given in Sn

by

Dα

[

p : p′
]

=
∑

{

1 − (pi)
1−α

2

(

p′i
)

1+α
2

}

. (83)

This is an invariant divergence. We extend the invariance principle to be applicable to Rn
+. Then we have the

following theorem [Amari, 2009].

Theorem 12. The α-divergence is the unique class of invariant divergence that gives dually flat structure toRn
+.

q exponential family and deformed exponential family

An exponential family S of probability distributions is a statistical model defined by

S =
{

p(x,θ) = exp
[

∑

θixi − ψ(θ)
]}

, (84)

where x is a vector random variable and θ =
(

θi
)

is called the natural parameters to specify a distribution. The

invariant geometry introduced in S is dually flat, where θ is the affine coordinate system, ψ(θ) is the potential
function and the dual affine coordinates are given by

ηi = ∂iψ(θ) =

∫

xip(x,θ)dx. (85)

This is called the expectation parameter. The dual potential is the negative entropy,

ϕ(η) =

∫

p(x,θ) log p(x,θ)dx. (86)

Instead of the logarithm, we introduce the q-logarithm (see [Tsallis, 2009], [Naudts, 2011]) defined by

logq z =
1

1 − q

(

z1−q
− 1

)

. (87)

Then, a family of probability distributions of the form

logq p(x,θ) =
∑

θixi − ψ(θ) (88)

is called a q-exponential family.
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More generally, we define χ-logarithm [Naudts, 2011] by

logχ(z) =

∫ z

1

1

χ(t)
dt, (89)

where χ(t) is a monotonically increasing positive function. When

χ(t) = t, (90)

this gives the logarithm and when

χ(t) = tq, (91)

this gives the q-logarithm.

The inverse function of the χ-logarithm is the χ-exponential given by

expχ(z) = 1 +

∫ z

0

λ(t)dt (92)

where λ(t) is related to χ by
λ

(

logχ z
)

= χ(z). (93)

A family of probability distributions is called a χ-exponential family or χ-family in short when they are written as

p(x,θ) = χ

{

∑

θixi − ψχ(θ)
}

. (94)

with respect to dominating measure µ(x). The potential function ψχ(θ) is determined from the normalization
condition

∫

p(x,θ)dµ(x) = 1. (95)

We may callψχ(θ) theχ-free energy. We can prove that it is a convex function [Amari, Ohara and Matsuzoe, 2012].

The probability simplex Sn is a χ-exponential family for any χ, since any distribution p(x) onX is written as

logχ p(x) =

n−1
∑

i=1

θiδi(x) + logχ

(

1 −

∑

pi

)

, (96)

where

θi = logχ pi − logχ pn (97)

xi = δi(x), i = 1, · · · , n− 1. (98)

We can introduce the geometrical structure (the metric and dual affine connections) from the invariance principle for

any χ-family. However, except for exponential families and mixture families, the induced structure is not dually flat

(except for the 1-dimensional case where the curvature always vanishes).

Instead, we can introduce a dually flat χ-structure to a χ-family, which in general is different from the invariant

structure. In particular, the probability simplex Sn has χ-dually flat structure for any χ, which is different from the

invariant structure in general.

By using the χ-free energy or χ-potential function ψχ(θ), we define the χ-metric and χ-cubic tensor by

g
χ
ij = ∂i∂jψχ(θ), (99)

T
χ
ijk = ∂i∂j∂kψχ(θ). (100)
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They give a dually flat geometrical structure. The dual affine coordinates are given by

ηi = ∂iψχ(θ). (101)

The dual potential function in Sn is given by

ϕ(η) =
1

hχ

∑

u′ {v (pi)} v (pi) . (102)

In the case of the q-family in Sn, we have

ϕq(η) =
1

1 − q

(

1

hq
− 1

)

. (103)

Therefore, it is natural to define the q-entropy by

Hq(p) =
1

hq(p)
(104)

up to a scale and constant. This is different from the Tsallis q-entropy defined by

HTsallis = −hq(p). (105)

From the geometrical point of view, our definition of the q-entropy is natural.

We finally study how the χ-metric is related to the invariant Fisher metric in Sn [Amari and Ohara, 2011]. The

following is an interesting observation, connecting q-geometry and conformal geometry [Kurose, 1994]. When a

metric gij is changed to

g̃ij(p) = σ(p)gij(p), (106)

where σ(p) is a positive scalar function in a Riemannian manifold, the transformation is said to be conformal. In
the case of {M,g, T}, a conformal transformation changes Tijk as

T̃ijk(p) = σ(p)Tijk + (∂iσ) gjk + (∂jσ) gik + (∂kσ) gij . (107)

Theorem 13. The q-geometry is the unique class of probability distributions that is conformally connected to the

invariant geometry with Fisher information metric. The conformal factor is given by

σ(p) =
1

hq(p)
. (108)

Conclusion

We have reviewed the current status of information geometry which emerged from the study of invariant geometrical

structure of the manifold of probability distributions. The structure is related to the divergence function and hence

is regarded as the geometry of divergence. It consists of a Riemannian metric together with a pair of dual affine

connections. A dually flat Riemannian manifold is of particular interest in applications. We have given its mathematical

structure and showed that it gives the canonical divergence in the form of the Bregman divergence and vice versa.

We also show the invariance principle to be applied to the manifold of probability distributions. The Kullback-Leibler

divergence is its canonical divergence. We also show various types of divergence functions which give the dually
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flat structure. The Tsallis entropy and the deformed exponential family arising from it are studied in detail. We

have proved that the q-structure is the unique class that is derived from conformal transformation of the invariant

geometry having the Fisher information metric.

It is natural to use the geometry derived from the invariance principle, when we study statistical inference. However,

the invariance geometry is given by α-geometry including a free parameter α. We usually treat the case of

α = ±1. The α = 0 case reduces to the Riemannian geometry. There are interesting applications using other α
[Matsuyama, 2002]. The invariance principle is applicable only to a manifold of probability distributions. Hence, we

can construct a dually flat geometry in many problems such as vision and machine learning, when a convex function

is used. This widens the applicability of information geometry.

Finally, we point out its extension. The extension to the infinite-dimensional function space is studied by

[Cena and Pistone, 2007]. Its extension to Finsler geometry and Wasserstein geometry is also expected in future.
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