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Abstract: We show that the cone of weighted n.-point quasi-metrics W QQ M et.,, the cone of weighted quasi-hyper-
metrics W Hyp,, and the cone of oriented cuts OC'ut,, are projections along an extreme ray of the metric cone
Met,, 11, of the hypermetric cone Hyp,,+1 and of the cut cone Cut,, 1, respectively. This projection is such that
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1 Introduction

Oriented (or directed) distances are encountered very often, for example, these are one-way transport routes, a
river with quick flow and so on.

The notions of directed distances, quasi-metrics and oriented cuts are generalizations of the notions of distances,
metrics and cuts, which are central objects in graph theory and combinatorial optimization.

Quasi-metrics are used in semantics of computations (see, for example, [Se97]) and in computational geometry
(see, for example, [AACMP97]). Oriented distances have been used already by Hausdorff in 1914, see [Ha14].

In [CMMO6], an example of directed metric derived from a metric is given. Let d be a metric on a set V' U {0},
where 0 is a distinguished point. Then a quasi-metric ¢ on the set V' is given as

Qij = dij + dio — djo.

This quasi-metric belongs to a special important subclass of quasi-metrics, namely, to a class of weighted quasi-
metrics. We show in this paper that any weighted quasi-metric is obtained from a metric by this method.

All semi-metrics on a set of cardinality » form a metric cone Met,,. There are two important sub-cones of Met,,,
namely, the cone Hyp,, of hypermetrics, and the cone C'ut,, of £1-metrics. These three cones form the following
nested family Cut,, € Hyp, C Met,, see [DL97].

In this paper we introduce a special space @), called a space of weighted quasi-metrics. We define in this space a
cone W Q) Met,,. Elements of this cone satisfy triangle and non-negativity inequalities. Among extreme rays of the
cone W Q) Met,, there are rays spanned by ocut vectors, i.e. incidence vectors of oriented cuts.

We define in the space @),, a cone OC'ut,, of oriented cuts as the cone hull of ocut vectors. Elements of the cone
OC'ut,, are weighted quasi-£-metrics.

Let metrics of the cone Met,, 1 are defined on the set VU {0}. The cut-cone C'ut,,; of £1-metrics on this set
is a cone hull of cut-metrics §(S) forall S ¢ V U {0}. The cut-metrics 4(.5) are extreme rays of all the three
cones Mety, 1, Hypn1 and Cut, 1. In particular, 6({0}) = 6(V') is an extreme ray of these three cones.

In this paper, it is shown that the cones WQMet,, and OCut,, are projections of the corresponding cones
Met,+1 and Cut, 1 along the extreme ray 6(V"). We define a cone WQHyp,, of weighted quasi-hyper-
metrics as projection along §(V") of the cone Hyp,,+1. So, we obtain a nested family OC'ut,, C WQHyp,, C
WQMet,.

Weighted quasi-metrics and other generalizations of metrics are studied, for example, in [DD10]and [DDV11]. The
cone and the polytope of oriented cuts are considered in [AM11].
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2 Spaces RZ and RE®

Let V be a set of cardinality |V'| = n. Let - and E© be sets of all unordered (i) and ordered i; pairs of elements
i,j € V. Consider two Euclidean spaces R” and RE? of vectors d € R and g € RE with coordinates dij)
and g;;, where (ij) € E andij € E©, respectively. Obviously, dimensions of the spaces RZ and RZ“ are
|B| = "% and |[EC| = n(n — 1), respectively.

Denote by (d,t) = > ;) p dij)t (i) Scalar product of vectors d, ¢ € RE. Similarly (f,g) = > ijero fijgij
denote scalar product of vectors f, g € REC.

Let {e(;;) : (ij) € E} and {e;; : ij € E°} be orthonormal bases of R” and RE? | respectively. Then, for
f e REandq € RP?, we have

(eqijy» f) = fy) and (eij, @) = gij-
For f € RE? define f* € RE as follows

£ = fiforallij € E©.

Call a vector g symmetric if g* = g, and antisymmetric if g* = —g. Each vector g € RE? can be decompose
into symmetric g° and antisymmetric g* parts as follows:
S 1 * a 1 * S a
g =5+9) 9" =50g-9), 9=9"+g"

Let Rfo and RGEO be subspaces of symmetric and antisymmetric vectors, respectively. Note that the spaces Rfo
and RE® are mutually orthogonal. In fact, for p € RZ° and f € RE®, we have

(. )= > pifis= Y Wijfij+piitii) = Y (pijfij — pijfij) = 0.
ijeE© (ij)eF (ij)eF
Hence o " o
RE” = RET @ RE™,
where & is direct sum.

Obviously, there is an isomorphism ¢ between the spaces RZ and RZ”. Let d € RZ have coordinates dij)-
Then we set
d® = p(d) € RE® suchthat d) = d) = d ).
In particular,
pleqs) = eij + eji.

The map ¢ is invertible. In fact, for ¢ € RZ”, we have ¢ ~(q) = d € R such that dijy = @ij = qji- The
isomorphism ¢ will be useful in what follows.

3 Space of weights QY

One can consider the sets £ and E© as sets of edges (i5) and arcs i of an unordered and ordered complete
graphs K, and K9 on the vertex set 1, respectively. The graph K has two arcs i; and ji between each pair
of vertices i, j € V.

It is convenient to consider vectors g € RE® as functions on the set of arcs E© of the graph K©. So, the
decomposition RE” = RE? ¢ RE® is a decomposition of the space of all functions on arcs in £ onto the
spaces of symmetric and antisymmetric functions.
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Besides, there is an important direct decomposition of the space RZ  of antisymmetric functions onto two subspaces.
In theory of electric networks these spaces are called spaces of tensions and flows (see also [Aig79]).

The tension space relates to potentials (or weights) w; given on vertices i € V' of the graph K. The corresponding
antisymmetric function g* is determined as

w— . .
gij = Wi — Wj.

It is called tension on the arc ij. Obviously, g5 = wj —w; = —g;;. Denote by Q7 the subspace of REC
generated by all tensions onarcs ij € E©. We call Q¥ by a space of weights.

Each tension function ¢g* is represented as weighted sum of elementary potential functions p(k) for k € V as
follows

gw = Z wkp(k)7
kev
where
plk) = > (enj—ejn), forallk €V, (M
jeV—{k}

are basic functions that generate the space of weights Q)*. Hence values of the basic functions p(k) on arcs are
as follows

1 ifie=k
otherwise.

We obtain

gi; = Z wipij (k) = w; — wj.
keV

Itis easy to verify that

p*(k) = (p(k), p(k)) = 2(n — 1), (p(k),p(1)) = —2forallk,1 € V,k #1, Y p(k) =0.
kev
Hence there are only n — 1 independent functions ¢(k) that generate the space Q.

Weighted quasimetrics lie in the space Rfo @ QY that we denote as @,,. Direct complements of Q% in Ran and
Qnin R isa space Q¢ of circuits (or flows).

4 Space of circuits @7,

The space of circuits (or space of flows) is generated by characteristic vectors of oriented circuits in the graph K &.
Arcs of K@ are ordered pairs ij of vertices 7,7 € V. The arc ij is oriented from the vertex i to the vertex ;.
Recall that ' has both the arcs 75 and ji for each pair of vertices i, j € V.

Let G4 C K, be an undirected subgraph with a set of edges E(G) C E. We relate to the undirected graph G
a directed graph G C K© with the arc set E©(G) C E© as follows. Anarc ij belongs to G, i.e. ij € E°(G),
ifand only if (i5) = (ji) € E(G). This definition implies that the arc ji belongs to G also, i.e. ji € E€(G).
Let C; be a circuit in the graph K,,. The circuit Cy is determined by a sequence of distinct vertices i, € V/, where
1 < k < pandpisthe length of C;. Edges of C are unordered pairs (i, ix+1), where indices are taken modulo
p. By above definition, an oriented bicircuit C' of the graph K€ relates to to the circuit Cs. Arcs of C' are ordered
pairs i1 and ix 17, where indices are taken modulo p. Take an orientation of C'. Denote by —C' the opposite
circuit with opposite orientation. Denote an arc of C' direct or opposite if its direction coincides with or is opposite to
the given orientation of C', respectively. Let C* and C'~ be subcircuits of C' consisting of direct and opposite arcs,
respectively.
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The following vector £ is the characteristic vector of the bicircuit C:

1 ifijeCt,
f5=2 -1 itijec,
0 otherwise.

Note that f—C = (f©)* = —fC, and fC € RE®,

Denote by Q¢ the space linearly generated by circuit vectors £ for all bicircuits C' of the graph K©. Itis well
known that characteristic vectors of fundamental circuits form a basis of Q),. Fundamental circuits are defined as
follows.

Let T" be a spanning tree of the graph K,,. Since T is spanning, its vertex set V' (T') is the set of all vertices of K,
ie. V(T)=V.Let E(T) C E bethe setofedges of 7. Thenany edge e = (ij) ¢ E(T) closes a unique path
in T" between vertices 7 and j into a circuit C'¢. This circuit C¢ is called fundamental. Call corresponding oriented
bicircuit C'® also fundamental.

Thereare |[E — E(T)| = @ — (n — 1) fundamental circuits. Hence

-1
dim@;, = % —(n—1), and dim@,, + dimQ§, =n(n — 1) = dimRE?

This implies that Q¢ is an orthogonal complement of Q¥ in RY and @Q,, in RE? je.

RE? = Qv e Qs andR"® = Q, @ Q% =R™ & Q¥ & Q5.

5 Cut and ocut vector set-functions

The space @, is generated also by vectors of oriented cuts, which we define in this section.

Each subset S C V determines cuts of the graphs K, and K9 that are subsets of edges and arcs of these
graphs.

A cut(S) C Eisasubset of edges (ij) of K, suchthat (ij) € cut(S) ifand onlyif [{z,j} N S| = 1.

A cut®(S) ¢ EY isa subset of arcs ij of K© such thatij € cut®(S) ifand onlyif |{i,j} N S| = 1. So, if
ij € cut®(S), then ji € cut®(S) also.

An oriented cutis a subset ocut(S) C E© of arcs ij of K such that ij € ocut(S) ifand only if i € S and
Jjés.

We relate to these three types of cuts characteristic vectors 5(S) € R”, §9(S9) ¢ RSEO, p(S) € RGEO and
c(S) € R as follows.

For cut(S), we set

1 ifl{i,j}nsSl=1
(5(5) = Z €(ij)> such that 5(”)(5) = { 0 ot|h{erwiie |
i€S,j€S ’

where S =V — S. For cut®(S), we set

39(8) = @(8(8)) = > (eij+em)andp(S) = D (e — ej0).

i€S,j€8 i€S,j€8
Hence f
. 1 ifiesS,jegs
oo J 1 if{i NS =1 I .
0;5(8) = { 0 otherwise. and p (S) = LMjesigs

0 otherwise.
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Note that, for one-element sets S = {k}, the function p({k}) is p(k) of section 2. It is easy to see that
(69(8),p(T)) = Oforany S, T C V.

For the oriented cut ocut(S), we set

C(S) = Z €ij-

i€S,jeS

Hence f p

[ 1 ifieS,j¢S

¢ () = { 0 otherwise.

Obviously, it holds ¢(f)) = ¢(V') = 0, where 0 € RE? is a vector whose all coordinates are equal zero. We have
the following equalities

1

c*(8) = ¢(9), ¢(8) 4 ¢(S) = 69(9), ¢(S) — ¢(S) = p(S) and ¢(S) 5

(67() +p(5)). @)

Besides, we have .
c’(S) = 550(5), c(S) = 5p(S).

Recall that a set-function f(.S) onall S C V/, is called submodular if, for any S, T C V, the following submodular
inequality holds
fS)+ f(T) = (f(SNT)+ f(SUT)) > 0.

It is well known that the vector set-function § € R¥ is submodular (see, for example, [Aig79]). The above
isomorphism ¢ of the spaces R and RZ implies that the vector set-function §© = ¢(5) € RE? is submodular
also.
A set-function f(.S) is called modular if, for any S, 7" C V/, the above submodular inequality holds as equality.
This equality is called modular equality. It is well known (and can be easily verified) that antisymmetric vector set-
function f¢(S) is modular for any oriented graph G. Hence our antisymmetric vector set-function ¢(S) € RaEO
for the oriented complete graph K is modular also.
Note that the set of all submodular set functons on a set V' forms a cone in the space R2". Therefore the last
equality in (3) implies that the vector set-function ¢(S) € RE is submodular.
The modularity of the antisymmetric vector set-function ¢(.S) is important for what follows. It is well-known (see,
for example, [Bir67]) (and it can be easily verified using modular equality) that any modular set-function m.(.5) is
completely determined by its values on the empty set and on all one-element sets. Hence a modular set-function
m(.S) has the following form

m(S) = mo + Zmi,

ics

where mg = m(0) and m; = m({i}) — m((). For brevity, we set f({i}) = f(¢) for any set function f(.S).
Since p(0) = p(V') = 0, we have

p(S) =" "p(k), S CV, andp(V) = p(k) =0. (4)

keS keV

Using equations (3) and (4), we obtain

o(8) = 5(6°(5) + 3 plk)) ®

kes

Now we show that ocut vectors ¢(.S) forall S C V linearly generate the space @,, C RE? The space generated
by ¢(.S) consists of the following vectors

c= Z agce(S), where ag € R.
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Recall that ¢(S) = 1(69(5) + p(S)). Hence we have
as(3°(5) + p(S Z ag6® (S Z asp(S do +p),
Scv SCV SCV

where d© = (d) for d = > scy asd(S). Fora vector p we have

p= Z asp(S) = Z as Zp(k) = Z wyp(k), where wy, = Z as.

Scv Scv keS keV VDS3k

Since Pij = Zke\/ wkpij(k‘) = w; — w;j, We have

1
Cij = E(dg —+ w; — wj). (6)

It is well-known (see, for example, [DL97]) that the vectors 4(S) € R¥ forall S C V linearly generate the full
space RZ. Hence the vectors §°(S) € REZ forall S C V linearly generate the full space RE® .

According to (5), antisymmetric parts of vectors ¢(.S) generate the space Q. This implies that the space Q,, =
RE? @ QW is generated by ¢(S) forall S C V.

6 Properties of the space ),

Let z € Q, and let £ be the characteristic vector of a bicircuit C. Since f¢ is orthogonal to Q,,, we have
(x, f) = Yoijec 15w = 0. This equality implies that each point € @,, satisfies the following equalities

> w= X
ijeC+t ijeC'—
for any bicircuits C.

Let Ky ,—1 C Ky, be a spanning star of K, consisting of all n — 1 edges incident toa vertex of K,,. Let this vertex
be 1. Each edge of K,, — K ,,—; has the form (ij), where i # 1 # j. The edge (i) closes a fundamental
triangle with edges (14), (1), (i5). The corresponding bitriangle 7'(1:;5) generates the equality

T1i + Tij + Xj1 = Tip + T+ i

These inequalities were derived by another way in [AM11]. They correspond to fundamental bi-triangles 7°(1:5),
foralli,j € V — {1}, andare all ”(” nn-1) — (n — 1) independent equalities determining the space, where the @,
lies.

Above coordinates ;; of a vector = € Q,, are given in the orthonormal basis {e;; : ij € E}. But, for what
follows, it is more convenient to consider vectors ¢ € (,, in another basis. Recall that RE® = o(RF). Let, for
(ij) € B, ¢(eq;)) = eij + eji € RE be basic vectors of the subspace RF” € Q,,. Letp(i) € Q¥,i € V,
be basic vectors (defined in (1)) of the space QY C @,,. Then, forg € @,,, we set

q=q" +q° where ¢* = > qupelea), ¢ =D wip(i)
(i)eF eV

Now, we obtain an important expression for the scalar product (g, q) of vectors g, ¢ € Q... Recallthat (o (e(;j)), p(k)) =
((eij +eji),p(k)) = Oforall (ij) € Eandallk € V. Hence (¢°,¢*) = (9%, ¢°) = 0, and we have

(9,90) = (¢°,¢°) + (9", q").

Besides, we have
((eij + €ji), (et + ) = 01 (i5) # (K1), (i + €5i)* = 2,
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and (see Section 3)

(p(i), p(§)) = —21ifi # j, (p(i))*> =2(n — 1).

Let v;, w;, i € V, be weights of the vector g, ¢, respectively. Then we have

) =2 Z 9(i5)4(ij) +2(n—-1) Z%wz 2 Z ViWw;.

(ij)eF eV 1#jEV
For the last sum, we have
> viwy = (Q_vi)(Q_wi) = Y viwi.
i#£jeV % eV %

Since weights are defined up to an additive scalar, we can choose weights v; such that > ;- v; = 0. Then the
last sum in the product (g, ¢) is equal to — 3, v;w;. Finally we obtain that the sum of antisymmetric parts is
equal to 2n ),y v;w;. So, for the product of two vectors g, ¢ € Q,, we have the following expression

(9.0) = (¢°.4°) + (g% 0") =20 D gujyauy +n Y viw)if Y vi=00r > w;=0.

(ij)eE eV eV eV

In what follows, we consider inequalities (g, q) > 0. We can delete the multiple 2, and rewrite such inequality as

follows

Z 9G5)4(ij) + nzviwz‘ >0, (7)

(ij)eE eV

where > .y v; = 0.
Below we consider some cones in the space @,,. Since the space @, is orthogonal to the space of circuits
each facet vector of a cone in @,, is defined up to a vector of the space Q¢ . Of course each vector ¢’ € RE can
be decomposed as ¢’ = g + ¢¢, where g € @,, and ¢¢ € Q°,. Call the vector g € Q,, canonical representative
of the vector ¢’. Usually we will use canonical facet vectors. But sometimes not canonical representatives of a facet
vector are useful.

Cones ' that will be considered are invariant under the operation ¢ — ¢*, defined in Section 2. In other words,
C* = (. This operation changes signs of weights:

%ij = 4(ig) + Wi — W5 = Gz) T Wj — Wi = q(i5) — Wi + Wy

Let (g,¢) > 0 be an inequality determining a facet F' of a cone C' C @,,. Since C' = C*, the cone C has with
the facet F" also a facet F'*. The facet F™* is determined by the inequality (¢*, ¢) > 0.

7 Projections of cones Con,, 11

Recall that Q,, = RE” @ Q¥, RF® = o(RF) and dimQ,, = “%H) — 1,

Let 0 ¢ V be an additional point. Then the set of unordered pairs (zy) fori,j € V.U {0} is E U Ey, where
Ey = {(0i) : i € V}. Obviously, REUE0 — RE & RE0 and dimREVEe — mtl),

The space R”“Fo contains the following three important cones: the cone Met,, ; of semi-metrics, the cone
Hypy,+1 of hyper-semi-metrics and the cone C'ut,, 1 of ¢1-semi-metrics, all on the set V' U {0}. Denote by
Cony,1 any of these cones.

Recall that a semi-metric d = {d;;)} is called metric if d;;y # 0 forall (ij) € E. For brevity sake, in what
follows, we call elements of the cones C'on,, 11 by metrics (or hypermetrics, ¢1-metrics), assuming that they can
be semi-metrics.

Note that if d € C'on,, 1 is a metric on the set 1V U {0}, then a restriction d"" of d on the set V' is a point of the
cone Con,, = Coon, .1 NRE of metrics on the set 1. In other words, we can suppose that C'on,, C Con,, 1.
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The cones Mety,+1, Hypn+1 and Cut,, 41 contain the cut vectors §(.S) that span extreme rays for all S C
V U {0}. Denote by [y the extreme ray spanned by the cut vector 6(V') = §({0}). Consider a projection
7(RFYE0) of the space RFYF0 along the ray [y onto a subspace of R”YEo that is orthogonal to §(V). This
projection is such that 7(R¥”) = R¥ and w(R¥VE0) = RE @ 7(RF0).

Note that (V) € R*, since, by Section 5, 6(V') = 3", €(0s)- For simplicity sake, define the following vector

co = 5({0}) = 6(V) = 3 ey,

2%

Recall that the vector e spans the extreme ray I,. Obviously, the space R¥ is orthogonal to Iy, and therefore
7(R¥) = RE.
Let z € REVYE0, We decompose this point as follows

x:xv+x0,

where 2V = 37 pTpens) € RY and 2 = 37,y moneqs € R0 The projection 7 works on basic
vectors as follows:

y 1 _
7T(e(ij)) = €(ij) for (ij) € E, and 77(6(02‘)) = €(0i) — EGO fori e V.

So, we have .
7T(£C) = W(zv) + W(zo) = Z T (i5)€(i5) + Zx(ol-) (e(Oi) — 560). (8)

(ij)EE eV

It is useful to note that the projection 7 transforms the positive orthant of the space R*0 onto the whole space
m(RF0).
Now we describe how faces of a cone in the space R*“0 are projected along one of its extreme rays.

Let [ be an extreme ray and ' be a face of a cone in R¥“Fo_ Let 7 be the projection along . Let dimF be
dimension of the face F'. Then the following equality holds

dim7(F) = dimF — dim(F N1). 9)

Let g € RFYE0 be a facet vector of a facet 3, and e be a vector spanning the line 7. Then dim(G N1) = 1 if
(g,e) =0,anddim(G Ni) =0if (g,e) # 0.

Theorem 1. Let G be a face of the cone w(Cony,+1). Then G = w(F’), where F' is a face of Con,, 11 such that
there is a facet of C'on,, 41, containing both F' and the extreme ray Iy spanned by ey = 6(V').

In particular, G is a facet of m(Con,, 1) ifand only if G = ©(F'), where F is a facet of Con,, 1 containing the
extreme ray ly. Similarly, I is an extreme ray of w(C'on,,+1) ifand only ifl’ = (1), where [ is an extreme ray of
Cony1 lying in a facet of Con,, 41 that contains l.

Proof. Let F be a set of all facets of the cone Con, 1. Then Upcxzm(F) is a covering of the projection
m(Cony1). By (9), in this covering, if [y C F' € F, then 7(F) is a facet of 7(Cony,41). If lo ¢ F', then there
is a one-to-one correspondence between points of /' and 7(F'). Hence dimm(F) = n, and 7(F") cannot be a
facet of m(Con,,41), since 7(F) fills an n-dimensional part of the cone 7 (C'ony,11).

If " is a face of C'on,,+1, then w(F") is a face of the above covering. If F belongs only to facets F' € F such
thatly ¢ F,then w(F") lies inside of 7(Con,1). In this case, it is not a face of 7(Con,,11). This implies that
m(F') isaface of m(Con,1) ifand only if F/ C F, where F'is a facet of Con,, 11 such that [y C F. Suppose
that dimension of F’ isn — 1,and [y ¢ F’. Thendimm(F’) = n — 1. If F is contained in a facet F" of Con,, 11
suchthat iy C F, then w(F") = w(F'). Hence w(F") is a facet of the cone w(C'on,,+1) that coincides with the
facet w(F").
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Now, the assertions of Theorem about facets and extreme rays of 7w(C'on,,+1) follow. O

Theorem 1 describes all faces of the cone 7 (Con,,1) if one knows all faces of the cone C'ony, 1.

Recall that we consider Con,, = Con,,1 N R¥ as a sub-cone of Con,, 1, and therefore 7(Con,,) C
7(Conypy1). Since 7(RF) = RE, we have w(Con,,) = Con,,. Let (f,z) > be a facet-defining inequality
of a facet F' of the cone Con,41. Since Con,,1 C RF @ R0, we represent vectors f, 2 € RFVE0 ag
f=f"+f2=2"+2° where fV,2V € RF and f°,2° € R0, Hence the above facet-defining
inequality can be rewritten as

(fr2) = (f¥,a") + (/%a0) > 0.

It turns out that the cone C'on,, 1 has always a facet F* whose facet vector f = £V + f© is such that f° = 0.
Since fV is orthogonal to R¥0, the hyperplane (f",z) = (f¥,2") = 0 supporting the facet F' contains the
whole space R”°. The equality (", 2") = 0 defines a facet 'V = F N R¥ of the cone Con,,.

Definition. A facet F' of the cone C'on,, 1 with a facet vector f = fV + f¥is called zero-lifting of a facet F'" of
Cony, if fO=0and FNRY = FV,

Similarly, a facet 7( F) of the cone 7(Con,, 1) with a facet vector £ is called zero-lifting of FV if f = £V and
n(F)NRF = FV,

It is well-known, see, for example, [DL97], that each facet I’V with facet vector fV" of the cone C'on,, can be
zero-lifted up to a facet I of C'on,, 1 with the same facet vector fV'.

Proposition 1. Let a facet I of Con,, 1 be zero-lifting of a facet FV' of Con,,. Then m(F) is a facet of
7(Conyy1) that is also zero-lifting of F'V.

Proof. Recall that the hyperplane {x € RFYEo . (fV x) = 0} supporting the facet F' contains the whole
space R0, Hence the facet F' contains the extreme ray [, spanned by the vector eq € R0, By Theorem 1,
7(F) is a facet of 7(Con,, 1 1). The facet vector of 7(F) can be writtenas f = £ + f/, where fV € RF
and f' € m(RF0). Since the hyperplane supporting the facet (F') is given by the equality (fV',z) = 0 for
x € m(RFYE0) we have f/ = 0. Besides, obviously, 7(F) N RE = F'V'. Hence 7(F) is zero-lifting of F'. O

8 Cones ¢)(Cony,y1)

Note that basic vectors of the space R¥VF0 are e, for (ij) € E and e, for (0i) € Eqy. Since m(eg) =
>icv m(en) = 0, we have dimm(R¥0) = n — 1 =dimQY. Recall that 7(R¥) = R”. Hence there is a
one-to-one bijection x between the spaces 7(RFVF0) and Q,,.

We define this bijection x : 7(RFVE0) — @, as follows

X(RE) = p(RF) = REY and x (m(R™)) = QU

where
x(e@ij)) = eleqs)) = €ij + €5i, and x(w (e ) = x(€(i) — 560) = p(i),
where p(i) is defined in (1).
Note that (ej; + e;:)* = 2 = 27, and
. . 1 1 2. 19

(p(i),p(4)) = -2 = 2"((6(0z‘) - 560)7 (6(0]') - 560))7 p (i) =2(n-1)= 2”(e(m) - 560) .
Roughly speaking, the map x is a composition of homotheties that extends vectors e(;;) and e;) — %eo up to
vectors e;; + e;; and p(i) by the multiples V2 and v/2n, respectively.
Setting 1) = o 7, we obtaina map ¢ : RFYFo — @, such that

1/)(6(2])) =€ + €j; for (Z]) € F, 1/)(6(0@)) = p(Z) fori e V. (10)
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Now we show how a point z = 2V + 20 € RFYE0 is transformed into a point ¢ = (x) = x(7(x)) € Q.
We have 7(x) = =V + 7(a”), where, according to (8), ¥ = 3, cp Z(ij)e;) € m(R¥) = R” and
m(2°) = Yiev 2 (0i) (e0) — yeo) € m(RF). Obviously, x(z + 7(z°)) = x(z") + x(7 (")), and

PV =x@") = D wple;+ei) = o) = ¢ and x(r(a") = > oy pli) = ¢".

(if)ep =
Recallthat ¢* = > ;1\ 4(ij) (€5 + €50) and ¢ = 3,y wip(i). Hence
q(ij) = T(ij), (ij) € B, andw; = z(q;), i € V. (11)

Let f € RFVE0 be a facet vector of a facet F' of the cone Conp i1, f = f¥ + 0 = 3 5)cm fapeus) +
> icv o) €
Let (f, z) > 0 be the inequality determining the facet £'. The inequality ( f, z) > 0 takes on the set V' U {0} the

following form
Z f(Z_] T (i5) + Zf(OZ w(Oz =

(ij)eF eV
Since () = q(i5), T(0i) = wi, We can rewrite this inequality as follows

(f7 Q) - (fvqu) a Z fm)q(z] + Zf(Oz w; > 0. (12)

(ij)eE eV

Comparing the inequality (12) with (7), we see that a canonical form of the facet vector f is f = f* + f¢, where
. a 1 .
Zsj = f(ij)’ for (Z]) €k, ij — Vi — Uy where v; = Ef(Oi), 1eV. (13)

Theorem 2. Let I be a facet of the cone C'on,, 1. Then(F’) is a facet of the cone 1)(Con,,1) if and only if
the facet F' contains the extreme ray ly spanned by the vector eg.

Letl # Iy be an extreme ray of Con,,1. Then (1) is an extreme ray of 1)(Con,1) if and only if the ray |
belongs to a facet containing the extreme ray .

Proof. By Theorem 1, the projection 7 transforms the facet F' of C'on,, 11 into a facet of w(Con,, 1) ifand only if
lo C F. By the same Theorem, the projection (1) is an extreme ray of w(C'on,,+1) if and only if { belongs to a
facet containing the extreme ray /.

Recall that the map  is a bijection between the spaces R”“Fo and @,,. This implies the assertion of this Theorem
forthe map ¢ = x o . O

By Theorem 2, the map /> transforms the facet £ in a facet of the cone ¢(Con,1) only if F' contains the
extreme ray Iy, i.e. only if the equality (f,eq) = 0 holds. Hence the facet vector f should satisfy the equality
>iev fon = 0.

The inequalities (12) give all facet-defining inequalities of the cone 1/ (Con,, 1) from known facet-defining inequalities
of the cone Cony, 1 1.

So, we have the following algorithm for to find a list of facets of the cone v)(C'on,,+1) froma known list £ of facet
vectors of the cone C'ony, 1.

Step 1. Take a facet vector f = {f(;;) : (ij) € EU Eo} € L of the cone C'ony,1.1, and delete it from £. Find a
pointi € V' U {0} such that Zkevu{o} fiir) = 0. Goto Step 2.

Step 2. If such a point 7 does not exist, go to Step 1. Otherwise, make a permutationi — 0,0 — ¢, and go to step
3.

Step 3. By formula (13) form a facet vector of the cone ¢)(C'on,,+1) from the facet vector f of the cone C'on, 1.
If £ is not empty, go to Step 1. Otherwise, end.

A proof of Proposition 2 below will be given later for each of the cones Met,, 11, Hyp,+1 and Cut,, 11 separately.
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Proposition 2. Let F' be a facet of Con,, 1 with facet vector f = fV + fO such that (f°,eq) = 0. Then
Clony41 has also a facet F** with facet vector f* = fV — f9.

Proposition 2 implies the following important fact.

Proposition 3. Forq = ¢° + q¢* € ¥(Conyy1), the map ¢ = ¢° + q* — ¢* = ¢° — q* preserves the cone
PY(Conpy1), le.
(¥(Conpy1))" = (Congpgr).

Proof. Let F' be a facet of Con,, 1 with facet vector f. By Proposition 2, if 1)(F") is a facet of ¢)(Cong,11),
then F* is a facet of Con,, 1 with facet vector f*. Let ¢ € ¥(Con,41). Then ¢ satisfies as the inequality
(frq0) = (f¥, %) + (%, ¢*) > 0 (see (12)) so the inequality (f*,q) = (f",¢*) — (f°,¢*) > 0. Butitis
easy to see that (f,q) = (f*,¢*)and (f*,q) = (f,¢"). Thisimplies that ¢* € ¥)(Cony,11). O

Call a facet G of the cone ¢)(Con,,+1) symmetric if ¢ € F implies ¢* € F. Call a facet of )(Con,1)
asymmetric if it is not symmetric.

The assertion of the following Proposition 4 is implied by the equality (¢/(Cony,+1))* = ¥ (Conpy1).

Proposition 4. Let g € Q,, be a facet vector of an asymmetric facet G of the cone 1)(Con,,+1), and let G* =
{¢* : q € G}. Then G* is a facet of y»(Con,,+1), and g* is its facet vector.

Recall that C'on,, ;1 has facets, that are zero-lifting of facets of C'on,,. Call a facet G of the cone 1)(Cony,41)
zero-lifting of a facet V' of Con,, it G = ¢ (F'), where I is a facet of C'on,, 1 which is zero-lifting of F'V".

Proposition 5. Letg € ), be a facet vector of a facet G of the cone 1)(Con,,+1). Then the following assertions
are equivalent:

(g =g*

(ii) the facet G is symmetric;

(i) G = +(F), where F is a facet of Con.,, 1 which is zero-lifting of a facet V' of C'on,.
(iv) G is a zero-lifting of a facet V' of C'on,,.

Proof. (i)=(ii). If g = g*, then g = ¢°. Hence ¢ € G implies (g,q) = (¢°,q) = (¢°,¢°) = (9,¢") = 0. This
means that ¢* € G, i.e. G is symmetric.

(i)=-(). By Proposition 3, the map ¢ — ¢* is an automorphism of ¢>(C'on,,+1). This map transforms a facet G
with facet vector ¢ into a facet G* with facet vector g*. If G is symmetric, then G* = G, and therefore g* = g.

(iiy=(). Let f = f¥ + f° be a facet vector of a facet F' of Coon,, 1 such that f© = 0. Then the facet F is
zero-lifting of the facet V' = F N R¥ of the cone Con,,. In this case, f" is also a facet vector of the facet
G = (F) of )(Cony,11). Obviously, (fV)* = fV.

(iii)=-(iv). This implication is implied by definition of zero-lifting of a facet of the cone )(Con,,+1).

(iv)=-(i). The map  induces a bijection between 7(F") and (). Since m(F) is zero-lifting of ', the facet
vector of () belongs to R”. This implies that the facet vector g of 1(F") belongs to Rfo, ie. g =g. O

The symmetry group of C'on,,+1 is the symmetric group 32,1 of permutations of indices (see [DL97]). The group
. is a subgroup of the symmetry group of the cone ¢ (C'on,,11). The full symmetry group of 1»(Con,,11) is
Y, X X, where X5 corresponds to the map ¢ — ¢* for ¢ € ¢¥(Con,,41). By Proposition 4, the set of facets
of ¢»(Con,,+1) is partitioned into pairs G, G*. But it turns out that there are pairs such that G* = o(G'), where
o€ X,

9 Projections of hypermetric facets
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The metric cone Met,, 1, the hypermetric cone Hyp,,+1 and the cut cone C'ut,, 1 lying in the space REVEo
have an important class of hypermetric facets, that contains the class of triangular facets.

Letb;, i € V, be integers such that >, ., b; = p, where o = 0 or . = 1. Usually these integers are denoted
as a sequence (by, ba, ..., by,), where b; > b; 1. If, for some 4, we have b; = b;11 = ... = bj1m—1, thenthe
sequence is shortened as (b1, ..., b, bty -y by ).

s Y o

One relates to this sequence the following inequality of type b = (b1, ..., by,)
— Z bzb]x(zj) > 0,
ijev
where z = {x;;} € R” and the vector f(b) € R” has coordinates f (b);;) = —bsb;. This inequality is called
of negative or hypermetric type if in the sum > ", _,, b; = 1 we have po = 0 or p = 1, respectively.

The set of hypermetric inequalities on the set V' U {0} determines a hypermetric cone Hyp,,+1. There are
infinitely many hypermetric inequalities for metrics on V' U {0}. But it is proved in [DL97], that only finite number of
these inequalities determines facets of Hyp,, 1. Since triangle inequalities are inequalities (f(b), ) > 0 of type
b = (12,0n3, —1), the hypermetric cone Hyp, 11 is contained in Met,, .1, ie. Hypny1 C Met, 1 with
equality forn = 2.

The hypermetric inequality (f(b), ) > 0 takes the following form on the set V' U {0}.

— > by =— Y bibjay — Y bobizey > 0. (14)

1,JeVU{0} (ij)eE %
If we decompose the vector f(b) as f(b) = fY(b) + f°(b), then fV(b)(ij) = —bibj, (ij) € F, and
FO(0)0i) = —bobi,i € V.
Let, for S C V/, the equality >, b; = 0 hold. Denote by b a sequence such that b7 = —b; if i € S and
by = b;ifi & S. The sequence b° is called switching of b by the set S.

The hypermetric cone Hyp,,+1 has the following property (see [DL97]). If an inequality (f(b), ) > 0 defines a
facetand ", b; = 0 for some S C V' U {0}, then the inequality ( f(b°),z) > 0 defines a facet, too.

Proof of Proposition 2 for Hyp,, 1.

Consider the inequality (14), where (f°(b),eq) = — >,y bobi = 0. Then 3", -, b; = 0. Hence the cone
Hypn11 has similar inequality for 8, where b)" = —b; forall i € V. Hence if one of these inequalities defines a
facet so does another. Obviously, f0(b") = f 9(b). Hence these facets satisfy the assertion of Proposition 2. [

Theorem 3. Let (f(b),x) > 0 define a hypermetric facet of a cone in the space R¥YFo. Then the map v
transforms it either in a hypemetric facet ifby = 0 or in a distortion of a facet of negative type ifby = 1. Otherwise,
the projection is not a facet.

Proof. By Section 8, the map ¢ transforms the hypermetric inequality (14) for z € RE“Fo into the following

inequality
— Z bibjqqij) — bOwaZ>O
(ij)eF 9%

for g = Z(z‘j)eE Q(z‘j)‘P(e(ij)) + > iey wigq(i) € Qn.
Since f(b) determines a hypermetric inequality, we have by = 1 — >, b; = 1 — . So, the above inequality

takes the form
Z bibjqujy < (n—1) Z biw;.
(ij)eE i€V
By Theorem 1, this facet is projected by the map ¢ into a facet if and only if (f(b),eq) = 0, where ey =
Ziev e(Oi)' We have

o) = > fb)oi =~ bobi = —bopr = (1t — 1)p.

1% eV
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This implies that the hypermetric facet-defining inequality (f(b),x) > 0 is transformed into a facet-defining

inequality if and only if either . = 0 and then by = 1 or x = 1 and then by = 0. So, we have
if u = 1and by = 0, then the above inequality is a usual hypermetric inequality in the space 1) (R”) = p(R¥) =
RE?,

if ©» = 0and by = 1, then the above inequality is the following distortion of an inequality of negative type

— Z biij(ij) — szwl >0, where Z b; = 0. (15)

(ij)eE icV i€V

Comparing (7) with the inequality (15), we see that a canonical facet vector g(b) of a facet of ¢»( Hyp,,+1) has the
form g(b) = g*(b) + ¢g*(b), where g;;(b) = g(ij)(b) +v; — vj,and

1
g(ij)(b) = —bibj, v; = _ﬁbi foralls € V.

Define a cone of weighted quasi-hyper-metrics WQ Hyp,, = ¥(Hyp,+1) We can apply Proposition 3, in order
to obtain the following assertion.

Proposition 6. The map q — ¢* preserves the cone W Q Hypn, i.€.
(WQHyp,)" = WQHypn,.

In other words, if ¢ € W Q Hyp,, has weights w;,i € V, then the cone W QQ Hyp,, has a point q* with weights
—w;, 1 € V. ]

10 Generalizations of metrics

The metric cone Met,, ., is defined in the space RE“Fo_ |t has an extreme ray which is spanned by the vector
€0 = Yicv €0i) € R0, Facets of Met, 1 are defined by the following set of triangle inequalities, where
de M@tn+1.

Triangle inequalities of the sub-cone Met,, that define facets of Met,, 1 that are zero-lifting and contain eg:
diry + dg) — djy > 0, fori, j, k€ V. (16)
Triangle inequalities defining facets that are not zero-lifting and contain the extreme ray /o spanned by the vector e:
dijy + djoy — doy = 0and d;) + dgoy — djoy > 0, fori,j € V. (17)

Triangle inequalities defining facets that do not contain the extreme ray /o and do not define facets of Met,,.
d(io) + djoy — dgz) = 0, fori, j € V. (18)

One can say that the cone Met,, € R0 is lifted into the space R”“Fo using restrictions (17) and (18). Note that
the inequalities (17) and (18) imply the following inequalities of non-negativity

d(zO) >0, fori e V. (19)

A cone defined by inequalities (16) and (19) is called by cone W Met,, of weighted metrics (d, w), where d €
Met, and w; = d ) fori € V are weights.
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If weights w; = dq;) satisfy also the inequalities (17) additionally to the inequalities (19), then the weighted metrics
(d,w) forma cone dW M et,, of down-weighted metrics. If metrics have weights that satisfy the inequalities (19)
and (18), then these metrics are called up-weighted metrics. Detail see in [DD10], [DDV11].

Above defined generalizations of metrics are functions on unordered pairs (ij) € E U Ey. Generalizations of
metrics as functions on ordered pairs ij € E© are called quasi-metrics.

The cone QMet,, of quasi-metrics is defined in the space REC by non-negativity inequalities ¢;; > 0 for all
ij € E©, and by triangle inequalities ¢ij + @k — qir, > O for all ordered triples ij % for each ¢ € QM et,,. Below
we consider in Q Met,, a sub-cone W Q M et,, of weighted quasi-metrics.

11 Cone of weighted quasi-metrics

We call a quasi-metric ¢ weighted if it belongs to the subspace @,, C RE?. So, we define
WQMet, = QMet, N Q.

A quasi-metric q is called weightable if there are weights w; > 0 forall i € V such that the following equalities
hold

qij + Wi = qji + wj
foralli,j € V,i # j. Since ¢;; = qa;; + a;, we have ¢;; + w; = a;; + 4+ wi = 4G + 45 + wj, i.e.

q;-lj — q?i = 2q;.lj = w; — w;, what means that, up to multiple % and sign, the antisymmetric part of ¢;; is w; —w;.
So, weightable quasi-metrics are weighted.

Note that weights of a weighted quasi-metric are defined up to an additive constant. So, if we take weights non-
positive, we obtain a weightable quasi-metric. Hence, sets of weightable and weighted quasi-metrics coincide.

By definition of the cone W QM et,, and by symmetry of this cone, the triangle inequality ¢;; + ¢;1 — ¢, > 0 and
non-negativity inequality ¢;; > 0 determine facets of the cone W QM et,,. Facet vectors of these facets are

tijk =€ + €jk — €k and €ijs

respectively. It is not difficult to verify that ¢,,, e;; & Q... Hence these facet vectors are not canonical. Below, we
give canonical representatives of these facet vectors.

Let T'(ijk) C K9 be atriangle of K with direct arcs 77, jk, ki and opposite arcs ji, k4, ik. Hence
fT(ijk) = (eij + ek + eki) — (eji +erj + eik).

Proposition 7. Canonical representatives of facet vectors t;;;, and e;; are

X . 1. .
tijk + ik = tijk + trgi, and g(ij) = (eij + eji) + E(P(Z) - (7)),
respectively.
Proof. We have tijk — fT(ijk) =€j; t+erj— ek = tkji = t;jk‘
determine the same facet, and the vector ¢;;;, + t;; € Rfo is a canonical representative of facet vectors of this
facet. We obtain the first assertion of Proposition.

Consider now the facet vector e;;. Itis more convenient to take the doubled vector 2e;;. We show that the vector

This implies that the facet vectors ¢, and ¢ j;

) 1 y
9(ij) = 2e;j — — > .

keV—{i,j}
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is a canonical representative of the facet vector 2e;;. It is sufficient to show that g(ij) € Qn, i.e. gii(ij) =
g5 (i) + wi — wy. Infact, we have g;;(ij) = 2 — =2 =1+ 2, g;(ij) = =2 =1 - 2, g;.(ij) =
—gki(i§) = 7, ik (i7) = —gr;(i7) = — 7 grw (ij) = 0. Hence we have

1
g°(ij) = eij + €ji, wy = —w; = - andwy = Oforallk € V — {i, j}.
These equalities imply the second assertion of Proposition. O

Let 7;;1. be a facet vector of a facet of Met,, determined by the inequality d;;) + d(r) — dx) > 0. Then
tijk + trji = ©(Tijk), where the map ¢ : RE — RSEO is defined in Section 2. Obviously, a triangular facet is
symmetric.
Recall that g;; = q(;j) + wi —w; ifg € WQMet,. Leti, j, k € V. Itis not difficult to verify that the following
equalities hold:

4+ Gk — %Gk = 4ij + ¢k — gij > 0. (20)
Since 4;; = 4;; = 4 ), these inequalities show that the symmetric part ¢* of the vector ¢ € WQMet,, is a
semi-metric. Hence if w; = w forall « € V/, then the quasi-semi-metric ¢ = ¢* itself is a semi-metric. This implies
that the cone W (Q M et,, contains the semi-metric cone M et,,. Moreover, Met,, = W QMet,, N Rfo.

Now we show explicitly how the map 1) transforms the cones Met,,, 1 and dW M et,, into the cone WQ M et,,.

Theorem 4. The following equalities hold

Y(Metyni1) = p(dW Met,,) = WQMet,, andWQMet; = WQMet,,.

Proof. All facets of the metric cone Met,, 1 of metrics on the set V' U {0} are given by triangular inequalities
dijy + dry — dayy = 0. They are hypermetric inequalities (g(b),d) > 0, where b has only three non-zero
values b; = by, = 1and b; = —1 for some triple {ijk} C V U {0}. By Theorem 3, the map ¢ transforms
this facet into a hypermetric facet, i.e. into a triangular facets of the cone v (Met,, 1) if and only if by = 0, i.e.
if0 & {ijk}. If 0 € {ijk}, then, by the same theorem, the equality by = 1 should be satisfied. This implies
0 € {jk}. Inthis case the facet defining inequality has the form (15), that in the case £ = 0, is

Q(ij) + w; — Wi > 0.

This inequality is the non-negativity inequality ¢;; > 0.
Ifo; = 1,b; = —1and k = 0, the inequality d;;) + d;jo) — d(o;) > 0 is transformed into inequality

q(ij) +wj —w; >0, ie. g > 0.

This inequality and inequalities (20) imply the last equality of this Theorem.

The inequalities (18) define facets £ of Met,, 1 and dWW Met,, that do not contain the extreme ray y. Hence, by
Theorem 3, ¥)(F') are not facets of W QM et,,. But, recall that the cone dW M et,, contains all facet of Met,, 1
excluding facets defined by the inequalities (18). Instead of these facets, the cone dW M et,, has facets G; defined
by the non-negativity equalities (19) with facet vectors e ;) forall i € V. Obviously all these facets do not contain
the extreme ray [y. Hence, by Theorem 2, ¢)(G; ) is not a facet of 1) (dW Met,, ). Hence we have also the equality
WQMet,, = p(dW Met,,). O

Remark. Facet vectors of facets of M et,, that contain the extreme ray /o spanned by the vector eq are 7;;;, =
T Tijo = 7" + 70 and 70 = 7V — 70, where 7V = e(;;) and 70 = e(;0) — e(;0)- Hence Proposition 2
is true for Met,1, and we can apply Proposition 3 in order to obtain the equality W QMet) = WQMet,, of
Theorem 4.

12 Thecone Cut,,

The cut vectors 5(S) € REVEo forall S € V' U {0} span all extreme rays of the cut cone Cut,, 1 € R¥YEFo, In
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other words, C'ut,, 1 is the conic hull of all cut vectors. Since the cone C'ut,, 1 is full dimensional, its dimension
is dimension of the space R”“F0 that is ”(”+1)

Recall that 5(S) = §(V U {0} — 9). Hence we can consider only S such that S C V,i.e. 0 ¢ S. Moreover, by
Section 5,
8(S)= D ewn= D capt D eon=0"(S)+D eon, 21)
i€S,j¢S i€S,jev—S ies ies
where 6V (.S) is restriction of §(.S) on the space R” = +(R¥). Note that
5(V) =6({0}) = (i) = €o-
ieV
Consider a facet F' of Cut,, 1. Let f be facet vector of F'. Set
R(F) = {5 CV: (£,8(5)) = 0}.
For S € R(F), the vector 6(.5) is called root of the facet F'. By (21), for S € R(F), we have
(£,6(8)) = (£,6"(9)) + > foi) = 0. (22)
ieS
We represent each facet vector of Cut, 1 as f = fV + f°, where f¥ € R¥ and f0 € RFo,

The set of facets of the cone C'ut,, 1 is partitioned onto equivalence classes by switchings (see [DL97]). For each

S,T C V U {0}, the switching by the set 7" transforms the cut vector §(.S) into the vector 6(SAT'), where A is

symmetric difference, i.e. SAT = SUT —SNT. ltis proved in [DL97]thatif T" € R(F'),then {(SAT) : S €
F)} is the set of roots of the switched facet F°(7) of Cut,, 1. Hence R(F°(1)) = {SAT : S € R(F)}.

Let F' be a facet of C'ut,,+1. Then ' contains the vector eg = §(V') ifand only if V' € R(F’). Hence Lemma 1
below is an extended reformulation of Proposition 2.

Lemma 1. Let ' be a facet of Cut,,, 1 such thatV € R(F). Let f = fV + f° be facet vector of F. Then the
vector f* = fV — f0 is facet vector of switching F°(V') of the facet F', and V € R(F*(V)),

Proof. Since V € R(F), F*(V) is a facet of Cut,, ;. Since SAV =V — § = S, for S C V, we have
R(F°V)) = {S:S e R(F)}.
Since ) € R(F), the set AV =V € R(F*(V)). Now, using (22), for S € R(F‘S(W), we have

(f*8(8)) = ((f" = £9),8(8)) = (f*,6"(S) = > fooiy
€S
Note that 6*'(S) = 6" (S), and, since V' € R(F), 6(V') = 6({0}), we have (f,6(V)) = > ;v f(oi) = O-

Hence 3" cq fion = — Dics f(oi)- Itis easy to see, that (f*,6(S)) = (f,8(S)). Since S € R(FOV)) if
and only if S € R(F), we see that f* is a facet vector of F(V), O

The set of facets of C'ut,, 1 is partitioned into orbits under action of the permutation group >,,.1. But some
permutation non-equivalent facets are equivalent under switchings. We say that two facets F, F’ of Cut,, 1
belong to the same type if there are o € X, 41 and T C V such that oo (F”) = Fo(T),

13 Cone OCut,,

Denote by OCut,, C RE? the cone whose extreme rays are spanned by ocut vectors ¢(.S) forall S C V,
S # 0, V. In other words, let

OCuty, ={ce€eQy,:c= Z age(S), ag > 0},
ScV
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Coordinates c;; of a vector ¢ € OC'ut,, are given in (6), where w; > O foralli € V. Hence OCut, C Q.
Recall that

o(8) = 5(6°(5) + Y (i), 23)

ics
where 59 (S) = ¢(5Y (S)). Note that 6°(S) = 69(S) and p(S) = —p(S), where S =V — S.

Denote by Cut? = ¢(Cut,,) the cone generated by 6©(S) forall S C V. The vectors 6°(S) forall S C V,
S + 0,V are all extreme rays of the cone Cut© that we identify with C'ut,, embedded into the space RZ .

Lemma 2. ForS C V, the following equality holds
P(6(5)) = 2¢(9).

Proof. According to Section 8, 1(6Y (5)) = (8" (5)) = 6°(S). Besides, 1(e(;)) = p(i) foralli € V.
Hence, using (21), we obtain

$(8(8)) =6V (S) + D vleq) = )+ > p(i) ) +p(S).

€S €S
Recall that ¢/ (6(V')) = ¥ (ep) = 0and ¢(V') = 0. Hence, according to (23), we obtain
»(8(S)) = 2¢(S), forall S C V.
Lemma is proved. 0
Theorem 5. The following equalities hold

(Cutpi1) = OCuty, and OCut,, = OCuty,.

Proof. Recall that the conic hull of vectors §(S) forall S C V' is Cut,,+1. The conic hull of vectors ¢(.S) for all
S C Visthe cone OCut,,. Since 1(6(V)) = ¢(V) = 0, the first result follows.

The equality OCut}, = OCut,, is implied by the equalities ¢*(S) = ¢(S) forall S C V.
By Lemma 1, the equality OCut;, = OC'ut,, is a special case C'on,, 1 = Cut,41 of Proposition 3. O

14 Facets of OCut,,

Lemma 3. Let F' be a facet of Cut,, 1. Theni)(F') is a facet of OC'ut,, ifand only if V' € R(F).

Proof. By Theorem 2, ¢)(F) is a facet of OC'ut,, ifand only if eg = 6(V') C F,i.e. ifandonlyif V- € R(F). O
Fora facet G of OC'ut,, with facet vector g, we set
R(G) ={S SV :(g,c(5)) =0}

and call the vector ¢(S) for S € R(G) by root of the facet G.

Note that §()) = 0 and ¢(0) = ¢(V) = 0. Hence ) € R(F') and ) € R(G) for all facet F of C'ut,,.; and all
facets G of OCut,,. The roots 6() = 0 and ¢() = ¢(V') = 0 are called trivial roots.

Proposition 8. Fora facet F' of C'ut,, 11, let G = 1(F’) be a facet of OC'ut,,. Then the following equality holds
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Remark. We give two proofs of this equality. Both are useful.

First proof. According to Section 8, the map ¢ transforms an inequality (f,z) > 0 defining a facet of Cut,, 11
into the inequality (12) defining the facet G = ¢ (F") of OCut,,. Recall the the inequality (12) relates to the
representation of vectors ¢ € Q, inthe basis {¢(ei;), p(i)}, 6. ¢ = - i5yep qij) P(eqs)) + Diey wip(i).
Letq = ¢(S) for S € R(G). Then, according to (23), we have ¢(;;) = %65].)(5), w; = $fori € Sandw; =0
fori € S. Hence, omitting the multiple £, the inequality in (12) gives the following equality

Z f(ij)6gz/‘j)(s) + Z foiy =0
(ij)eE i€S
which coincides with (22). This implies the assertion of this Proposition.

Second proof. By Theorem 2, «(l) is an extreme ray of «/(F’) if and only if [ is an extreme ray of F' and
[ # lp. Since [ is spanned by 6(.S) for some S € R(F') and v(l) is spanned by ¢)(5(S)) = ¢(S), we have
R(G)={ScCV:S€R(F)} Since c(V) = 0, we cansuppose that V' € R(G),and then R(G) = R(F).
O

Remark. Note that (V') = 6({0}) = eg # 0 is a non-trivial root of F, i.e. V € R(F). But¢(V) =
Y(6(V)) = 0 isatrivial root of R(G).

Recall that, for a subset 7 C V,we setT =V — T. Note that T = VAT and T # V U {0} — T.

Lemma 4. Let F be a facet of C'ut,, 1, andT € R(F). Then the image 1»(F*(1)) of the switched facet F°(")
is a facet of OCut,, ifand only if T € R(F).

Proof. By Lemma 3, ¢(F°(T)) is a facet of OC'ut,, ifand only if V- e R(F9(T)), ie.ifand onlyif VAT =T €
R(F). O

For a facet G of OC'ut,,, define G°(") as the conic hull of ¢(SAT) forall S € R(G). Since each facet G of
OCut,, is ¢(F') for some facet F' of Cut,, 11, Lemma 4 and Proposition 8 imply the following assertion.

Theorem 6. Let G be a facet of OC'ut,,. Then GO(T) is a facet of OC'ut,, ifand only if T, T € R(G'), and then
R(G*T)) = {SAT : S € R(G)}. O

Theorem 6 asserts that the set of facets of the cone OCut,, is partitioned onto equivalence classes by switchings
G — GOT) where T, T € R(G).

The case T' = V in Theorem 6 plays a special role. Recall that V' € R(F') if F'is a facet of C'ut,,41 such that
W (F') is a facet of OC'ut,,. Hence Lemma 1 and Proposition 3 imply the following fact.

Proposition 9. Let F' be a facet of C'ut,, 11 such that(F) is a facet of OCut,,. Let g = g° + g* be a facet
vector of the facet«)(F). Then the vector g* = g° — g is a facet vector of the facet 1)(F°(V)) = (4 (F))* =
((F))°V) such that R((y)(F))*) = {S : S € R(F)}. O

Recall that roughly speaking OC'ut,, is projection of C'ut,,; along the vector 6(V') = §({0}).

Let o € ¥, be a permutation of the set V. For a vector ¢ € RZ”, we have o(q)ij = Qo(i)o(s)- Obviously if g is
a facet vector of a facet G of OC'ut,,, then o(g) is the facet vector of the facet o (G) = {o(q) : ¢ € G}.

Note that, by Proposition 9, the switching by V" is equivalent to the operation ¢ — ¢*. Hence the symmetry group
of OC'ut,, contains the group 3,, x X5, where 335 relates to the map ¢ — ¢* for ¢ € OCut,,.

Theorem 7. The group X2,, x X5 is the symmetry group of the cone OC'ut,,.

Proof. Let - be a symmetry of OC'ut,,. Then ~ is a symmetry of the set F(eq) of facets F of the cone C'ut,, 11
containing the vector . The symmetry group I'(eq) of the set F(eq) is a subgroup of the symmetry group of the
cut-polytope CutEH. In fact, I'(eq) is stabilizer of the edge ¢ of the polytope CutEH. But it is well-known that
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I'(ep) consists of the switching by V" and permutations o € ¥, 11 leaving the edge e, non-changed. The map ¢
transforms these symmetries of (e ) into symmetries o € 3, and ¢ — ¢* of the cone OC'ut,,. O

The set of all facets of OCut,, is partitioned onto orbits of facets that are equivalent by the symmetry group
Y, X Xq. Itturns out that, for some facets G, subsets S € R(G) and permutations o € X,,, we have G5 =
o(Q).

By Proposition 5, if a facet of C'ut,, , 1 is zero-lifting of a facet ' of Cut,,, then the facet G = (F) of OCut,,
is symmetricand G = G* = G°(V) is zero-lifting of F'V'.

So, there are two important classes of orbits of facets of OC'ut,,. Namely, the orbits of symmetric facets, that are
zero-lifting of facets of C'ut,,, and orbits of asymmetric facets that are ¢)-images of facets of C'ut,, 11 and are not
zero-lifting.

15 Cases3 <n <6

It is worth to compare results of this Section with Table 2 of [DDV11].

Most of described below facets are hypermetric or negative type. We give here the corresponding vectors b in
accordance with Section 9.

n=3. Note that Cuty = Hyps = Met,. Hence
OCuts = WQHyps = WQMets.

All these cones have two orbits of facets: one orbit of non-negativity facets with b = (1,0, —1) and another orbit
of triangular facets with b = (12, —1).

n=4. We have Cuts = Hyps C Mets. Hence
OCuty = WQHypy C WQMety.

The cones Hyps = C'uts have two orbits of facets: triangular and pentagonal facets. Recall that a triangular facet
with facet vector 7, is zero-lifting if 0 & {ijk}. Hence the cones WQHyps = OC'uty have three orbits of
facets: of non-negativity with b = (1,02, —1), triangular with b = (12,0, —1) and weighted version of negative
type with b = (12, —12).

n=5. We have again Cuts = Hypg C Metg. Hence

OCuts = WQHyps C WQMets.

The cones Hypg = Cutg have four orbits of facets, all are hypermetric: triangular with b = (12,03, —1),
pentagonal with b = (1,0, —12) and two more types, one with b = (2,12, —13) and its switching with b =
(1*, -1, —2). These four types provide 6 orbits of facets of the cones WQHyps = OCuts: non-negativity
with b = (1,03, —1), triangular with b = (12,02, —1), of negative type with b = (12,0, —12), pentagonal with
b = (13, —12), and two of negative type with b = (2,1, —13) and b = (13, -1, —2).

The last two types belong to the same orbit of the full symmetry group 35 x 3. Hence the cone OCuts has 5
orbits of facets under action of its symmetry group.

n=6. Now, we have Cut; C Hypy C Mety. Hence

OCute C WQHyps C WQMetg.

The cone C'ut7 has 36 orbits of facets under action of the permutation group 7. Switchings contract these orbits
into 11 types Fy, 1 < k < 11, (see [DL97], Sect. 30.6). J.Vidali compute orbits of facets of OC'utg under action
of the group X¢. Using these computations, we give in Table below numbers of orbits of facets of cones C'ut7 and
OCutg (cf. Figure 30.6.1 of [DL97]).
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The first row of Table gives types of facets of C'ut;. In the second row of Table, for each type F}, numbers of orbits
of facets of C'ut; of type F}, under action of the group X7. The third row of Table, for each type Fy, gives numbers
of orbits of facets of OC'ut¢ that are obtained from facets of type F}, under action of the group >J¢. The fourth row
gives, for each type F},, numbers of orbits of facets of OC'utg that are obtained from facets of type F}, under action
of the group ¢ x Xo.

The last column of Table gives total numbers of orbits of facets of the cones Cut; and OCutg.

Table.

types F1 F2 F3 F4 F5 F6 F7 Fg Fg Fw F11 |Q|
h3 1 1 2 1 3 2 4 7 |5 3 7 36
26 2 12 |4 1 |13 |2 7 1136 6 15 61
Sexa |2 [2 13 [T |2 [1 [4 [7 |3 [[4 |8 |[37

The first three types F1, F5, F3 relate to 4 orbits of hypermetric facets F'(b) of C'ut that are zero-lifting, where
b= (12,0%,—1),b = (13,02, —12)and b = (2,12,0,—13), b = (1*,0, —1, —2). Each of these four orbits
of facets of C'ut; under action of 37 gives two orbits of facets of OC'utg under action of the group .

The second three types Fy, F5, Fg relate to 6 orbits of hypermetric facets F'(b) of C'ut that are not zero-lifting.
Each of these 6 orbits gives one orbit of facets of OCutg under action of the group .

The third three types I, Fy, Fy relate to 16 orbits of facets of clique-web types CTW/ (b). These 16 orbits give 26
orbits of facets of OC'utg under action of Xg.

The last two types F g = Par; and Gy are special (see [DL97]). They relate to 10 orbits of C'ut7, that give 21
orbits of facets of OC'utg under action of Xg.

The subgroup 5 of the full symmetry group g x X5 contracts some pairs of orbits of the group X¢ into one orbit
of the full group. The result is given in the forth row of Table.

Note that the symmetry groups of C'ut; and OC'utg have 36 and 37 orbits of facets, respectively.
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