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REGULAR  INVERSIVE  POLYTOPES 

Norman W. Johnson 

Abstract:  Corresponding to each regular asymptotic polytope P in hyperbolic n-space Hn is an isomorphic 

figure °P in inversive (n1)-space In−1 having many related metric properties.  A regular inversive polytope °P 

has a ৵ৱ৬৩৶৯৴৭  and a ৺৩৬ৱ৽৻ , with 2 being its ৬ৱৰ৭৬৺৩৴ ৩৶৯৴৭ and 2 its ৩৶ৼৱৰ৭৬৺৩৴ ৬ৱ৻ৼ৩৶৫৭.  The 

values of  and  are determined for each regular inversive n-polytope. 
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Introduction 

The classical real metric spaces (or “spaces of constant curvature”) are the spherical, Euclidean, and hyperbolic 
n-spaces Sn, En, and Hn (n ≥ 1); elliptic n-space ePn results from identifying antipodal points of Sn and 
has many of the same metric properties.  The points at infinity of hyperbolic n-space Hn lie on the absolute 

hypersphere, which has the geometry of a Möbius (n1)-sphere or inversive (n1)-space In−1.  Each k-plane 

of Hn meets the absolute hypersphere in a real inversive (k1)-sphere Ik−1, with I1 being an inversive circle 

and I0 a pair of points.  Two hyperplanes of Hn may be intersecting, meeting in an (n2)-plane; parallel, having 
a single absolute point in common; or diverging, with a common perpendicular.  The corresponding inversive 

(n2)-spheres are respectively separating, tangent, or separated. 

An n-polytope  ࣪ is a partially ordered set of j-dimensional “entities” (1 ≤ j ≤ n), its j-faces, satisfying certain 
incidence conditions, such as those given by McMullen & Schulte (2002, pp. 22–25).  A totally ordered subset 

of j-faces, one of each rank from 1 to n, is a flag.  When  ࣪ is realized as a geometric figure P in some n-

dimensional real space, the unique (1)-face, or nullity, can be taken to be the empty set .  The 0-faces are 
points, the vertices of P, and the 1-faces joining adjacent vertices are edges.  The unique n-face is the body of 

P, essentially its “interior.”  The (n1)-faces are called facets, and the (n2)-faces in which adjacent facets 
meet are ridges.  A 2-polytope is a polygon, and a 3-polytope is a polyhedron.  An n-polytope P is regular if 
its symmetry group is transitive on the flags. 

Dihedral Angles 

It is convenient to denote a regular p-gon of (interior) angle 2/q by the extended Schläfli symbol p:q.  
Then the polygon is spherical, Euclidean, or hyperbolic according as q is less than, equal to, or greater than 

2p/(p2).  A regular hyperbolic polygon can be ordinary, with all its vertices lying on an ordinary circle, or 
asymptotic, with adjacent sides parallel, so that the vertices all lie on the absolute circle of H2 and the angles are 
all zero; a regular asymptotic p-gon thus has the symbol p:oo.  The center of an ordinary or asymptotic 

p-gon is an ordinary point.  An infinite-sided apeirogon oo :q of angle 2/q (q >2), whose center is an 

absolute point, can be inscribed in a horocycle, and an asymptotic apeirogon oo :oo in the absolute circle. 
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A regular polyhedron whose faces are p-gons, arranged q at a vertex, having dihedral angle 2/r, is denoted 

by p, q:r.  The polyhedron is spherical, Euclidean, or hyperbolic according as sin /p sin /r is greater 

than, equal to, or less than cos /q, and it is asymptotic when the vertex section q:r is Euclidean, i.e., when 

r = 2q/(q2).  The regular asymptotic polyhedra of H3 consist of the five convex polyhedra 

3, 3:�3, 4:�, :�, :10̸3�, :

the four star polyhedra 

5̸2, :10̸3�, 5̸2: �5̸2, :�, 5̸2: 

and the three apeirohedra 

4, 4:�, :�, :

In similar fashion, a regular 4-polytope with facets p, q}, r surrounding each edge, and dihedral angle 2/s 

is denoted by p, q, r:s, the polytope being spherical, Euclidean, or hyperbolic depending on the value of 

s.  It is asymptotic when the vertex section q, r:s is Euclidean, i.e., when sin /q sin /s = cos /r.  

Analogous criteria can be developed for higher-dimensional regular polytopes 

p, q,  .  .  .  ,  u, v:w. 

Going in the other direction, a one-dimensional polytope comprises a line segment (or a circular arc) and its two 

endpoints; the whole figure may be called a ditel.  This can be a circular ditel :a (a > 2) in S1, a straight ditel 

:ooin E1, an ordinary hyperbolic ditel :bi (b > 0) in H1, or an asymptotic ditel :0 (an entire hyperbolic 

line with its two absolute points).  Each finite ditel :a, :oo, or :bi has a unique midpoint, halfway 

between the endpoints.  An asymptotic ditel, however, does not have a well-defined midpoint. 

Each vertex of a regular asymptotic n-polytope P in hyperbolic n-space Hn lies on the absolute hypersphere, 

and each j-face (1 ≤ j ≤ n1) lies in a unique j-plane.  The j-plane of a j-face meets the absolute hyper-

sphere in an inversive (j1)-sphere.  The vertices of P and these (j1)-spheres can be taken as the j-faces 

( ≤ j ≤ n1) of an isomorphic regular inversive n-polytope °P.  The (1)-face of °P is (as usual) the empty 

set, and the n-face of °P is the whole absolute hypersphere, regarded as an inversive (n1)-sphere In−1. 

The dihedral angle between two adjacent facets of the inversive n-polytope °P is, in general, the angle between 

two (n2)-spheres on In−1, which is the same as the dihedral angle between the corresponding facets of the 

asymptotic n-polytope P.  For n = 1, P is an asymptotic ditel :0, and °P is an inversive dyad °:0, whose 
two facets are points, the “angle” between which is infinite.  For n = 2, P is a regular asymptotic p-gon p:oo , 
and °P is a regular inversive p-gon °p:oo, adjacent facets of which are tangent point-pairs (i.e., they have 

one point in common) on an inversive circle, the angle between which is zero.  For n ≥ 3, the dihedral angle 
between adjacent facets of a regular inversive n-polytope °P is the positive angle between two separating 

(n2)-spheres on an inversive (n1)-sphere. 

For n ≥ 2, joining the center of a regular asymptotic n-polytope P to any ridge, or (n2)-face, determines a 
median hyperplane of P.  The angle between the median hyperplane and either of the facets that meet at the 
ridge is the midangle, half the dihedral angle.  For both P and the corresponding regular inversive polytope °P, it 

often turns out to be simpler to work with the midangle  rather than the dihedral angle 2


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Metric Formulas 

In the Beltrami–Klein model for hyperbolic n-space Hn, the ordinary points of Hn are represented by the interior 

of an oval (n1)-quadric  in projective n-space Pn, with the points of  itself representing the absolute 
hypersphere.  Let the points X and hyperplanes Ǔ of Pn have homogeneous coordinates ⦅ x  ⦆  =   ( x 0, x 1,  .  .  .  , x n )�and�⟦ u ⟧   =   [ u 0, u 1,  .  .  .  , u n ] 

with ⦅ x  ⦆ treated as a row and ⟦ u ⟧ as a column.  Point X lies on hyperplane Ǔ, written X Ǔ, whenever ⦅ x  ⦆⟦ u ⟧ =  0. Then the (n1)-quadric  can be taken to be the locus of self-conjugate points, or the envelope 
of self-conjugate hyperplanes, in an absolute hyperbolic polarity defined by dual bilinear forms ⦅ x y ⦆  =  ⦅ x  ⦆H ⦅ y ⦆  ˅ �and�⟦ u v ⟧  =   ⟦ u ⟧  ˅ H −1⟦ v ⟧. 

Here H is a symmetric (n1)×(n1) matrix congruent to the pseudo-identity matrix In, 1  =   \1,  .  .  .  , 1,  1\ , 

and the caron denotes the transpose, making ⦅ y ⦆  ˅  a column and ⟦ u ⟧  ˅  a row.  We may, for instance, take H  to 

be the diagonal matrix \ 1, 1,  .  .  .  , 1\ , so that the absolute hypersphere ⦅ x x ⦆ =   0 has the equation 

x 1 
2          x n  2   =   x 0 

2. 

Every ordinary point X with coordinates ⦅ x  ⦆ has ⦅ x x ⦆ <  0, and every ordinary hyperplane Ǔ with coordinates ⟦ u ⟧  has  ⟦ u u ⟧  >  0.   The  discriminant  of  two  ordinary  hyperplanes Ǔ  and V̌  may  be  defined  by 

|| u v ||  =   ⟦ u u ⟧⟦ v v ⟧⟦ u v ⟧2, 

and the hyperplanes are then 

��� intersecting if�|| u v ||  >  0,��� 

���parallel�� if�|| u v ||  =  0,��� 

���diverging� if�|| u v ||  <  0.��� 

When Hn is taken to have constant curvature 1, we have simple expressions for distances and angles (cf. 
Coxeter 1998, pp. 209–210).  In place of the Euclidean distance |XY|, the hyperbolic distance between two 

ordinary points X and Y is given by 
 

                                           ]XY[  =  cosh−1 

 

                  | ⦅ x y ⦆| 
   ————–––———– .  
√⦅ x x ⦆√⦅ y y ⦆ 

 
(1) 

 

The angle between two intersecting or parallel hyperplanes Ǔ and V̌ is given by 

 
                                            (ǓV̌)   =   cos−1 

 

              | ⟦ u v ⟧| 
————–––———– ,  
√⟦ u u ⟧√⟦ v v ⟧ 

 
(2) 

 

and the minimum distance between two diverging hyperplanes Ǔ and V̌ by 

 
                                            )ǓV̌(  =  cosh−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(3) 
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The distance between a point X and a hyperplane Ǔ is given by 

  
                                          ]XǓ(  =  sinh−1 

 

             | ⦅ x  ⦆⟦ u ⟧| 
————–––———– .    
√⦅ x x ⦆√⟦ u u ⟧ 

 
(4) 

 

Given any hyperplane Ǔ and a point X not on Ǔ, a line through X and one of the absolute points of Ǔ is parallel 
to Ǔ in that direction.  Following Lobachevsky, the angle between the perpendicular from X to Ǔ and the parallel 
is called the angle of parallelism for the distance x = ]XǓ( and is given by 

(x)  =  cos1 tanh x  =  2 tan1 ex. ��������������������(5) 

As x increases from zero to infinity, (x) decreases from /2 to 0. 

A projective hyperplane Ǔ, with coordinates ⟦ u ⟧, meets the (n1)-quadric , i.e., the absolute hypersphere 

of  Hn regarded as the inversive (n1)-sphere In1, in an inversive (n2)-sphere ů, a hypersphere of In1, 
which is 

���real� if�⟦ u u ⟧  >   0,��� 

���degenerate if�⟦ u u ⟧  =   0,��� 

��� imaginary� if�⟦ u u ⟧  <   0.��� 

Taking the discriminant of two real or degenerate hyperspheres ů and v̊ to be the discriminant ||u v|| of the 
corresponding hyperplanes Ǔ and V̌, we find that the hyperspheres are 

���separating if� || u v ||   >    0,��� 

���tangent�� if� || u v ||   =    0,��� 

���separated� if� || u v ||   <    0.��� 

Applied to point-pairs ü = {U1, U2} and v̈ = {V1, V2} on an inversive circle, separation has the usual meaning 

associated with cyclic order (Coxeter 1966a, p. 218; 1998, pp. 22–23).  That is, ü and v̈ are separating if 

U1U2//V1V2, tangent if they have a point in common, and separated otherwise.  For n ≥ 3, two hyperspheres 

of  I n1 are separating, tangent, or separated according as they intersect in a real, degenerate, or imaginary 

(n3)-sphere. 

The angle between two separating hyperspheres ů and v̊ of In−1, which is the same as the angle between the 
corresponding intersecting hyperplanes of  Hn, is given by 

 
                                              (ův̊)   =   cos−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(6) 

 

Two separated hyperspheres ů and v̊ of In−1 have an analogous inversive distance (Coxeter 1966b; 1998, pp. 

292–298); this is the same as the minimum distance between the corresponding diverging hyperplanes of Hn and 
is given by 
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                                              )ův̊(  =  cosh−1 

 

              | ⟦ u v ⟧| 
————–––———– . 
√⟦ u u ⟧√⟦ v v ⟧ 

 
(7) 

 

The last two formulas are especially relevant to the properties of regular inversive polytopes. 

Antihedral Distances 

If P is a regular n-polytope in a real metric space, the distance from the center O of the body of P to one of its 
vertices is the circumradius 0R, and the perpendicular distance from O to (the center of) a facet is the inradius 

n1R.  When P is centrally symmetric, the antihedral distance between a pair of opposite facets is twice the 

inradius of P.  Although an odd polygon p:q or a regular simplex 3n1:w is not centrally symmetric, 

the regular compound p:q or 3n1 :w of two such polygons or simplexes in dual positions is.  
The distance between two opposite facets of the compound, one belonging to each component, can be taken as 
the antihedral distance of the polytope.  The inradius of a regular asymptotic apeirotope is infinite, but there is no 
antihedral distance, since there are no opposite facets. 

The radius  of a regular inversive polytope °P and its antihedral distance 2 are respectively the inradius and 

the antihedral distance of the corresponding regular asymptotic polytope P.  When  is finite, the antihedral 
distance of °P is the inversive distance between two separated hyperspheres of In−1, opposite facets either of 

°P or of a regular compound of two °P’s.  For an inversive apeirotope,   is infinite.  The subradius   of °P is 
the radius of a facet of °P. 

The inradius 0R of an asymptotic ditel :0 or the radius  of an inversive dyad °:0 is infinite.  For a regular 
inversive p-gon °p:oo ,  is the distance for which the angle of parallelism is /p, and it follows from (5) that 

tanh  = cos /p.  Values for particular polygons are given in the table below, where we write  and ̄     for the 

golden-section number 1 ̸2(√͞51) and its inverse 1 ̸2(√͞51). 

Table 1.  Regular Inversive Polygons 

       Polygon       2 tanh 

     °3 :oo 

     °4 :oo 

     °5 :oo 

     °5̸2:oo 

     °6 :oo 

     °p:oo 

   ° oo :oo 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

            1 

         √͞2 

 

̄ 

         √͞3 

    
2 cos /p 

            2 
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With the help of some hyperbolic trigonometry, we obtain a simple formula for the radius  of a regular inversive 

polyhedron °{p, q}:r  in terms of its subradius   and midangle  : 

                                                                                          tan /r 
                                                tanh   =  sinh   tan   =  ———– . 
                                                                                                             tan /p 

 
(8) 

 
The particular cases are listed in the following table. 

Table 2.  Regular Inversive Polyhedra 

     Polyhedron         tan         tanh  

   °3, 3 : 

   °3, 4 : 

   °4, 3 : 

   °3, 5 :10̸3 

   
°5, 3 : 

   °
5̸2, 5 :10̸3 

   °5, 5̸2: 

   °5̸2, 3 : 

   °3, 5̸2: 

   °4, 4 : 

   °3, 6 : 

   °6, 3 : 

           1̸3√͞3

            1 

           1̸3√͞3 
            
    √(34)/5 

           1̸3√͞3 
            
    √(34)/5 
            
    √(34̄  )/5 

           1̸3√͞3 
            
    √(34̄  )/5 

              1 

            √͞3 

           1̸3√͞3 

              1̸3 

          1̸3√͞3 

          1̸3√͞3 
           
   √(34)/5 
           
   √(34)/5 

           1̸5√͞5 

           1̸5√͞5 
           
   √(34̄  )/5 
           
   √(34̄  )/5 

             1 

             1 

             1 

 

From the relationship tanh  = sinh   tan , which holds for all regular inversive n-polytopes with n ≥ 3, 

we obtain the parameters for the seventeen regular inversive 4-polytopes °p, q, r:s, as given in the 
following table.  The last figure is an apeirotope.  Irrational values of s are rounded to four decimal places. 
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Table 3.  Regular Inversive 4-Polytopes 

                4-Polytope       tan       tanh  

      °3, 3, 3 :  

      °3, 3, 4 :  

      °4, 3, 3 :  

      °3, 4, 3 :  

      °3, 3, 5 :  

      °5, 3, 3 :  

      °5̸2, 5, 3 :  

      °3, 5, 5̸2:  

      °5,5̸2, 5 :  

      °5̸2, 3, 5 :  

      °5, 3, 5̸2:  

      °5̸2, 5, 5̸2:  

      °3,5̸2, 5 :  

      °5,5̸2, 3 :  

      °5̸2, 3, 3 :  

      °3, 3, 5̸2:  

      °4, 3, 4 :  

        1̸2√͞2 

          √͞2 

        1̸2√͞2 

           1 

            2 

        1̸2√͞2 

             

            ̄ 

             

            2 

           ̄   2 

            ̄ 

             

            ̄ 

        1̸2√͞2 

           ̄   2 

         √͞2 

           1̸4 

           1̸2 

           1̸2 

        1̸2√͞2 

      1̸4√͞2 2 

      1̸4√͞2 2 

         1̸2 

         1̸2 

         1̸2 

          1̸2 

          1̸2 

         1̸2̄ 

         1̸2̄ 

         1̸2̄ 

      1̸4√͞2̄   2 

      1̸4√͞2̄    2 

         1 

 

There are six regular inversive 5-polytopes °p, q, r, s:t, whose midangles  and radii  can be determined 
from the following table.  The last three are apeirotopes. 

Table 4.  Regular Inversive 5-Polytopes 

               5-Polytope       tan       tanh  

    °3, 3, 3, 3 : 

    °3, 3, 3, 4 : 

    °4, 3, 3, 3 : 

    °4, 3, 3, 4 : 

    °3, 3, 4, 3 : 

    °3, 4, 3, 3 : 

        1̸5√͞15̅ 

          √͞3 

        1̸5√͞̅ 

          √͞3 

          √͞3 

           1 

           1̸5 

       

1̸5√͞5 

       

1̸5√͞5 

          1 

          1 

          1 
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For n ≥ 6, there are just four regular asymptotic polytopes in hyperbolic n-space Hn: the asymptotic versions 
of the regular n-simplex and the dual n-orthoplex (cross polytope) and n-orthotope (block polytope) 

3n1 :an,�3n2, 4 :bn,� 3n2 :an, 

and the asymptotic orthic n-apeirotope (grid apeirotope) 

 3n3, 4 :bn. 

Each of these figures has a corresponding regular inversive polytope in In−1.  The parameters an and bn are 
defined by 
 
                                                                         
                                      tan  ––    = 
                                             an 

 
 ⎹  n2 
 ⎹ ––––––  ⎷   n 

 

and 

 
         
tan  ––     = 
       bn  

 
    
√ n2 . 
 

 

(9)
 

Note that limn→∞ an = 4 and limn→∞ bn = 2.  The following table gives the midangle  and radius  of each 

regular inversive n-polytope (n ≥ 6). 

Table 5.  Regular Inversive n-Polytopes 

                n-Polytope      tan      tanh  

 

    °3, 3,  .  .  .  ,  3, 3 :an 
 

    °3, 3,  .  .  .  ,  3, 4 :bn 
 

    °4, 3,  .  .  .  ,  3, 3 :an 
 

    °4, 3,  .  .  .  ,  3, 4 :bn 
 

 
     ⎹  n2 
     ⎹ –––––– 
     ⎷   n 

 
   √ n2 

 
     ⎹  n2 
     ⎹  –––––– 
     ⎷   n  

 
   √ n2 
 

 

          1 
       –– 
        n 

          1 
       –––– 
      √n 

          1 
       –––– 
      √n 

          1 
 

 

Regular inversive polytopes with identical vertex sections have the same midangle , and dual polytopes 

°p, q,  .  .  .  ,  u, v:w�and�°v, u,  .  .  .  ,  q, p:o 

have the same radius .  Also, except for polygons °p:oo  with more than six sides, tan  and tanh  
either are rational numbers or have expressions involving nothing worse than nested square roots. 
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Conformal Models 

The Euclidean plane can be given the topology of a sphere by means of a “one-point compactification,” i.e., by 
adjoining a single point at infinity Ȯ that lies on every line.  If such extended lines are treated as infinite (or 
“great”) circles on the same footing as ordinary (or “small”) circles, and if we allow a circle-preserving trans-
formation, or circularity, to move the point Ȯ, the resulting “inversive plane” or parabolic sphere Ṡ2 provides 
a conformal model for the inversive sphere I2.  A circularity is called a homography or an antihomography 
according as it preserves or reverses orientation; homographies are also known as Möbius transformations. 

An ordinary point with Cartesian coordinates ( x, y ) has parabolic coordinates 

( 1̸2( x
2y21 ),  x ,  y ,  1 ̸2( x

2y21 ) ), 

while the exceptional point Ȯ is 

( 1,  0,  0,  1 ). 

A small circle with center ( h, k ) and radius r  has parabolic coordinates 

[ 1̸2( r2h2k21 ),  h ,  k ,  1 ̸2( r
2h2k21 ) ], 

The equation of a small circle is ( xh )2( yk )2 = r 2.  A great circle, i.e., a line, with inclination   and 
displacement  c  has  coordinates 

[ c, sin  , cos  , c ], 

 with 0 ≤   <  .  The equation of a line is y cos   = x sin     c; if   ≠ /2, the line has slope m = tan   

and y-intercept b = c sec  .  Parabolic coordinates for points and circles of Ṡ2 (and nonzero scalar multiples 

thereof) can be taken as homogeneous coordinates for points and circles of I2. 

An inversive circle c̊, with coordinates ⟦ c ⟧   =   [ c 0, c 1, c 2, c3 ],  is real, degenerate, or imaginary according as 
the quadratic form ⟦ c c ⟧   =   c1

2c2
2c3

2c0
2 

Is positive, zero, or negative.  In the nondegenerate cases an inversion in c̊ is the involutory circularity I2 → I2 
induced by the pseudo-orthogonal inversion matrix  
 
 
 
              1 
C  =  ——— 
         ⟦ c c ⟧  

  





 




c0
2c1

2c2
2c3

2          c0c1                     c0c2                     c0c3 
                                                                      
         c1c0            c0

2c1
2c2

2c3
2          c1c2                     c1c3 

                                                                        
           c2c0                        c2c1            c0

2c1
2c2

2c3
2         c2c3 

                                                                        
         c3c0                        c3c1                     c3c2         c0

2c1
2c2

2c3
2 

 










(10)

 
(cf. Schwerdtfeger 1962, pp. 117–118).    Each  point ⦅ p ⦆ =  ( p 0 , p 1 , p 2 , p3 )  is  interchanged with the 

point ⦅ p ⦆ C .  If ⟦ c c ⟧ > 0, this is a hyperbolic inversion, leaving all points on the real circle c̊ invariant and 
taking each circle orthogonal to c̊ into itself.  If ⟦ c c ⟧ < 0, the circularity is an elliptic inversion in the imaginary 
circle c̊, leaving no real points invariant.  Every circularity of I2 is the product of (at most four) hyperbolic 
inversions. 

If we now fix a central inversion in a particular real inversive circle , say the unit circle or the x-axis, we obtain 
a conformal model for the metric hyperbolic sphere S̈2 (cf. Johnson 1981, pp. 452–454).  A point on one side 
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of  inverts into a point on the other side, and such antipodal point-pairs represent the ordinary points of the 

hyperbolic plane H2.  The self-antipodal points on the “equator”  are the absolute points of H2.  Inversive circles 

orthogonal to  (“great” circles of S̈2) represent ordinary lines of H2.  A circularity of I2 that takes  into itself is 
an isometry of H2.  The mapping I2 → H2 preserves angular measure, and the minimum distance between two 
diverging lines in H2 is the same as the inversive distance between the representative separated circles in I2 

(cf. Coxeter 1998, pp. 308–311).  Note that a regular inversive polygon °p:oo whose vertices all lie on  is 

the trace on  of a regular asymptotic polygon p:oo . 

The mapping just described can be made one-to-one by identifying antipodal points of S̈2 or, equivalently, by 

restricting the domain to points on one side of , e.g., the interior of the unit circle or points with positive y-
coordinates, with hyperbolic lines represented by inversive circular arcs instead of whole circles.  In this manner 
we obtain Poincaré’s “conformal disk” and “upper half-plane” models for the hyperbolic plane. 

As a model for the inversive sphere I2, the completed Euclidean plane can be replaced by the elliptic sphere S2, 
taken as the unit sphere in Euclidean 3-space.  A conformal mapping from the “equatorial plane” z = 0 to S2 
can be achieved by stereographic projection, in which a line through an arbitrary point (x, y, 0) and the “north 

pole” (0, 0, 1) meets the sphere again in the point (, , ), with (0, 0, 1) itself corresponding to the 
exceptional point Ȯ (cf. Schwerdtfeger 1962, pp. 22–29).  The relationship between two-dimensional Cartesian 

coordinates ( x, y) and spherical coordinates (, , ) is given by 

 

 

 
 = 
 

       2x 
—————–, 
x2y21 

 
 = 
 

       2y 
—————–, 
x2y21 

 
 = 
 

x2y21 
—————–. 
x2y21 

 
(11)

The parabolic coordinates ( 1 ̸2( x
2y21 ), x , y , 1 ̸2( x

2y21 ) ) of a point can be replaced by normalized 

coordinates  (1, , , ),  with   2 2 2  =  1. 

A regular asymptotic polyhedron p, q:r of finite inradius can be represented in the Beltrami–Klein model for 

H3 by a regular Euclidean polyhedron p, q:r′ inscribed in the unit sphere.  Although it does not preserve 
angles between ordinary planes, so that r′ ≠ r, the Beltrami–Klein model is conformal on the absolute sphere.  

Thus the inversive circles in which adjacent face-planes of p, q:r′ meet the sphere intersect in an angle 

of  2/r, producing a regular inversive polyhedron °p, q:r. 

The above procedures can be extended to construct conformal Euclidean and spherical models for hyperbolic 

n-space and inversive (n1)-space and for regular inversive n-polytopes °p, q,  .  .  .  ,  u, v:w. 
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