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Abstract: Information overload and an abundance of choices create situations where selecting one option becomes

extremely difficult or even worse, a guessing game. Collaborative ranking systems address this problem by creating

intelligent rankings of items based on user opinions aggregation. This paper presents a metric-based multi-criteria

recommender system that can be used on non-rigid sets of criteria. These systems fare well with respect to

accuracy, transparency and flexibility.
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Introduction

This paper presents metric-based multi-criteria recommender systems that can be used on non-rigid sets of criteria

(that may be defined by the users of a system). The approach uses a novel concept of an ideal candidate, which is

an aggregation of users’ digital belief systems: the algorithm first calculates a hypothetical ideal candidate, which is

then used as the pivot point.

The paper is structured as follows. First, we briefly present the motivation and related results. Then, an overview

of the algorithm is informally described, an example scenario in which the algorithm is applied is discussed, and

a detailed description of the algorithm itself is given. We then describe a proof of concept implementation of the

algorithm and a user study evaluating the perceived accuracy of the algorithm and usability of the system. We finish

with conclusions and a brief discussion of future work.

Motivation and related facts

The biggest motivating factor for recommendation systems in general is that of information overload. Our society

produces more information than it produces anything else [13; 27; 28]1. Information overload leads to situations

where the inputs to one’s decision making process exceed the “capacity to assimilate and act on the information

as well as the ability to evaluate every alternative” [25]. Information overload has also been linked with negative

psychological impacts created by the illusion that more choices lead to better results [19]. Recommendation systems

generally use single criteria ratings that define how good an entity is. For example [15] uses a single 10 star rating

for each movie for their recommendations. More recently, multi-criteria recommendation systems have become

popular, as evidenced by Yahoo! Movies’ recent movie recommender system. Various surveys and papers [1;

2] have shown the increase in accuracy multi-criteria rating systems can achieve and have indicted the need for

research activity in this area. Because of the amount of research out there, other papers [31] present methods

on how to efficiently evaluate a recommender system. Transparency, “the opposite of secrecy” [17], is important

because it goes hand-in-hand with trust and accountability. Transparency increases trust, hence the acceptance of

a recommendation [11]. Transparency increases accountability too, as seen in numerous situations presented in

Wikileaks (http://www.wikileaks.org). Fundamentally, a multi-criteria system allows for more transparency
because one sees how each rating is broken down to create the overall rating. Flexibility is also paramount: it

allows users to participate with their own preferences and knowledge. There has also been extensive work done

1The amount of digitally stored information in 2009 was estimated to be 500 exabytes [29].

http://www.wikileaks.org
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on content, collaborative and hybrid based recommender systems and social information filtering, see for example

[5; 22; 7; 2; 24]. Demographic, utility and knowledge based systems have been proposed by [7]. Recently, matrix

factorisation methods have been used in [16].

Multi-criteria approaches to recommendation and ranking systems have been considered in [1; 12]. The authors

crawled Yahoo! Movies and extracted a number of movie ratings decomposed into 4 criteria; they found that using

multi-criteria ratings allows for more accurate ratings than single ratings. One approach they used was to simply

divide the multi-criteria problem intoM single criteria recommendation problems, thus treating each criteria as a

single rating. Another approach taken by [21] treats tags as multiple dimensions and first infers users’ preferences

for tags and then resultantly for items (movies).

Multi-criteria approaches to recommendation and ranking systems are subject to limitations which were first proved

for voting systems. The most famous result, Arrow’s Impossibility Theorem [4] (also known as Arrow’s Paradox),

states that no voting system can turn individual preferences into a global (community) ranking if there are three or

more options to choose from and a few “innocent-looking” conditions (such as, non-dictatorship, Pareto efficiency,

and independence of irrelevant alternatives) are satisfied. Another limitation may appear because of the lack of

independence of preferences.

Metric-Based Algorithms

Overview

Our main algorithm applies on a system composed of 5 parts: the users, the entities, the value dimensions, the belief

system and the ideal candidate. Entities are anything that the system is recommending or ranking. For example in a

movie recommender system, the movies would be the entities. Value dimensions are a set of factors that influence

the ratings of an entity. For example, taste and price are value dimensions that influence the ratings of menu items

in a restaurant. All entities are defined over a set of value dimensions. Users collaborate within the system by rating

an entity over the set of value dimensions. For example a user may rate price high and taste poor, or price low and

taste excellent.

The belief system is personal to each user. Each user is allowed to tell the system what ideal value they want a

value dimension to have, and how important that value dimension is to them. For example, most people’s belief

system would have a value of ‘low’ for the dimension ‘price’ but depending on your level of income, the importance

of price may vary. Finally, the ideal candidate is the set of ideal value dimensions. The system determines the ideal

value dimensions by aggregating all users’ belief systems into an average. That is, if there were 2 people in the

system, and user one’s belief system had the ideal value for price set to high, and user two’s belief system had

the ideal value for price set to low, then the ideal candidate will have it’s ideal value for price set to ‘in between low

and high’. The ideal candidate can be thought of as the belief system of a hypothetical user that takes everyone’s

opinions into account.

Value dimensions can be either hard or soft. Hard value dimensions are factual, such as the price of an item, or

the location of a building. Soft value dimensions are subjective, i.e. an opinion. The major difference between

a soft and hard value dimension is that a hard dimension cannot be rated, while a soft one can. While a hard

value dimension cannot be rated, it’s belief weight can still be set. The price of an entity is a factual piece of

information (bar bargaining practices), so it is an example of a hard value dimension. On the other hand, quality

is a subjective (hence soft) value dimension as there are no standard measurements to quality which is subject to

individual perspectives.

The ideal candidate discussed above is the global ideal candidate (i.e. all users’ belief systems are aggregated into

one). The system also uses a local ideal candidate, which is simply equivalent to a single user’s belief system. The

distinction between a local and global ideal candidate results in two different types of rankings and two different

types of recommendations—a global and local ranking and a global and local recommendation. A global ranking
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Dimension Low value High value

Humour (d1) not funny hilarious

Complexity (d2) no brainer very complex

Action (d3) no action action packed

Acting (d4) bad excellent

Table 1: Ranges for each dimension.

Inception Rush Hour Dumb and Dumber

d1 d2 d3 d4 d1 d2 d3 d4 d1 d2 d3 d4

Frodo 2 5 4 5 4 1 4 4 3 1 1 4

Gimly 2 4 4 5 5 1 3 4 4 1 1 5

Bilbo 1 5 5 4 4 2 4 4 5 2 2 5

Sam 2 5 5 4 5 3 5 5 5 1 2 4

Pippin 2 5 4 4 3 2 5 4 4 1 1 5

Average 1.8 4.8 4.4 4.4 4.2 1.8 4.2 3.2 4.2 1.2 1.4 4.6

Table 2: Ratings given to each dimension per user and an average of all the ratings per entity.

of entities is one which calculates distances between an entity and the global ideal candidate, and a local ranking

calculates distances between an entity and a local ideal candidate. Likewise, a global recommendation uses the

global ideal candidate, which represents a community at large, and a local recommendation uses the local ideal

candidate (personal to each individual). The ideal candidate refers to the global ideal candidate unless explicitly

stated otherwise.

The algorithm that has been developed for the multi-criteria recommendation process is based on a distance metric

that calculates the distance between an entity and the ideal candidate. The distances are then weighted to take into

account importance levels. Two types of recommendations can be performed. One recommends similar items by

finding similar entities to a pivot entity. The second recommends any items that match each user’s belief system.

That is, the second method is the same as the ranking algorithm, except instead of using the ideal candidate, it uses

the specific user’s belief system.

An example

We present an example to illustrate the developed algorithms, formally defined in the next section. In the scenario

we have defined 5 users, 3 entities and 4 criteria. The entities we are rating are movies and the value dimensions

that they are rated over are d1 = humour, d2 = complexity, d3 = action and d4 = acting. The five different users have

all rated each movie along a set of 4 value dimensions.

The data we use is shown in Table 1, Table 2 and Table 3. All the data is presented as ratings between 1 and 5.

This means that dimensions are rated on a 5-point scale, as are all the weights. What the scales represent per

dimension is described in Table 1.

From Table 3 we can loosely categorize each user as follows: Frodo likes a well balanced movie and the quality of

acting is very important. Gimly likes complicated, preferably action movies with some comedy, where complexity

and acting matters most to him. Bilbo likes simple funny movies but no one particular dimension is overly important

to him. Sam likes funny and dumb movies, and would prefer no action, but is not that fussed about action movies;

the dumb part is important to him. Pippin likes action movies with no complexity (important). In short: Frodo is well

balanced, Gimly likes complicated action with comic relief, Bilbo likes simple action comedies, Sam likes comedy

sans action and Pippin likes action sans comedy.
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Value dimensions Weights

d1 d2 d3 d4 w1 w2 w3 w4

Frodo 3 3 3 5 2 2 2 5

Gimly 3 4 5 5 2 4 3 4

Bilbo 5 2 3 5 3 3 3 3

Sam 5 1 1 5 4 5 3 1

Pippin 1 1 5 5 5 5 5 1

Table 3: Users’ belief system.

Dimension Ideal value Ideal weight

d1 3.4 3.2

d2 2.2 3.8

d3 3.4 3.2

d4 5.0 2.8

Table 4: The ideal candidate calculated from all the user belief systems.

The three entities the algorithms will be applied to are the movies ‘Inception’, ‘Rush Hour’ and ‘Dumb and Dumber’,

the ratings of which can be seen in Table 2.

The first step is to calculate the ideal candidate, which is an average of all the belief systems. The ideal candidate

can be seen in Table 4. From this table we can see that the most important dimension is d2 with a height of 3.8. The

dimension that matters least in the system is d4. Next we can determine the rankings of the entities by calculating

the additive distance between each entity’s average dimensional ratings, and the ideal candidate. We also apply

the ideal weights to the calculations. Table 5 shows the global rankings of the system because the distances are

calculated from the global ideal candidate. There is also the concept of the local ideal candidate which calculates

the distance between an entity and a belief system which is local to the user in question. So we may also have a

local ranking for each user, which is shown in Table 6. The local rank list is also the recommendation list.

From Table 5 and Table 6 we see that, according to the data provided, the rankings make sense. In Table 6, the

person who likes complicated movies gets Inception ranked highest, the person who likes fun and dumb movies

gets Dumb and Dumber. Table 7 shows the rankings for Sam, after we take out all of his rating data. So the system

now has no information on Sam’s ratings, but retains his belief system. We can see that, while the distances have

changed, the order of recommended movies is perfect for him.

In Table 8 we see the second recommendation method, which finds the similarity between entities. In that table

Inception is more similar to Dumb and Dumber than it is to the Rush Hour. This is a result of using the global

ideal candidate as the pivot point. Alternatively, we can use specific belief systems as the pivot point for computing

similarities. This is shows in Table 9, which is specific to the user Gimly, who likes complicated action movies. In

that table, it shows that Inception is more similar to Rush Hour than to Dumb and Dumber (which would hold true for

a recommendation personal to Gimly). A system using this recommendation process would recommend Rush Hour

to Gimly if he was looking at the Inception page.

Entity Rank Distance

Rush Hour 1 0.1506

Dumb and Dumber 2 0.1857

Inception 3 0.1983

Table 5: Rankings of each entity.
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Rank Entity Distance Rank Entity Distance

Frodo 1st Inception 0.2402 Gimly 1st Inception 0.1541

2nd Rush Hour 0.242 2nd Rush Hour 0.173

3rd Dumb and Dumber 0.272 3rd Dumb and Dumber 0.2545

Bilbo 1st Rush Hour 0.14 Sam 1st Dumb and Dumber 0.0934

2nd Dumb and Dumber 0.155 2nd Rush Hour 0.195

3rd Inception 0.22 3rd Inception 0.2721

Pippin 1st Inception 0.163

2nd Rush Hour 0.1761

3rd Dumb and Dumber 0.2053

Table 6: Local rankings of each entity for each user.

Sam

Rank Entity Distance

1st Dumb and Dumber 0.2882

2nd Rush Hour 0.3647

3rd Inception 0.4514

Table 7: Recommended movies for Sam created from Sam’s belief system and ignoring all his ratings in Table 2.

Inception Rush Hour Dumb and Dumber

Inception 1.0 0.9523 0.9868

Rush Hour 0.9523 1.0 0.9655

Dumb and Dumber 0.9868 0.9655 1.0

Table 8: Similarities between each movie, with 1 representing full similarity.

Gimly

Inception Rush Hour Dumb and Dumber

Inception 1.0 0.9811 0.8997

Rush Hour 0.9811 1.0 0.9186

Dumb and Dumber 0.8997 0.9186 1.0

Table 9: Similarities between each movie, personalized to Gimly’s belief system.
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Main Algorithm

The algorithm developed for the multi-criteria recommender system in [3] uses a weighted sum approach which

is defined in multi-objective optimization literature [14]. The goal of a recommendation system is to construct the

Users×Items 2-dimensional matrix by predicting the missing values in the matrix. The approach we take involves

the reconstruction of a 3-dimensional matrix, with the third dimension being the set of criteria defined over the items,

i.e. the value dimensions. Additionally, we use a weighted approach so that more important value dimensions make

more of a difference to the final calculations.

For the rest of this section we use the following notation. The set of users U has n = |U | elements. The set of

entities denoted by E has m = |E| elements. The set of value dimensions is denoted by V ; let l = |V | be the

number of dimensions for each entity. Finally, letW be the set of weights such that |W | = |V |.

Our goal is to predict values in the n × m × l matrix. There are three concepts used by the proposed algorithm:

1) value dimensions (i.e. criteria), 2) the belief system, and 3) the ideal candidate. Value dimensions determine the

ratings of each entity in E. Each entity is defined by l value dimensions, which are collaboratively rated and then

normalized to the range [0, 1] before being used as the input to the algorithm. Therefore, each entity is a vector
e = (v1, v2, · · · , vl) for all v ∈ V .

A belief system (see Table 3) allows each user to define their beliefs using two components: 1) the values for

each criteria and 2) the weights attached to each criteria. The weights are normalized to the range [0, 1] with 0
representing no importance and 1 indicating utmost importance. Formally, each user u has a belief system B,

which is the ordered pair Bu = (vu, wu) where vu = (v1, v2, · · · , vl), wu = (w1, w2, · · · , wl) are vectors
and vi, wi represent the user’s preferred value for value dimension i and weight i, respectively.

The ideal candidate is used as the pivot point for all distance calculations. Instead of calculating the distance

of entities from the origin or from other entities, the algorithm makes use of a hypothetical ideal entity that is an

aggregation of each users’ belief system (see Table 4). Formally, the ideal candidate is an ordered pair I =
(vI , wI), where vI = (v1, v2, · · · , vl), wI = (w1, w2, · · · , wl) and are calculated as follows:

I =
1

N

N
∑

i=1

Bi =

(

1

N

N
∑

i=1

vi,
1

N

N
∑

i=1

wi

)

. (1)

Equation (1) is referred to as the global ideal candidate IG, which takes into account every user’s belief system.

The local ideal candidate IL is specific to each user and is simply equal to Bu. The ideal candidate is an entity as

well, hence any algorithm that can calculate the distance or similarity between two entities can operate similarly with

the ideal candidate.

Discrete Metrics and Similarities

LetM be a nonempty set of nonnegative real numbers with the greatest element a = 1. Then d : M × M → R

is a metric onM and the ordered pair (M, d) is a metric space [9]:

d(x, y) =

{

1

2
(1 + |x − y| − |1 − x − y|), if x 6= y,

0, if x = y,
(2)

For our multi-criteria problem we can naturally extend the metric toM
l

dl(x, y) =
1

l

l
∑

i=1

d(xi, yi), x, y ∈ M
l, (3)

and to a weighted metric dw : M
l
× M

l
× M

l
→ R:
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dl(x, y,w) =
1

l

l
∑

i=1

(1 − wi)d(xi, yi), x, y, w ∈ M
l (4)

The weights have to be normalized in the range 0 ≤ w ≤ 1. From Table 3 we can see that the higher the weight
wi is, the more important it is. The more important a weight is the less it increases the distance results. Therefore,

as a weight approaches 0, it’s importance is reduced and the distance is increased. See more details in [3].

From equation (4) we can define a multi-criteria rating function in terms of e ∈ E, u ∈ U and I . We define two

rating functions, the global rating function rG : E × I → R:

rG(e, IG) = dw(e, vI , wI), (5)

and the local rating function rL : E × I → R:

rL(e, IL) = dw(e, vu, wu). (6)

The difference between rG and rL is that the global rating function calculates the distance between an entity and

the global ideal candidate IG while the local one calculates the distance between the local ideal candidate IL.

There are two ways in which recommendations can be made using the algorithms. The first is a ranking of items

obtained by using function (6). The results of this can be seen in Table 7. The second method uses a similarity

metric to recommend entities that are similar to other entities. The similarity method can also be divided into two

functions, one which uses the global ideal candidate IG to obtain global recommendations, and one which uses a

local ideal candidate IL to obtain personalized recommendations.

From [10], any normalized distance metric d can be converted into a similarity metric s defined as follows: s =
1 − d : 0 ≤ d ≤ 1. Equations (2), (3) and (4) are normalized distance metrics that return a value in the range
[0, 1]. If d is a normalized distance between two entities e1 and e2, then we can define a global similarity metric sG

as:

sG(e1, e2, IG) = 1 − |dw(e1, vI , wI) − dw(e2, vI , wI)|, (7)

and the local similarity metric as:

sL(e1, e2, IL) = 1 − |dw(e1, vu, wu) − dw(e2, vu, wu)|. (8)

Since sG and sL are both normalized similarity metrics, because d is normalized, they both satisfy the following

“coherence” properties [10] for all x, y, z, I : sG|L(x, x, I) ≥ 0, sG|L(x, x, I) ≥ sG|L(x, y, I), sG|L(x, y, I) =
sG|L(y, x, I), sG|L(x, y, I)+sG|L(x, z, I) ≤ sG|L(x, z, I)+sG|L(y, y, I), sG|L(x, x, I) = sG|L(y, y, I) =
sG|L(x, y, I) ⇐⇒ x = y.

The following functions showcase part of the pseudo code used for the developed prototype system. The function

distance represents equation (4), the function rating represents equations (6), (5), and the function similarity

represents equations (7,) (8).Fun
tion distan
e( rating, ideal, weight )min = 1max = 5x = (min - rating) / (min - max)y = (min - ideal) / (min - max)if x == y, return 0return (1 - weight) * (0.5 * (1 + |x - y| - |1 - x - y|))EndFun
tion rating( entity )
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e = 0For ea
h dimension dim in entity.
ategoryrating = average_rating(dim)total_distan
e += distan
e(rating, dim.ideal, dim.weight)num_dims_used += 1End For// Return a rating in between 0 and 1 (1 means perfe
t)return 1 - (num_dims_used / total_distan
e)EndFun
tion similarity( entity1, entity2 )return 1 - |rating(entity1) - rating(entity2)|End
Implementation

A proof of concept system was developed for a local restaurant in Auckland, New Zealand. Users are required to

sign up to obtain personalized recommendations. Signing up also requests demographic information so it can be

used for extracting intelligence from the data (segmenting user preferences in to region, for example). Signed in

users can add or edit a value dimension, set their beliefs, rate a menu item or view details about a menu item.

Adding a value dimension and editing a value dimension use the same input screen. End users can only add soft

value dimensions. Only administrators can add hard value dimensions, such as Price, via a different input screen.

Once a hard value dimension is added it becomes part of an entity’s profile. For example, having added Price, each

priced entity has attached to it a new property, called price, the value of which can be changed on the entity’s edit

page. Furthermore, the type of scale that is used can be chosen by the user as well. The prototype implementation

supports the addition of ordinal and nominal scales. The user must also specify which category the value dimension

applies over.

Once value dimensions are provided, users can set their beliefs. Figure 1 shows the belief entry screen. Two

columns are shown, one for the ideal value for a belief and the other for the weight of the value dimension. There

are two scale types: one is an ordinal scale with a low and high range and the other a nominal scale. These ideal

values are used to calculate the global ideal value and importance of a dimension.

Users can also obtain valuable statistics at this point. For example clicking on the value dimension ‘healthiness’,

you will be informed that 44 people in the system care about this dimension and that most people think that the

healthiness of mains, desserts and starters should be, ideally, almost as healthy as you can get and that while

healthiness matters, it is not vital nor is it very important in determining the rating of food. You will also be told that

while healthiness matters somewhat in the United States, it’s more important in Germany, and less important in

Canada. This is of course reflective of the beliefs of the system’s users.

The prototype allows users to rate menu items over all soft value dimensions entered into the system; hard value

dimensions are facts and can only be changed by the administrators of the system. The rating screen can be seen

in Figure 2. Users are free to ignore certain value dimensions. The more a value dimension is ignored, the more

obvious it becomes that this value dimension is not worth having in the system. A straightforward extension would

be for the system to provide a confidence level to each value dimension’s importance level.

The system can perform two types of recommendations, one based on entity-to-entity similarity and one showing

users predicted ratings of all the entities in the system (that have been rated by anyone). The second type of

recommendation does not depend on entity-to-entity similarity, nor on user similarity, only on the similarity between

a user’s belief system and the entity’s profile (which is composed of value dimensions and their aggregated values).

The first type of recommendation (entity-to-entity) is shown in Figure 3. It uses the user’s belief system as the pivot

point if the user is logged in.
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Figure 1: Setting your beliefs involves setting an ideal value and a weight.

The system will list all the details about the entity in question. This includes how many users have rated it, what the

global rating is, what the predicted rating for the user is and any hard values. It will then show the user the rating

screen in the case that a user wants to rate it, and this will be followed by a number of item-to-item recommendations

based on the similarity calculations between this entity and every other entity, with the user’s belief system used as

the pivot point.

Evaluation

A user survey was carried out on a random sample of 20 patrons of the restaurant that the prototype was developed

for. Each user was asked to use the system and rate items that they had tried. They were then given a list of 5

recommendations and asked to rank the algorithms in order from most to least accurate. We obtained 85 unfiltered

orderings of the algorithms. After filtering them out for incomplete orderings we had 78 orderings. In addition to

ranking the algorithms that were employed, the participants of the survey were also asked a number of questions

regarding the usability of the system. The following five algorithms were rated:

1. Algorithm A: Rating based on global ideal candidate and average ratings–equation 5.

2. Algorithm B: The predicted rating based on user’s belief system and average ratings–equation 6.

3. Algorithm C: Weighted sum [2].

4. Algorithm D: Adjusted weighted sum [2].

5. Algorithm E: Rating based on global ideal candidate and user’s personal ratings.

The results of the algorithm rankings are presented in Table 10. The first 5 columns of the table represent how many

times the algorithm was ranked at that position. So, the Algorithm B was ranked first 29 times, second 14 times, etc.
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Figure 2: Rating a menu item.

Figure 3: Recommended items when viewing the Lamb Shank page.
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1st 2nd 3rd 4th 5th %1st Linear rating Exp rating % exp % lin

Algorithm A 13 21 32 8 4 16.7 265 1048 21.4 22.4

Algorithm B 26 14 12 24 3 33.3 273 1250 25.6 23.1

Algorithm C 12 21 18 21 7 15.4 247 962 19.7 20.9

Algorithm D 7 4 4 6 58 9 133 460 9.4 11.2

Algorithm E 21 19 13 19 7 27 265 1170 24 22.4

Table 10: The rankings of each of the algorithms and their additive scores.

The algorithm that has been proposed in this paper is Algorithm B. It can be seen from the results that it does better

than all the others. Algorithm A is also used by the system, not for personal results, but for global rankings of items.

The only difference between A and B is that B uses the user’s personal belief system to calculate the ratings and A

uses the global ideal candidate. As it turns out, the personalized algorithm, based on a digitized belief system, is

the most accurate of them all.

A number of other statistics were also calculated. The %1st column represents the percentage that the algorithm

came first. Algorithm B dominates this by being the most accurate 33 percent of the time out of all 5 algorithms and

algorithm E comes in second with 27 percent. The 2 algorithms together, both of which add in a personal aspect to

the rating process, are the most accurate 60 percent of the time.

The next 4 columns are an additive ranking that was calculated for each algorithm by taking into account the number

of times the algorithms came in each position rather than in just first spot. Each position was given a weighting and

then a total rating was calculated. The algorithm with the highest rating wins, and again it shows that B came in

on top with A and E a close second. One may note here that even though algorithm E came in first place almost 2

times more frequently than algorithm A, their linear rating is exactly the same. This happens because algorithm A

came in third place almost 3 times more frequently than algorithm E, which linearly made a significant difference.

The linear rating for algorithm L was calculated using the formula ratingL =
∑M

i=1
(M − i) ∗ Li and the

exponential rating was calculated with ratingL =
∑M

i=1
2M−i

∗ Li, where Li represents the number of times

algorithm L came on the ith place. The linear rating gives a consistent weight to each of the positions, which

assumes that the most accurate algorithm is worth as much more than the second most accurate algorithm is worth

over the third most. The exponential model seems to be more accurate; it gives more value to the difference in

weight between the first and second place than the difference in weight between the second and third place.

Methods on evaluating recommender systems are presented in [31]. The evaluation method we used was a mix of

a user study and online study. While the users were given specific tasks to do, those tasks were prerequisites for

allowing/encouraging them to roam free within the system. This allowed us to also collect data that was not relevant

to the algorithm presented in this paper, but on the dynamics of the user interface, the experienced speed of the

calculations and the perceived accuracy of the results (described above).

A number of properties are considered desirable in a recommender system [31]. Prediction accuracy was shown

to be better than for some of the other algorithms. Ranking measures was explicit in the system because the

recommendations use the user’s own belief system (i.e. ideal candidate) as the pivot point to determine the similarity

between items. Measuring the accuracy of this ranking would require the user to have tried all the dishes in the list

(given the nature of the prototype) and so was unfeasible to perform.

Item coverage is an important property for a recommendation system. While some algorithms may be limited to

recommending only items that have a lot of associated data, our algorithm has 100 percent coverage. The accuracy

of cases where one item has a large number of ratings and another item has only one was not tested, but adding

a confidence level to ratings is a technique that may be used to alleviate that situation. A similar property is user

coverage (i.e. providing recommendations based on a given number of users within the system). The prototype we

developed provides full coverage, and may also be enhanced with the addition of a confidence level.
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One flaw of this algorithm is that it is extremely susceptible to the cold start problem, in which items that have

not been given data would be quite useless. If value dimensions have not been given importance levels, or belief

systems have not been defined, then the system would be unusable.

Conclusion

The system that has been implemented is a proof of concept for the envisioned final system. The current implementa-

tion provides a ranking based on any number of value dimensions, with weights and ideal values definable by the

users. There are many directions the work on this framework can take.

First, the ontology system, which provides the ability for users to arrange the entities under categories and link

categories if need be, can be made much more robust with the addition of the ability to categorize. It is still not clear

if a universal ontology would be best for the framework, or if other methods should be used to categorize entities

into classes of value dimensions. One such method would be collaborative tagging as described in [26]. That is,

instead of arranging the structure in a directory-like manner, the users can tag a category instead, and the entities

within that group will implicitly have the same tags, creating a folksonomy. The value dimensions could be attached

to tags instead of the category as well. This may work better to enable the ability to share value dimensions across

categories as well as impressive recommendations.

Secondly, the governance mechanisms have not been implemented in a way that is scalable. The governance

mechanisms determine how the system governs itself at the micro and macro levels. Concepts such as policy

citations on ‘talk-pages’ enhance governance at the micro-level on website such as Wikipedia [6]. The macro-level

governance mechanisms (namely the aggregation of the belief systems and rankings) are in place, but there is a lot

of work that needs to be done at the micro-level.

Thirdly, work is needed on trust and reputation support. Incorporating trust into users’ profiles would be one direction.

Perhaps the framework should take a user’s reputation into account when applying the value dimension weightings in

the algorithms, maybe just for the global rankings. These extra calculations could, however, give rise to performance.

The current system implementation can be slow at times because it is running five different algorithms at the same

time for the purpose of allowing users to rank various algorithms (as discussed in Section Evaluation).

And finally, the system does not take temporal dynamics in to account. As time goes by, items become less valuable

and no longer appealing in the same way. One approach that tackles this problem keeps degradation information

along with the rating data and creates a temporal model out of the rating patterns [33].

Giving users less work to do in the system, i.e. by automating certain processes, is also desirable. One example

may be the weighting system for value dimensions. The trust system [30] developed for Wikipedia could be used

to create implicit weightings over the value dimensions by determining collaborative importance through analyzing

a value dimension’s revision history.

Knowledge extraction mechanisms are needed for the framework to be useful. This is the component that will

provide the most value to users in the long run. The ranking algorithm is a central part of the entire knowledge

extraction system. This part can answer questions such as: What is a positive contribution to the world? What

is a negative contribution to this world, and why? What is the most important value-dimension for universities, for

countries, or for various businesses?

A problem faced by this recommendation system and many others is the cold-start problem. How do we get initial

input form users so that the system gets in to a usable state. Wikipedia addressed this by appealing to the expert

community [6]. Other systems, which are not that appealing to "experts" have adopted a hybrid approach [32] that

assigns ratings to items based on their similarity to other items that have already been rated, e.g. in a trial run of the

system.

Another area of future work is method to enable iterative aggregation, that is, how to enable the inclusion of nominal

value dimensions.

The evaluation section showed that user’s ranked the proposed algorithm at a higher subjective accuracy than the

other algorithms that were implemented. Another area of research in this regard would be to implement various
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other algorithms and carry out another evaluation study against the proposed system. Furthermore, [31] pointed

out a number of evaluation criteria for recommendation systems that were not included in this evaluation, such

as the user’s intent (which in our case was to test the system since they were hand picked—but this is not the

intent of a real user of a recommendation system), how much they trust the recommendations, the novelty of a

recommendation (i.e. whether the user knew about the recommended item or not), serendipity, diversity, utility,

adaptability and scalability.
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