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DISTANCES ON ANTIMATROIDS

Yulia Kempner, Vadim E. Levit

Abstract: An antimatroid is an accessible set system (U,F) closed under union. Every antimatroid may be
represented as a graph whose vertices are sets of F , where two vertices are adjacent if the corresponding sets are

differ by one element. This graph is a partial cube. Hence an antimatroid with the ground set U of size n may be

isometrically embedded into the hypercube {0, 1}n. Thus the distance on an antimatroid considered as a graph

coincides with the Hamming distance. A poset antimatroid is an antimatroid, which is formed by the lower sets

of a poset. We consider different definitions of the distance between elements of an antimatroid, and give a new

characterization of poset antimatroids.
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Introduction

An antimatroid is an accessible set system closed under union. There are two equivalent definitions of antimatroids,

one as set systems and the other as languages [Korte et al., 1991]. An algorithmic characterization of antimatroids

based on the language definition was introduced in [Boyd & Faigle, 1990]. Later, another algorithmic characterization

of antimatroids which depicted them as set systems was developed in [Kempner & Levit, 2003]. Antimatroids can

be viewed as a special case of either greedoids or semimodular lattices, and as a generalization of partial orders

and distributive lattices. While classical examples of antimatroids connect them with posets, chordal graphs, convex

geometries etc., [Glasserman & Yao, 1994] used antimatroids to model the ordering of events in discrete event

simulation systems. In mathematical psychology, antimatroids are used to describe feasible states of knowledge of

a human learner [Eppstein et al., 2008]. There are also rich connections between antimatroids and cluster analysis

[Kempner & Muchnik, 2003].

Let U be a finite set. A set system over U is a pair (U,F), whereF is a family of sets over U , called feasible sets.

Definition 1. [Korte et al., 1991] A finite non-empty set system (U,F) is an antimatroid if (A1) for each non-empty
X ∈ F , there exists x ∈ X such thatX − x ∈ F

(A2) for allX,Y ∈ F , andX * Y , there exists x ∈ X − Y such that Y ∪ x ∈ F .

Any set system satisfying (A1) is called accessible.

Proposition 2. [Korte et al., 1991] For an accessible set system (U,F) the following statements are equivalent:

(i) (U,F) is an antimatroid

(ii) F is closed under union (X,Y ∈ F ⇒ X ∪ Y ∈ F )

A set system (U,F) satisfies the chain property [Kempner & Levit, 2010] if for allX,Y ∈ F , andX ⊂ Y , there

exists a chainX = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such thatXi = Xi−1 ∪ xi andXi ∈ F for 0 ≤ i ≤ k.

It is easy to see that this chain property follows from (A2), but these properties are not equivalent. Examples of
chain systems include antimatroids, convex geometries, matroids and other hereditary systems (matchings, cliques,

independent sets, etc.).
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Definition 3. [Korte et al., 1991] The set system (U,F) is a poset antimatroid if U is the set of elements of a finite
partially ordered set (poset) P andF is a family of lower sets of P . The maximal chains in the corresponding poset

antimatroid are the linear extension of P .

A game theory gives a framework, in which poset antimatroids are considered as permission structures for coalitions

[Algaba et al., 2004]. The poset antimatroids can be characterized as the unique antimatroids which are closed

under intersection [Korte et al., 1991]. The feasible sets in a poset antimatroid ordered by inclusion form a distributive

lattice, and any distributive lattice can be built in this way. Thus, antimatroids can be seen as generalizations of

distributive lattices.

Distance on graphs and antimatroids

Definition 4. For each graph G = (V,E) the distance dG(u, v) between two vertices u, v ∈ V is defined as

the length of a shortest path joining them.

Definition 5. IfG and H are arbitrary graphs, then a mapping f : V (G) → V (H) is an isometric embedding if
dH(f(u), f(v)) = dG(u, v) for any u, v ∈ V (G).

Let U = {x1, x2, ...xn}. Define a graph H(U) as follows: the vertices are the finite subsets of U , two vertices
A and B are adjacent if and only if the symmetric difference A △ B is a singleton set. Then H(U) is the
hypercube Qn on U [Djokovic,1973]. The hypercube can be equivalently defined as the graph on {0, 1}n in which

two vertices form an edge if and only if they differ in exactly one position. The shortest path distance dH(A,B)

on the hypercube H(U) is the Hamming distance between A and B that coincides with the symmetric difference

distance: dH(A,B) = |A △ B|. A graph G is called a partial cube if it can be isometrically embedded into a

hypercubeH(U) for some set U .

Definition 6. [Doignon & Falmagne, 1997] A family of sets F is well-graded if any two sets P,Q ∈ F can be

connected by a sequence of sets P = R0, R1, ..., Rn = Q formed by single-element insertions and deletions

(|Ri △ Ri+1| = 1), such that all intermediate sets in the sequence belong to F and |P △ Q| = n.

Any set system (U,F) defines a graph GF = (F , EF ), where EF = {{P,Q} ∈ F : |P △ Q| = 1}.

Since a familyF of every antimatroid (U,F) is well-graded, each antimatroid is a partial cube ([Ovchinnikov, 2008])
and may be represented as a graph GF that is a subgraph of the hypercube H(U). Thus the distance on an
antimatroid (U,F) considered as a graph coincides with the Hamming distance between sets, i.e. dF (A,B) =
|A △ B| for any A,B ∈ F .

Poset antimatroids and zigzag distance

For an antimatroid (U,F) denote Ck = {X ∈ F : |X| = k} a family of feasible sets of cardinality k. A lower

zigzag is a sequence of feasible sets P0, P1, ..., P2m such that any two consecutive sets in the sequence differ

by a single element and P2i ∈ Ck, and P2i−1 ∈ Ck−1 for all 0 ≤ i ≤ m. In the same way we define an

upper zigzag in which P2i−1 ∈ Ck+1. Each zigzag P0, P1, ..., P2m is a path connecting P0 and P2m, and so the

distance on the zigzag d(P0, P2m) = 2m is always no less than the distance dF (P0, P2m) on an antimatroid
(U,F).

Figure 1(a) shows two sets (A = {1, 2, 3, 5} and B = {1, 3, 4, 5}) that are connected by a lower zigzag, such
that the distance on the zigzag is 4, while |A △ B| = 2. Note, that the distance on the upper zigzag is indeed 2.
For two setsX = {1, 2, 5} and B = {3, 4, 5} the distance on the lower zigzag and on the upper zigzag is equal
to 6, while |X △ Y | = 4. In order that the distance on zigzags be equal to the distance on an antimatroid, the
antimatroid have to be poset antimatroid. This property gives a new characterization of poset antimatroids.
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Figure 1: (a) An antimatroid without distance preserving zigzags and (b) a poset antimatroid without total distance

preserving zigzags.

Theorem 7. An antimatroid (U,F) is a poset antimatroid if and only if every two feasible sets A,B of the same

cardinality k can be connected by a lower and by an upper zigzags such that the distance between these sets

dF (A,B) coincides with the distance on the zigzags.

Proof. The proof of the sufficiency may be found in [Kempner & Levit, 2012]. To prove the necessity we show that

the antimatroid (U,F) is closed under intersection, i.e., for each A,B ∈ F the set A ∩ B ∈ F . If A ⊆ B or

B ⊆ A the statement is obvious. So we consider only incomparable sets. We use induction on dF (A,B).

If dF (A,B) = 1 then the sets are comparable, so we begin from dF (A,B) = 2. Since the sets are incomparable,
we have A = (A ∩ B) ∪ a and B = (A ∩ B) ∪ b. So the lower distance preserving zigzag connecting A and

B must go via A ∩ B, i.e.,A ∩ B ∈ F .

Let dF (A,B) = m. If |A| = |B| then there is a distance preserved lower zigzag connecting A with B. Hence

there is a ∈ A − B such that A − a belongs to the zigzag, and b ∈ B − A withB − b on the zigzag, such that

dF (A− a,B − b) = |A△B| − 2 = m− 2. By the induction hypothesis (A− a)∩ (B − b) = A∩B ∈ F .

Let |A| < |B|. The definition of an antimatroid (A2) implies that there exists b ∈ B − A such that A ∪ b ∈ F .

Since dF (A∪b,B) = dF (A,B)−1, by the induction hypothesis (A∪b)∩B = (A∩B)∪b ∈ F . SinceA * B

and |A| < |B|, then 1 ≤ |A−B| < |B−A|. Hence dF (A, (A∩B)∪b) = |A−(A∩B)|+1 = |A−B|+1 <

|A − B| + |B − A| = dF (A,B). By the induction hypothesis A ∩ ((A ∩ B) ∪ b) = A ∩ B ∈ F .

Note that if for a zigzag P0, P1, ..., P2m the distance on the zigzag d(P0, P2m) = 2m = dF (P0, P2m) =
|P0 △P2m| then the zigzag preserves the distance for each pair Pi, Pj , i.e., dF (Pi, Pj) = d(Pi, Pj) = |j− i|.

For poset antimatroids there are distance preserving zigzags connecting two given sets, but these zigzags are

not obliged to connect all feasible sets of the same cardinality. In Figure 1(b) we can see that there is a poset

antimatroids, for which it is not possible to build a distance preserving zigzag connecting all feasible sets of the

same cardinality. To characterize the antimatroids with total distance preserving zigzag we introduce the following

definitions.

Each antimatroid (U,F) may be considered as a directed graph G = (V,E) with V = F and (A,B) ∈ E ⇔

∃c ∈ B such that A = B − c. Denote in-degree of the vertex A as degin(A) = |{c : A − c ∈ F}|, and

out-degree as degout(A) = |{c : A ∪ c ∈ F}|. Consider antimatroids for which their maximum in-degree and

maximum out-degree is at most p, and there is at least one feasible set for which in-degree or out-degree equals p.

We will call such antimatroids p-antimatroids.
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Theorem 8. In p-antimatroid (U,F) all feasible sets Ck of the same cardinality k can be connected by a lower

zigzag and by an upper zigzag such that the distance between any two sets Pi, Pj in each zigzag coincides with

distance on the zigzag d(Pi, Pj) = |j − i| if and only if p < 3.

The proof of the sufficiency may be found in [Kempner & Levit, 2012]. To prove the necessity let (U,F) be a p-

antimatroid with p > 2. Let the out-degree of some A be equal to p. Then there are some a, b, c ∈ U such that

A ∪ a,A ∪ b,A ∪ c ∈ F . So there is a sub-graph ofGF isomorphic to a cube (see Figure 1(b)), and hence it is

not possible to build a distance preserving zigzag connecting all feasible sets of the same cardinality k = |A|+ 1.
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[Eppstein et al., 2008] Eppstein, D.; Falmagne, J.-Cl. & Ovchinnikov, S. (2008). Media Theory: Interdisciplinary

Applied Mathematics, Springer-Verlag, Berlin.

[Glasserman & Yao, 1994] Glasserman, P. & Yao, D.D. (1994). Monotone Structure in Discrete Event Systems,

Wiley Inter-Science, Series in Probability and Mathematical Statistics.

[Kempner & Levit, 2003] Kempner, Y. & Levit, V.E. (2003). Correspondence between Two Antimatroid Algorithmic

Characterizations. The Electronic Journal of Combinatorics, Vol.10.

[Kempner & Levit, 2010] Kempner, Y. & Levit, V.E. (2010). Duality between quasi-concave functions and monotone

linkage functions. Discrete Mathematics, Vol.310, 3211-3218.

[Kempner & Levit, 2012] Kempner, Y. & Levit, V.E. (2012). Poly-Dimension of Antimatroids. New Frontiers in

Graph Theory, InTech, Available from: http://www.intechopen.com/books/new-frontiers-in-graph-theory/poly-

dimension-of-antimatroids

[Kempner & Muchnik, 2003] Kempner, Y. & Muchnik, I. (2003). Clustering on Antimatroids and Convex Geometries,

WSEAS Transactions on Mathematics, Vol.2, No.1, 54-59.

[Korte et al., 1991] Korte, B.; Lovász, L. & R. Schrader, R. (1991). Greedoids, Springer-Verlag, New York/Berlin.

[Ovchinnikov, 2008] Ovchinnikov, S. (2008). Partial cubes: Structures, Characterizations, and Constructions,

Discrete Mathematics, Vol.308, 5597Ű5621.
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