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DISTANCE BETWEEN OBJECTS DESCRIBED BY PREDICATE FORMULAS 

Tatiana Kosovskaya 

Abstract: Functions defining a distance and a distinguish degree between objects described by predicate 
formulas are introduced. It is proved that the introduced function of distance satisfies all properties of a distance. 
The function of objects distinguish degree adequately reflects similarity of objects but does not define a distance 
because the triangle inequality is not fulfilled for it. The calculation of the introduced functions is based on the 
notion of partial deduction of a predicate formula. 
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Introduction 

A solution of an Artificial Intelligence (and pattern recognition) problem is often based on the description of an 
investigated object by means of global features which characterize the whole object but not its parts. In such a 
case a space of features appears and the distance between  objects  may  be  introduced  in  some natural  way,  

for example,  by the formula ∑i  |xi – yi|
k   for some natural k. In the case k=1 we deal with a well-known 

Hamming metric which is widely used in the information theory for comparison of the same length strings of 
symbols. 

But how we can measure the distance between two objects described by some local features which characterize 
some parts of an object or relations between such parts? What is the distance between two identical images one 
of which is situated in the left upper corner of the screen and the second is in the right lower corner? Even if we 

use a monochrome screen with two degrees of lightness the distance calculated by the formula  ∑i |xi – yi|  will 
give the number of pixels in the image itself multiplied by two.  

If we analyze a market situation with two participants  A and  B  (the participants of the market are not ordered)  

with the feature values  (p1
1, p

1
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n)  and  (p2
1, p

2
2,…,p2

n)  then in the dependence of their order   

((p1
1, p

1
2,…,p1

n),  (p
2
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2
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n))   or  ((p2

1, p
2
2,…,p2

n),  (p
1
1, p

1
2,…,p1

n))  we receive that these 
two situations are essentially different (the distance between  them may be up to 2n). 

To recognize objects from the done set    every element of which is a set t  a logic-objective 

approach was described in [Kosovskaya, 2007].  Such an approach consists in the following.  Let the set of 

predicates  p1, ... , pn  (every of which is defined on the elements of  characterizes properties of these 

elements and relations between them. Let the set    is a union of (may be intersected) classes   = k=1
K 

k.   

Logical description  S() of the object    is a collection of all true formulas of the form  pi()  or  pi()  (where  

  is an ordered subset of  ) describing  properties of  elements and relations between them. 
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Logical description of the class   k  is such a formula  Ak(x) that  if the formula Ak()  is true then   k.  

The class description always may be represented as a disjunction of elementary conjunctions of atomic formulas. 

Here and below the notation   x  is used for an ordered list of the set  x.  To denote that all values for variables 

from the list  x are different the notation  xAk(x)  will be used. 

The introduced descriptions allow solving many artificial intelligence problems [Kosovskaya, 2011]. These 

problems may be formulated as follows.  Identification problem: to check out such a part of the object    which 

belongs to the class  k.  Classification problem:  to find all such class numbers k  that  k.  Analysis 

problem:  to find and classify all parts   of the object  .  The solution of these problems is reduced to the proof 

of predicate calculus formulas  S(хAk(х),    S(k=1

Ak(х),    

S(k=1
хAk(х).   

The proof of every of these formulas is based on the proof of the sequent  

S(хA(х) , (1) 

where A(x)  is an elementary conjunction. 

The notion of partial deduction was introduced by the author in [Kosovskaya, 2009] to recognize objects with 
incomplete information. In the process of partial deduction instead of the proof of  (1)   we search such a maximal 

sub-formula   A'(x')   of the formula   A(x)  that S(х'A'(х')   and there is no information  that  

A(x)  is not satisfiable on  .  

Let  a and a'  be the numbers of atomic formulas  A(x) and  A'(x')  respectively,  m  and  m'  be  the numbers of 

objective variables in A(x) and  A'(x')  respectively.  Then partial deduction means that the object    is   an r-th  

part ( r = m'/m ) of an object satisfying the description A(x)  with the certainty  q = a'/a . 

More precisely, the formula  S(хA(х)   is partially (q,r)-deductive if there exists a maximal sub-

formula   A'(x')  of the formula   A(x)  such that   S(х'A'(х')    is deducible and      is the string 

of values for the list of variables  х' ,  but the formula   S(х[DA' (x)]x'  is  not deducible. Here  

[DA' (x)]x'  is  obtained from A(x)  by deleting from it all conjunctive members of   A'(x'), substituting values of 

 instead of the respective variables of  х'  and taking  the negation of the received formula. 

The defined below distance between objects takes into account the non-coincidence of their descriptions as the 
Hamming metric. It may be calculated not only for descriptions with the same number of atomic formulas which 
are ordered in some natural way, but for such ones which are sets (not ordered) of an arbitrary finite power.  

Distance and Distinguish Degree Between Objects 

Let    and    be two objects with logical descriptions  S()  and  S(  respectively and    A0(x0)  and  

A1(x1) be elementary conjunctions constructed according to these logical descriptions by changing different 

constants by different variables and putting the sign  &  between the atomic formulas. It is evident that   S(i 

хAi(хi)  i.e. i   satisfies the formula  Ai(хi)  (for i = 0, 1). Let  Ai(хi)  contains  ai  atomic formulas 

and  ti  variables.  

Let us construct a partial deduction of a sequent    S(i  хA1-i(х)  for  every  i = 0,1.  
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Let    A'i,1-i(x'i,1-i)   be the maximal  (under the number of variables)  sub-formula of  the formula  A1-i(x1-i)  for 

which such a  partial deduction exists.  

Let the formula  A'i,1-i(x'i,1-i)  contains  a'i,1-i  atomic formulas and   t'i,1-i  variables. Note that  A'01(x'01)  and  

A'01(x'10)   coincide  (up to the names  of variables)   and   hence  a'01 =  a'10. Let   a'i,1-i =  ai –  a'i,1-i .  

a'01   is the number of non-coincidences of atomic formulas (up to the names of constants)  in  S(0)  with 

respect to  S( . 

Definition.  The distance between objects    and    is the sum of the number of non-coincidences of atomic 

formulas (up to the names of constants)  

() =  a'0,1 + a'1,0 . 

Remember examples from the introduction.  If the image on the display screen is described by a predicate   

p(i,j,x)  “pixel with the number (i,j)  has the lightness x”  then  two identical images one of which is situated in the 
left upper corner of the screen and the second is in the right lower corner have the same (up to the names  of 
constants) logical descriptions. Therefore the distance between them equals 0.  

The logical description of two participants in the example with market participants is a set of atomic formulas   

{p1(A), p2(A),…,pn(A), p1(B), p2(B),…,pn(B)}  or  {p1(B), p2(B),…,pn(B),  p1(A), 

p2(A),…,pn(A)}  which are equal  and  the distance  equals 0.  

It is natural that in dependence of the chosen initial predicates the distance between objects may differ.  Let's 
give an example of distance calculation between two contour images described by two predicate systems. 

Example. Let we have two images  A  and  B   represented on the figures 1 and 2. 

Consider two systems of initial predicates. 

1. V(x,y,z)  yxz <  ,   

I(x,y,z,u,v)    “the vertex x is a point of intersection of segments [y,z] and [u,v]. 

In such a case every of the points  a1, a2, a5, a9, a10  is represented in  Aa(x1,...,x10)  by one formula.  For 

example, the point  a1  is represented in Aa(x1,...,x10)  by  V(x1,x6,x3). 

Every of the points  b1, b2, b5, b9, b10  is represented in  Ab(x1,...,x10)  by six formulas.  For example, the 

point  b1  is represented in Ab(x1,...,x10)  by  V(x1,x2,x3), V(x1,x3,x4), V(x1,x4,x5), V(x1,x2,x4), 
V(x1,x3,x5), V(x1,x2,x5).  

Every of the points  a3, a4, a6, a7, a8  (as well as  b3, b4, b6, b7, b8) is represented in  Aa(x1,...,x10) 
(and in  Ab(x1,...,x10)) by five formulas.  For example, the point  a3  is represented in Aa(x1,...,x10)  by  

V(x3,x4,x1), V(x3,x1,x2), V(x3,x2,x6), V(x3,x6,x4), I(x3,x1,x6,x2,x4). So,  the formula  

Aa(x1,...,x10)  has  30  atomic formulas and the formula  Ab(x1,...,x10)  has  55  atomic formulas. 

 



Mathematics of Distances and Applications 

 

156

                             Fig. 1. Image A.                                     Fig. 2. Image B. 

 

While construction partial deduction of  S(A)x Ab(xb)  all variables will receive some values but    

A'b(x'b)    (coinciding with  Aa(x) )  contains only  30  atomic formulas.     Hence  a'a,b= 55 – 30 = 25 .   

While construction partial deduction of  S(B)�x Aa(xa)  all variables receive some values and  all 

atomic formulas from  Aa(xa)  are included into  A'a(xa).  Hence  a'a,b= 0.   

In such a case (A,B)= 25 + 0 = 25. 

2. E(x,y)   “x  and  y  are adjacent”. 

This predicate describes not every point individually but  a binary relation between them. As a fact we have a set 

of edges of a planar graph. The formula  Aa(x1,...,x10)  has 15 atomic formulas and the formula 

Ab(x1,...,x10) has 20 atomic formulas. While construction partial deductions of S(A)x Ab(xb)  and 

S(B)�x Aa(xa)  it will be received that  a'a,b= 20 – 15 = 5,  a'b,a= 0 .  And  (A,B)= 15. 

These examples demonstrate that besides the fact that different initial predicates provide different distances 
between objects; the value of the calculated distance does not illustrate the degree of their similarity. To 
overcome such a lack we may normalize the defined distance in order that it is not greater than 1. It may be done, 

for example, by dividing the distance by  a0 + a1. 

Definition. The degree of distinction between the objects    and    is the sum of the number of non-

coincidences of atomic formulas (up to the names of constants)  divided by the sum of numbers of atomic 

formulas in elementary conjunctions  A0(x0)  and  A1(x1)  

d() =  (a'0,1 + a'1,0 ) /  (a0 + a1). 

The distinction degrees between the objects  A  and  B  in the previous example are   d(A,B) = 25/55  0.45  for 

the first set of predicates  and  d(A,B) = 15/20  0.75  for the second set of predicates. 

Properties of the introduced functions 

The introduced functions    and  d  have the following properties. 

Property 1. For every objects    and      ,  and  d,
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This property is an immediate consequence of definitions. 

Property 2. If    then  ,  and   d,   

The proof is based on the fact that in such a case the descriptions objects    and    contain the same (up to 

the names of constants)  formulas. 

Property 3.  If    is a proper subset of    then   ,  and   0<d,  
Proof.  As   is a proper subset of    so  the elementary conjunction  A0(x0)  is a corollary (but not 

equivalent) of the formula  A1(x1). Therefore  a1 > a0, a1 > a'0,1 > 0, a'1,0 = 0   and ,= a'0,1 + 

a'1,0 = a'0,1 > 0,  d() = (a'0,1 + a'1,0)/ (a0 + a1) = a'0,1/ a1< 1. 

Property 4.  If    and    have no common (up to the names of constants) formulas in their descriptions then   

,= (a0 + a1)  and   d,= 1 . 

Proof.  As   and    have no common (up to the names of constants) formulas in their descriptions so  

A0(x0)  and  A1(x1)  also  have no  common atomic formulas and   a'0,1=  a'1,0 = 0. Hence   ,= 

a'0,1 + a'1,0 = (a0  – a'0,1) + (a1 – a'1,0)= a0 + a1  and.  n ,= , (a0 + a1)=�(a0 + 
a1)/(a0 + a1) =1  . 

Property 5. If    and    have common (up to the names of constants) formulas in their descriptions but 

neither of them is a part of the other then , ,  0 <d,. 

This property is evident. 

Theorem 1.  

Function    defines  a distance between objects. I.e. it satisfies the properties of distance: 

1. for every objects    and      , ; 

2. for every objects    and      ,,  

3.     if and only if  , ; 

4. triangle inequality is fulfilled for the function  , i.e.  for every objects    and      

,,,. 

Proof. Points 1 and 2 are direct corollaries of the definition of . Point 3 follows from the properties  2 – 5. Let's 

prove the triangle inequality.  

Let     be objects which descriptions have  a1, a2, a3  atomic formulas respectively.    a'1,2, a'2,3, 
a'3,1 are the numbers of atomic formulas contained respectively in maximal sub-formulas   A'1(x'1),  A'2(x'2),  
A'3(x'3) obtained while partial deduction of the respective sequents. 

Let    be the number of atomic formulas coinciding (up to the names of variables) simultaneously in  A'1(x'1),  

A'2(x'2),  A'3(x'3) ;  a–i  be the number of atomic formulas which do not take part in partial derivations of   S(ωi) 

  x Aj(xj)   (j = 1, 2, 3, i  j);  a'1,2 = a''1,2 + ��a'2,3 = a''2,3 + �, a'3,1 = a''3,1 +�. 

Then  

a1 = a–1 + a''1,2 + a''1,3 + , 

a2 = a–2 + a''1,2 + a''2,3 + , 
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a1 = a–1 + a''1,2 + a''1,3 + , 

a2 = a–2 + a''1,2 + a''2,3 + , 

a3 = a–3 + a''1,3 + a''2,3 +  

,,= (a1 – a'1,2) + (a2 – a'1,2) + (a2 – a'2,3) + (a3 – a'2,3) = 

 =��a–1 + a''1,3 ) + (a–2 + a''2,3 ) + (a–2 + a''1,2 ) + (a–3 + a''1,3 ) . 

,= (a1 – a'1,3) + (a3 – a'1,3)  = (a–1 + a''1,2 ) + (a–3 + a''2,3 ) . 

The reminder after subtraction of these expressions is  ,, – ,�=  2a–2 + 

2a''1,3  0. 

The triangle inequality is proved. The theorem is proved. 

Theorem 2.  

Function d  does not define a distance. It does not satisfy the triangle inequality but satisfies the properties 

1. for every objects    and      d, ; 

2. for every objects    and      d,d,  

3.     if and only if  d, . 

Proof. Fulfillment of points 1 – 3 is a corollary of such properties for the function   .  

Let's give an example of such objects     and    that  d,d,d, .   

Let   be a proper part of     (hence  a'1,2 = a1)  and  (a2 – a'1,2) = 0.1 a1  (i.e.  a2 = 1.1 a1).  Then   

d(,= (a2 – a'1,2)/(a1 + a2) = 0.1 a1/ 1.1a1 = 0.1 / 1.1. 

Let  also   has no common elements with  .  Then    d(,) = 1.   

Let all elements of    which does not belong     are elements of     and   a3 – a'2,3 =  a1    (i.e.   a3 = a1 + 

a'2,3 =  1.1 a1).  Then   d,= (a3 – a'2,3)/(a2 + a3) =  a1 / 2.1 a1 = 1/ 2.1. 

d(,) + d(,) = 0.1/1.1 + 1/ 2.1  0.09 + 0.043 = 0.133 < 1 = d(,).

Conclusion 

The presence of a metric between objects involved in an Artificial Intelligence problem allows to state an earlier 
investigated object which is the mostly similar to the given for investigation one. Algorithms based on the principle 
“the nearest neighbor” are well-known in pattern recognition, particularly in the training of a neural network.  

But usual metrics used in Artificial Intelligence problems are metrics in the fixed-dimensional spaces. This 
dimension equals to the number of features which describe an object. Usually an object is considered as a single 
indivisible unit and such a feature is its global characteristic. 

If an object is considered as a set of its parts and the features describe properties of its elements and relations 
between them, then we can't map an object into a fixed-dimensional space. Such descriptions may be simulated 
by discrete features but the number of such features exponentially depends of the number of elements in the 
largest object under consideration [Russel, 2003].  
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Hence, the introduction of a metric for comparison of objects considered as a set of their elements is an important 
direction in the development of Artificial Intelligence. 
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