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GEOMETRICAL TOOLS FOR ALPHA-VORONOI PARTITIONS

Atsumi Ohara and Yuya Nagatani

Abstract: We consider problems to classify data represented as discrete probability distributions. For the classification

we propose the Voronoi partition technique with respect to α-divergence, which is a statistically justified pseudo-

distance on the space of probability distributions. In order to improve computational efficiency and performance of

the classification, we introduce two nonlinear transformations respectively called the escort and projective transform,

and weighted α-centroids. Finally we demonstrate performances of the proposed tools via simple numerical

examples.
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Introduction

The Voronoi partitions on the space of probability distributions with the Kullback-Leibler or Bregman divergences

have been recognized as significant approaches for various statistical modeling problems involving pattern classification,

clustering, likelihood ratio test and so on [1, 2, 3, 4].

Recently we have proposed [7] (See [8] for the proofs and derivations) a computationally efficient method to

construct Voronoi diagrams with respect to the α-divergence [5, 6] using conformal flattening technique. One of

mathematically natural requirements for divergence functions is an invariance property and it is proved that the α-

divergence is equipped with the property [5, 6]. Hence the α-divergence is an important candidate to be applied to

the above statistical problems.

In this note, we introduce several useful tools when we apply the α-Voronoi partitions on the space of discrete

probability distributions for the purpose of pattern classification problems.

Preliminaries

Let Sn denote the n-dimensional probability simplex, i.e.,

S
n :=

{

p = (pi)

∣

∣

∣

∣

∣

pi > 0,

n+1
∑

i=1

pi = 1

}

, (1)

and pi, i = 1, · · · , n+ 1 denote probabilities of n+ 1 states.

The α-divergence [5, 6] is a function on Sn
× S

n defined for α 6= ±1 by

D(α)(p, r) =
4

1 − α2

{

1 −

n+1
∑

i=1

(pi)
(1−α)/2(ri)

(1+α)/2

}

.

Note that it respectively converges to the Kullback-Leibler divergence or its dual when α goes to−1 or 1, andD(0)

is called the Hellinger distance.
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For q ∈ R escort transformation [9] is defined for p ∈ S
n by

Pi(p) :=
(pi)

q

∑n+1

j=1
(pj)q

, i = 1, · · · , n + 1, Zq(p) :=
n+1
∑

i=1

(pi)
q

q
, (2)

and we call Pi(p) an escort probability. Note that the escort distribution P (p) = (Pi(p)) converges to the
uniform distribution independently of p, when q → 0. On the other hand, when q → ±∞, it converges to a

distribution on the boundary of Sn depending on the maximum or minimum components of p. In the sequel we fix

the relation between α and q by q = (1 + α)/2, and assume q > 0.

The conformal divergence [7] forD(α) is defined by

ρ(p, r) :=
1

Zq(r)
D(α)(p, r) = −

n+1
∑

i=1

Pi(r) (lnq(pi) − lnq(ri))

= ψ(θ(p)) + ψ∗(η(r)) −
n

∑

i=1

θi(p)ηi(r), (3)

where

θi(p) := lnq(pi) − lnq(pn+1), ηi(p) := Pi(p), i = 1, · · · , n,

ψ(θ(p)) := − lnq(pn+1), ψ∗(η(p)) :=
1

κ

(

1

Zq(p)
− q

)

,

with κ := (1 − α2)/4 = q(1 − q), lnq(s) := (s1−q
− 1)/(1 − q) for s ≥ 0 and

ηi(p) =
∂ψ

∂θi
(p), θi(p) =

∂ψ∗

∂ηi
(p), i = 1, · · · , n. (4)

Alpha-Voronoi partitions and pattern classification problems

For givenm points p1, · · · ,pm on S
n we define α-Voronoi regions on Sn using the α-divergence as follows:

Vor(α)(pk) :=
⋂

l 6=k

{p ∈ S
n
|D(α)(pk,p) < D(α)(pl,p)}, k = 1, · · · ,m.

An α-Voronoi partition (diagram) on Sn is a collection of the α-Voronoi regions and their boundaries.

By the conformal relation betweenD(α) and ρ in (3) we immediately see that the Voronoi region defined by

Vor(conf)(pk) :=
⋂

l 6=k

{p ∈ S
n
|ρ(pk,p) < ρ(pl,p)}

coincides with Vor(α)(pk). Furthermore, we have proved [7] that if we regard the escort probabilities (Pi(p)) as
a new coordinate system for p, we can efficiently compute Vor(conf)(pk) by the standard algorithm [10] using the
polyhedron envelop for the convex potential function ψ. Hence, the boundary for each α-Voronoi region consists of

straight line segments (See the figure 1 and 2).

When we apply the Voronoi partitioning technique to pattern classification problems, flexible choice of the representing

point for each Voronoi region is significant. For this purpose we define a weighted α-centroid and a formula to

calculate it. Given m points p1, · · · ,pm on S
n and weights wk ≥ 0, k = 1, · · · ,m, the weighted α-centroid

c
(α)
w is defined by the minimizer of the following problem:

min
p∈Sn

m
∑

k=1

wkD
(α)(p,pk).
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By differentiating the above with θi and considering the optimality condition, we have the escort probabilities of c
(α)
w

as

Pi(c
(α)
w ) =

1
∑m

k=1
wkZq(pk)

m
∑

k=1

wkZq(pk)Pi(pk), i = 1, · · · , n+ 1.

Thus, the weighted α-centroid is represented as the usual weighted average in the escort probabilities.

While the α-Voronoi partition has a one-dimensional freedom in adjusting the parameter α (or equivalently q), the

adjustment tends not to work well for large α (or q ≈ +∞) for distributions that have the largest probabilities

for the same event. This can be understood by considering the corresponding escort distributions, i.e., they are

concentrated in the same corner of the simplex in such a situation. Similarly, the classification tends not to work

when α ≈ −1 (or q ≈ 0) because all the corresponding escort distributions are concentrated near the uniform
distribution.

To resolve this problem, we introduce the following projective transformation:

Πt : Sn
∋ (pi) 7→ (p̃i) ∈ S

n, where p̃i(p) :=
t−1

i pi
∑n+1

j=1
t−1

j pj

for t = (t1, · · · , tn+1) in the positive orthant.

Note that the inverse projective transformation isΠt−1 where t−1 := (t−1

1
, · · · , t−1

n+1
), and Πt for t ∈ S

n maps

t to the uniform distribution. Hence, if we use Πt as a preconditioner for given data of discrete distributions before

the α-Vononoi partitioning, we can expect the inprovement of classification performance.

Illustrative numerical examples

As an illustrative example we consider α-Voronoi partition of the the given four kinds of discrete distributions (the

left one of Figure 1) into four classes. In spite of adjusting α (equivalently q) one of data denoted by the symbol

• is classified into the region of data denoted by △. The right one of Figure 1 is representation of the α-Voronoi

partition in escort probabilities.

Executing projective transformation before the partitioning given data are classified successfully (Figure 2). In both

figures the symbol ∗ denotes unweighted (w1 = · · · = w4) α-centroids for the corresponding classes, and t for

the projective transformation is the unweighted α-centroid of those of four data classes.

Concluding remarks

As is summarized in the preliminary section, introduction of the escort probabilities and the conformal divergence

enables us to construct α-Voronoi partitions via the efficient standard algorithm involving a convex potential function.

We apply this algorithm to pattern classification problems for data expressed by discrete probability distributions.

While the Voronoi partition technique might not be more efficient than the other naive methods in higher dimensional

case, the underlying geometrical idea could be applied to other application such as likelihood ratio test.
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Figure 1: α-Voronoi diagram on S2 w.r.t. usual probabilities (left) and escort probabilities (right) for q=0.4

Figure 2: α-Voronoi diagram on S2 w.r.t. usual probabilities (left) and escort probabilities (right) for q=0.4 with

projective transformation as preconditioning
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